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Abstract—In this paper, we conduct extensive simulations to
understand the properties of the overlay generated by BitTorrent.
We start by analyzing how the overlay properties impact the
efficiency of BitTorrent. We focus on the average peer set size
(i.e., average number of neighbors), the time for a peer to reach
its maximum peer set size, and the diameter of the overlay. In
particular, we show that the later a peer arrives in a torrent,
the longer it takes to reach its maximum peer set size. Then, we
evaluate the impact of the maximum peer set size, the maximum
number of outgoing connections per peer, and the number of
NATed peers on the overlay properties. We show that BitTorrent
generates a robust overlay, but that this overlay is not a random
graph. In particular, the connectivity of a peer to its neighbors
depends on its arriving order in the torrent. We also show that
a large number of NATed peers significantly compromise the
robustness of the overlay to attacks. Finally, we evaluate the
impact of peer exchange on the overlay properties, and we show
that it generates a chain-like overlay with a large diameter, which
will adversely impact the efficiency of large torrents.

I. I NTRODUCTION

Recently, Peer-to-Peer (P2P) networks have emerged as an
attractive architecture for content sharing over the Internet. By
leveraging the available resources at the peers, P2P networks
have the potential to scale to a large number of peers.
Nowadays, P2P networks support a variety of applications,
for instance, file sharing (e.g., BitTorrent, Emule), audio
conferencing (e.g., Skype), or video conferencing (e.g., End
System Multicast [1]). Among all existing P2P applications,
file sharing is still the most popular one. A study in 2004 by the
Digital Music Weblogmagazine [2] states that P2P file sharing
is responsible for70 − 80% of the overall European Internet
traffic. And among the many P2P file sharing protocols,
BitTorrent [3] is the most popular one. Alone, BitTorrent
generates more than half of the P2P traffic [4].

Invented by Bram Cohen, BitTorrent [5] targets distributing
efficiently large files, split into multiple pieces, in case of
a massive and sudden demand. The popularity of BitTorrent
comes from its efficiency ensured by its peer and piece selec-
tion strategies. The peer selection strategy aims at enforcing
the cooperation between peers while the piece selection strat-
egy tends to maximize the variety of pieces available among
those peers. The great success of BitTorrent has attracted the
curiosity of the research community and several papers have
appeared on this subject. Thanks to this research effort, we
now have a better idea on the strengths and weaknesses of the

protocol [6], [7], [8], [9]. We also have a clear idea on the
peers’ behavior (i.e., arrival and departure processes), and on
the quality of service they experience [10], [11], [12]. Butso
far, little effort has been spent to understand the properties of
the distribution overlay generated by BitTorrent. As already
showed by Urvoy et al. [13], the time to distribute a file in
BitTorrent is directly influenced by the overlay topology. For
example, it is reasonable to believe that BitTorrent performs
better on a full mesh overlay than on a chain one. In addition,
as compared to a chain, a full mesh overlay makes BitTorrent
more robust to peers’ departures and overlay partitions.

We conduct in this paper extensive simulations to isolate the
main properties of the overlay generated by BitTorrent. Our
contributions are summarized as follows.

• We first evaluate the impact of the overlay properties on
the BitTorrent efficiency. We show that a large peer set
increases the efficiency of BitTorrent, and that a small
diameter is a necessary, but not sufficient, condition for
this efficiency. We also show that the time for a peer to
reach its maximum peer set size depends on the size of
the torrent it joins. The larger the torrent when a peer
joins it, the longer the time for this peer to reach its
maximum peer set size.

• We then study the properties of the overlay generated by
BitTorrent. We show that BitTorrent generates a graph
with with a small diameter. However, this graph is not
random and the average peer set size is significantly lower
than the maximum possible peer set size. We also show
that this overlay is robust to attacks and to churn.

• We show that the properties of the overlay are not signif-
icantly impacted by the torrent size, and that a peer set
size of 80 is a sensible choice. However, a larger peer set
size increases the efficiency of the protocol at the expense
of a higher overhead on each peer. We also explain why a
maximum number of outgoing connections set to half the
maximum peer set size is a good choice, and we show that
a large fraction of NATed peers decreases significantly the
robustness of the overlay to attacks.

• Finally, we evaluate the impact ofpeer exchangeon the
overlay properties. Whereas peer exchange allows peers
to reach fast their maximum peer set size, it builds a
chain-like overlay with a large diameter.
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The closest work to ours is the one done by Urvoy et al.
[13]. The authors focus on two parameters, the maximum peer
set size and the maximum number of outgoing connections.
As a result, they show that these two parameters influence
the distribution speed of the content and the properties of the
overlay.

In this paper, we go further and we provide an analysis that
highlights the relation between the overlay properties andthe
performance of BitTorrent. We also present an in-depth study
that characterizes the properties of the BitTorrent overlay.
Finally, we show how the overlay properties change as we vary
the different system parameters. These parameters include, in
addition to the maximum peer set size and maximum number
of outgoing connections, the torrent size (i.e., number of
peers), the percentage of NATed peers, and the peer exchange
extension protocol.

The rest of this paper is organized as follows. In Section
II we give a brief overview of BitTorrent. In Section III we
describe our methodology and we give results in Sections IV
and V. In Section VI we discuss the impact of peer exchange
on the overlay and we conclude the work with Section VII.

II. OVERVIEW OF BITTORRENT

BitTorrent is a P2P file distribution protocol with a focus
on scalable and efficient content replication. In particular,
BitTorrent capitalizes on the upload capacity of each peer in
order to increase the global system capacity as the number of
peers increases. This section introduces the terminology used
in this paper and gives a short overview of BitTorrent.

A. Terminology

The terminology used in the BitTorrent community is not
standardized. For the sake of clarity, we define here the terms
used throughout this paper.
Torrent: A torrent is a set of peers cooperating to share the
same content using the BitTorrent protocol.
Tracker: The tracker is a central component that stores the
IP addresses of all peers in the torrent. The tracker is used as
a rendez-vous point in order to allow new peers to discover
existing ones. The tracker also maintains statistics on the
torrent. Each peer periodically (typically every 30 minutes)
report, for instance, the amount of bytes it has uploaded and
downloaded since it joined the torrent.
Leecher and Seed. A peer can be in one of two states: the
leecherstate, when it is still downloading pieces of the content,
and theseedstate, when it has all the pieces and is sharing
them with others.
Peer Set:Each peer maintains a list of other peers to which it
has open TCP connections. We call this list the peer set. This
is also known as the neighbor set.
Neighbor: A neighbor of peerP is a peer inP ’s peer set.
Maximum Peer Set Size:Each peer cannot have a peer set
larger than the maximum peer set size. This is a configuration
parameter of the protocol.
Average Peer Set Size:The average peer set size is the sum
of the peer set size of each peer in the torrent divided by the
number of peers in that torrent.

Maximum Number of Outgoing Connections: Each peer
has a limitation on the number of outgoing connections it can
establish. This is a configuration parameter of the protocol.
Pieces and Blocks:A file transferred using BitTorrent is split
into pieces, and each piece is split into multiple blocks. Blocks
are the transmission unit in the network, and peers can only
share complete pieces with others. A typical piece size is equal
to 512 kBytes, and the block size is equal to 16 kBytes.
Official BitTorrent Client: The official BitTorrent client [5],
also known asMainline client, was initially developed by
Bram Cohen and is now maintained by the company he
founded.

B. BitTorrent Overview

Prior to distribution, the content is divided into multiple
pieces, and each piece into multiple blocks. Ametainfo file
is then created by the content provider. This metainfo file,
also called a torrent file, contains all the information necessary
to download the content and includes the number of pieces,
SHA-1 hashes for all the pieces that are used to verify the
integrity of the received data, and the IP address and port
number of the tracker.

To join a torrent, a peerP retrieves the metainfo file out of
band, usually from a well-known website, and contacts the
tracker that responds with an initial peer set of randomly
selected peers, possibly including both seeds and leechers.
This initial peer set is augmented later by peers connecting
directly to this new peer. Such peers are aware of the new
peer by receiving its IP address from the tracker. If ever the
peer set size of a peer falls below a given threshold, it re-
contacts the tracker to obtain additional peers.

OnceP has received its initial peer set from the tracker,
it starts contacting peers in this set and requesting different
pieces of the content. BitTorrent uses specific peer and piece
selection strategies to decide with which peers to reciprocate
pieces, and which pieces to ask to those peers. The piece
selection strategy is called the local rarest first algorithm, and
the peer selection strategy is called the choking algorithm. We
describe briefly those strategies in the following.
Local rarest first algorithm: Each peer maintains a list of the
number of copies of each piece that peers in its peer set have.
It uses this information to define a rarest pieces set, which
contains the indices of all the pieces with the least number of
copies. This set is updated every time a neighbor in the peer
set acquires a new piece, and each time a peer joins or leaves
the peer set. The rarest pieces set is consulted for the selection
of the next piece to download.
Choking algorithm: A peer uses the choking algorithm to
decide which peers to exchange data with. The choking
algorithm is different when the peer is a leecher or a seed. We
only describe here the choking algorithm for leechers. The
algorithm gives preference to those peers who upload data
at high rates. Once perrechoke period, typically set to ten
seconds, a peer re-calculates the data receiving rates fromall
peers in its peer set. It then selects the fastest ones, a fixed
number of them, and uploads only to those for the duration of
the period. We say that a peer unchokes the fastest uploaders
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via a regular unchoke, and chokes all the rest. In addition, it
unchokes a randomly selected peer via anoptimistic unchoke.
The rational is to discover the capacity of new peers, and to
give a chance to peers with no piece to start reciprocating.
Peers that do not contribute should not be able to attain high
download rates, since such peers will be choked by others.
Thus, free-riders, i.e., peers that never upload, are penalized.
The algorithm does not prevent all free-riding [14], [8], but
it performs well in a variety of circumstances [7]. Interested
readers can refer to Sections 2.3.1 and 2.3.2 in [6] for a
detailed description of the choking algorithm for leechersand
seeds.

III. S IMULATION METHODOLOGY

To evaluate the properties of the overlay distribution, we
have developed a simulator that captures the evolution of the
overlay over time, as peers join and leave. We present here
the methodology used and in particular the use of simulations
over experiments in Section III-C.

A. Parameters Used in the Simulations

BitTorrent has the following parameters to adjust the overlay
topology: (1) the maximum peer set size, (2) the maximum
number of outgoing connections, (3) the minimum number of
neighbors before re-contacting the tracker, and (4) the number
of peers returned by the tracker. The default value of those
four parameters can be different depending on the version
of BitTorrent. For example, the maximum peer set size was
recently changed in the mainline client [5] from80 to 200. Our
study shows how these parameters influence the properties of
the overlay and the efficiency of BitTorrent.

Another parameter that can have an impact on the overlay
properties is the percentage of NATed peers. We will evaluate
how this parameter influences the overlay properties. Note that
a NATed peer refers to a peer behind a NAT or a firewall.

B. Simulation Details

Our Simulator, that we made public [15], was developed
in MATLAB. We have simulated the tracker protocol as it
is implemented in the BitTorrent mainline client 4.0.2. In the
following, we give the details of our simulator. First of all, the
tracker keeps two lists of peers,Lnated for NATed peers and
Lnot−nated for non NATed ones. Assume that the percentage
of NATed peers in the torrent isX%. Thus, when a new peer
Pi joins the torrent, it is considered NATed with a probability
of X%. Then,Pi contacts the tracker, which in turn returns
the IP addresses of up toσ (e.g.,50) non NATed existing peers
(if there are any). Theseσ IP addresses are selected at random
from theLnot−nated list. Then, the tracker addsPi to Lnated

if Pi is NATed or toLnot−nated otherwise.
When Pi receives the list of peers from the tracker, it

stores them in a list calledLPi

tracker. Then,Pi starts initiating
connections to those peers sequentially. WhenPi initiates a
connection to peerPj , Pi removesPj from LPi

tracker. When
a peerPj receives a connection request from peerPi, Pj will
accept this connection only if its peer set size is less than

the maximum peer set size. In this case,Pi addsPj to its
list of neighborsLPi

neighbors. Pj also addsPi to L
Pj

neighbors.
Note that, in practice, peerPi would initiate TCP connections
to the peers in itsLPi

tracker. In our simulator, establishing a
connection between peersPi and Pj results in addingPi to
the list of neighbors ofPj L

Pj

neighbors and also addingPj

to the list of neighbors ofPi LPi

neighbors. This is reasonable
because our goal is to reproduce the topology properties of
the overlay and no data exchange is simulated over the links
between peers.

After the connection has been accepted or refused byPj ,
Pi initiates a new connections to the next peer inLPi

tracker.
PeerPi keeps on contacting the peers it discovered from the
tracker until (1) it reaches its maximum number of outgoing
connections, or (2)LPi

tracker becomes empty.
Assume thatPi andPj are neighbors. WhenPj leaves the

torrent,Pi removesPj from its list of neighborsLPi

neighbors.
The tracker also removesPj from Lnated or Lnot−nated

depending on whetherPj was NATed or not. In addition,Pi

will try to replace the neighbor it lost. For this purpose,Pi

checks whether the number of connections it has initiated toits
actual neighbors is less than the maximum number of outgoing
connections. If this is the case,Pi checks whether it still knows
about other peers in the torrent, i.e., ifLPi

tracker is not empty.
If this is the case, it contacts them sequentially until either (1)
one of them accepts the initiated connection or (2)LPi

tracker

becomes empty.
Whenever the peer set size ofPi falls below a given

threshold (typically20), it recontacts the tracker and asks for
more peers. We set the minimum interval time between two
requests to the tracker to300 simulated seconds.

Finally, each peer contacts the tracker once every30 minutes
to indicate that it is still present in the network. If no report
is received from a peer within30 − 45 minutes, the tracker
considers that the peer has left and deletes it fromLnated or
Lnot−nated.

Our simulator mimics the real overlay topology construction
in BitTorrent and therefore, we believe that our conclusions
will hold true for real torrents.

C. Simulations vs. Experiments

There are three reasons that motivated us to perform simula-
tions and not experiments. First, in BitTorrent, we cannot use
solutions that rely on a crawler to infer the topology properties
as already done in the context of Gnutella [16]. The reasons
is that BitTorrent does not offer distributed mechanisms for
peers discovery or data lookup. Thus, there is no way to make
a BitTorrent peer give information about its neighbors.

Second, we cannot take advantage of existing traces col-
lected at various trackers. The reason is that a peer never
sends information to the tracker concerning its connectivity
with other peers, e.g., its list or number of neighbor.

Third, we can experimentally create our own controlled
torrents. However, in order to give significant results, we need
torrents of moderate size with more than1000 peers, which is
not easy to obtain. In addition, as we have much less flexibility
with real experiments, and as we are only concerned by the
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Fig. 1. The evolution of our torrent size over time. The overall number of
peers that join this torrent from the beginning to the end is equal to 1867,
and the maximum number of simultaneous peers is about1250. The rate at
which peers join the torrent decreases exponentially with time.

overlay construction (except in Section IV-A) which is far
easier to simulate than the data exchange protocol, we decided
to run simulations instead of experiments. We validate our
simulator on a small torrent of420 peers in Section V-B.

D. Arrival Distribution of Peers

We assume that peers’ arrivals follow an exponential distri-
bution, i.e., the rate at which peers join the torrent decreases
exponentially with time. More precisely, we split the simulated
time into slots. Each slot represents10 minutes of simulated
time. The first slot of time refers to the first10 simulated
minutes. More formally, sloti is defined as the simulated time
elapsed between the momentt = (i − 1) · 10 minutes and the
momentt = i · 10 minutes. Then, within each slot of timei,
the number of new peers that join the torrent is computed as

arrivals at slot i = 1000 · exp−0.7·(i−1) if i ≤ 4 (1)

= 0 if i > 4

Each peer stays on-line for a random amount of time uniformly
distributed between10 and20 simulated minutes. Under this
assumption on the arrival process,1000 peers will arrive
during the first10 minutes of the simulations,497 peers during
the second10 minutes,247 peers during the third10 minutes,
123 peers during the fourth10 minutes. Note that no peer
will arrive after the first40 minutes of the simulation. As
a result, we have more arrivals than departures during the
first two time slots. In contrast, starting from the third time
slot, the departure rate becomes higher than the arrival rate.
The torrent size that results from these arrivals and from the
lifetime distribution described above corresponds to a typical
torrent size evolution [10], [11]. The overall number of peers
that join this torrent from the beginning to the end is equal
to 1867, and the maximum number of simultaneous peers is
about1250.

Even if this torrent is of moderate size, we will show later
that it allows us to gain important insights on the properties of
the overlay. Moreover, we will explain how we can extrapolate
our results to larger torrents. Note that, the lifetime of our
torrent is of70 simulated minutes and the average lifetime of

a peer is15 minutes. One may wonder whether this is realistic
as BitTorrent is mostly used to download large files. Typically,
the lifetime of a BitTorrent’s peer is of several hours and the
torrent’s lifetime ranges from several hours to several months.
However, we are interested only in the construction of the
overlay and not in the data exchange. Thus, we only need
to see how the overlay adapts dynamically to the arrival and
departure of peers, which is ensured by the arrival distribution
we consider. As a result, considering torrents and peers with
larger lifetimes will not give any new insights. It will only
increase the run time of the simulations.

E. Metrics

We consider4 different metrics to evaluate the overlay
properties in this paper. Those metrics are discussed below.
Average peer set size:The peer set size is critical to the
efficiency of BitTorrent. Indeed, the peer set size impacts the
piece and peer selection strategies, which are at the core of
the BitTorrent efficiency.

The piece selection strategy aims at creating a high diversity
of pieces among peers. The rational is to guarantee that each
peer can always find a piece it needs at any other peer. This
way, the peer selection strategy can choose any peer in order
to maximize the efficiency of the system, without being biased
by the piece availability on those peers. However, this piece
selection strategy is based on a version of rarest first with
local knowledge. Whereas with global rarest first each peer
replicates pieces that are globally the rarest, with local rarest
first each peer replicates pieces that are the rarest in its peer
set. Therefore, the peer set size is critical to the efficiency of
local rarest first. The larger the peer set, the closer local rarest
first will be to global rarest first.

The peer selection strategy aims at encouraging high peer
reciprocation by favoring peers who contribute. Recently,
Legout et al. [7] showed that peers tend to unchoke more
frequently other peers with similar upload speeds, since those
are the peers that can reciprocate with high enough rates.
Thus, the larger the peer set, the higher the probability that a
peer will find peers with similar upload capacity and the more
efficient the choking algorithm. We confirm this analysis with
simulations in Section IV-A.
Speed to converge to the maximum peer set:As we will
show later, a large peer set helps the peer to progress fast in
the download of the file. Thus, it is important to investigate
how long a peer takes in order to reach its maximum peer set
size.
Diameter of the overlay distribution: A short diameter is es-
sential to provide a fast distribution of pieces. In SectionIV-C,
we develop a simple analysis to support this claim.
Robustness of the overlay to attacks and high churn rate:
P2P networks represent a dynamic environment where peers
can join and leave the torrent at any time. As a result, it is
important to know whether the overlay generated by BitTorrent
is robust to high churn rate. In addition, P2P overlays may be
subject to attacks that target to partition the overlay. In Section
V, we explain how we simulate churn rates and attacks.
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IV. I MPACT OF THEOVERLAY ON BITTORRENT’ S

EFFICIENCY

In this section, we investigate the impact of the overlay
structure on the efficiency of BitTorrent. First, we evaluate
the impact of the peer set size on BitTorrent efficiency.
Second, we analyze the convergence speed of peers toward
their maximum peer set size. Finally, we develop a simple
model that highlights the relation between the diameter and
the distribution speed of pieces. Note that the robustness of
the overlay will be studied in Section V through simulations.

A. Impact of the Average Peer Set Size

In this section, we simulate the exchange of pieces in
BitTorrent in order to understand the influence of the average
peer set size on the efficiency of the protocol. Our simulator
runs in rounds where each round corresponds to 10 simulated
seconds, which is the typical duration between two calls of the
choking algorithm in BitTorrent. Every 10 seconds, we scan all
peers one after the other. For each peer, we apply the choking
algorithm to identify the set of peers it is actively exchanging
data with. Then, we apply the piece selection strategy to
discover which pieces to upload to each peer chosen by the
choking algorithm. The choking algorithm is implemented as
explained in Section 2.3.2 in [6]. We consider that bottlenecks
are at the access links of the peers. We do not consider network
congestion, propagation delays, and network failures.

We generate three overlays each with1000 peers and a
diameter of2. They only differ in their peer set size. The first
overlay has a peer set size of50, the second one has a peer set
size of100, and the third one has a peer set of150. We now
explain how to construct an overlay with1000 peers, with a
diameter of2 and a peer set size of50. The same methodology
is used to construct the two other overlays. We apply this
algorithm for each peer sequentially starting withP1. For each
peerPi, we connect it to other peers randomly selected from
the set of peers{P1, . . . , P1000}. The following two conditions
should never be violated. First, no peer is allowed to have
more than50 neighbors. Second, a peer cannot be its own
neighbor. Note that there is no guarantee that each node will
have exactly50 neighbors. Yet, our results show that very few
peers have less than50 neighbors. Then, we select one source
at random to distribute a file of100MB, which is split into
100 pieces. We assume that all peers join the torrent at its
beginning and stay until the end of the simulation. Each peer
has a download capacity of 1 Mbit/s, and the upload capacity
is randomly selected, with a uniform distribution, between160
kbit/s and350 kbit/s. This homogeneous download capacity of
peers is reasonable as the replication speed of pieces is usually
limited by the upload capacity of peers. Our goal is to study
the evolution of the total number of pieces received by each
peer in the torrent.

Our results confirm previous ones showed by Urvoy et al.
[13] and show that BitTorrent replicates pieces faster witha
larger peer set. Indeed, Fig. 2 shows that, as we increase the
peer set size from50 to 100 (respectively from100 to 150),
the replication speed of pieces improves by12% (respectively
by 5%).
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Fig. 2. Impact of the peer set size on the BitTorrent efficiency. These results
are the average over ten independent runs.The larger the peer set size, the
faster the replication of pieces.

In summary, a larger peer set improves the speed of piece
replication. However, this is at the expense of an additional
load on each peer that has to maintain a larger number of
TCP connections and has to handle an additional signaling
overhead per connection. Keep in mind that, in the following,
and while evaluating the overlay properties, there will be no
data exchange between peers. We now only focus on the
evolution of the overlay as peers join and leave the torrent.

B. Analysis of the Convergence Speed

A BitTorrent client usually needs time to reach its maximum
peer set size. In this section, we show that this is a structural
problem in BitTorrent and that the convergence speed depends
on the torrent size and on the arrival rate of peers. We consider
in our analysis a maximum peer set size of80, a maximum
number of outgoing connections of40, and50 peers returned
by the tracker. We have chosen fixed values for the sake of
clarity, and it is straight forward to extend our analysis toother
parameter sets.

When a new peerPi joins the torrent, it receives from the
tracker the IP addresses of 50 peers chosen at random among
all peers in the torrent. Then,Pi connects to at most 40 out of
these 50 peers. To complete its peer set and have80 neighbors,
Pi keeps on cumulating new connections received from the
peers that arrive after it. One can easily derive on average
how long a peer needs to wait until it completes its peer set.

We assume that the number of peers in the torrent isNs

when Pi arrives. We also assume thatPi has succeeded to
initiate 40 outgoing connections and still misses40 incoming
connections in order to reach its maximum peer set of80
connections. Therefore, the probability that peerPi receives a
new connection from a new peerPj joining the torrent is40

Ns
.

Thus, the number of peersK that should arrive after peerPi

in order for this peer to cumulate40 incoming connections is
on average given by:

1 =

Ns+K∑

n=Ns+1

1

n
(2)

Fig. 3 showsK as a function ofNs as obtained from Eq. (2).
We see that the time for a peer to reach its maximum peer set
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size increases linearly with the torrent sizeNs. For example,
peerP100 should wait the arrival of173 peers after it in order
to receive40 incoming connections, peerP1000 should wait
for 1720 peers and peer peerP10000 for 17184 peers.

This linear dependency can be further shown through the
following approximation obtained from Eq. 3:

K ∼ (e − 1) · Na (3)

The error generated by this approximation is low even for very
small torrent sizes. For example, we obtain an error of0.6%
for a torrent of100 peers and an error of0.09% for a torrent
of 1000 peers.

In summary, the larger the torrent when a peer joins it, the
longer this peer will wait to reach its maximum peer set size.

C. Impact of the Diameter of the Distribution Overlay

Yang et al. [17] shows that the service capacity of P2P
protocols scales exponentially with the number of peers in
the torrent. In this section, we apply their analysis to show
the impact of the diameter on the capacity of service of P2P
protocols.

We consider a torrent withN = 2k peers. We assume
that all peers have the same upload and download capacity
b. Moreover, we assume that all peers join the system at time
t = 0 and stay until the file is distributed to all peers. The unit
of time is T = Cs

b
, whereCs is the content size. Each peer

downloads the content from a single peer at a time. A peer can
start uploading when it receives entirely the content. Then, it
can upload to a single peer at a time. We finally assume that
the file is initially available only at the sourceS.

At time t = 0, S starts serving the file to peerP1. At time
t = T , P1 receives completely the file and starts serving it to
peerP2. At the same time,S schedules a new copy of the file
to peerP3. After l.T units of time,2l peers have entirely the
file. As a result, the number of sources, thus the capacity of
service, scales exponentially with time. However, this means
that, at any timei · T , the 2i sources of the file should find
2i other peers that have not yet received the content. In other
words, each of the2i sources must have a direct connection
in the overlay to a different peer that does not have yet the
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Fig. 4. An example of a chain-like overlay. For clarity, we consider only 3
chains that expand in parallel. At each level in this overlay, we have a cluster
that includes three peers fully interconnected with each other.The distribution
time of the file increases linearly with the number of clusters in the overlay.

content. Whereas it is likely that such a condition is verified
most of the time for an overlay with a small diameter, it is
not clear what happens when the diameter is large.

Now, we evaluate how the capacity of service scales on
the chain-like overlay shown in Fig. 4. The overlay includes
multiple levels. At each level, we have a cluster that includes
2m peers. Each peer is connected to all peers in its cluster. In
addition, it maintains one connection to the two clusters that
surround its own cluster. The source is connected only to the
peers in the first cluster. For this overlay, at timet = 0, the
source serves the file to peerP1 in the first cluster. At time
t = T , after receiving the entire file,P1 starts serving it to
the peer it knows in the second cluster whileS schedules a
new copy of the file to peerP2, in the first cluster. At time
t = 2.T , P1 does not know any other peer in the second
cluster and therefore, it will serve the file to a new peer in its
own cluster. We can easily verify that the intra-cluster capacity
of service, i.e., the capacity of service inside a cluster once it
has at least once source of the content, increases exponentially
with time. However, the inter-cluster capacity of service,i.e.,
the time for each cluster to have at least one source of the
content, increases linearly with time. In other words, oncethe
file is served by the sourceS, it needsp.T units of time to
reach the clusterP . Thus, for a chain withNclusters of size2m

each, the service time of the file is(Nclusters + m).T , where
Nclusters.T units of time are needed to reach theN th cluster
in the overlay andm.T units of time are needed to duplicate
the file over the2m peers inside the last cluster. As a result,
a chain-like overlay fails to keep peers busy all the time and,
consequently, the distribution time of the file increases linearly
with the number of clusters in the system.

In summary, a short diameter is necessary to have a capacity
of service that scales exponentially with time. However, this
condition is not sufficient. For instance, a star overlay where
all peers are connected to the same peer in the center has a
diameter of 2. In this topology, the peer at the center of the
star is a bottleneck, which leads to a poor capacity of service.
Therefore, when analyzing the properties of an overlay, the
diameter should be interpreted along with the shape of the
overlay before making any conclusion.
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Evolution of the Average Peer Set over Time

Fig. 5. The average peer set size over time for the initial scenario, averaged
over ten independent runs. At a given timet, the average peer set size is
the sum of the peer set size at timet of each peer in the torrent divided by
the number of peers in that torrent. The error bars indicate the minimum and
maximum.The average peer set size is lower than the maximum peer set size.

V. CHARACTERIZING THE PROPERTIES OFBITTORRENT’ S

OVERLAY

In Section IV we have evaluated the impact of the overlay
properties on BitTorrent efficiency. In this section, we conduct
extensive simulations in order to study the properties of
the overlay generated by BitTorrent. We first describe the
properties of the overlay for a default set of parameters. Then,
we vary some of them in order to identify their impact on
the overlay properties. For each simulation, we evaluate the
overlay properties according to the four metrics introduced in
Section III-E.

A. Initial Scenario

For this initial scenario, we consider a set of parameters used
by default in several BitTorrent clients (e.g., mainline 4.x.y
[5]). We set the maximum peer set size to80, the maximum
number of outgoing connections to40, the number of peers
returned by the tracker to50, and the minimum number of
peers to20. We also consider a torrent with1867 peers, as
described in Section III-D, and we assume that no peer is
NATed. We study the case of NATed peers in Section V-F.

Average peer set size:As we can see in Fig. 5, BitTorrent
generates an average peer set size that is low compared to
the maximum peer set size targeted. For example, the average
peer set size does not exceed 65 while the maximum peer set
size is set to 80. To explain this low average peer set size we
focus on the convergence speed.

Convergence speed:In Section IV-B, we have seen that the
time for a peer to reach its maximum peer set size depends on
the torrent size at the moment of its arrival and on the arrival
rate of new peers. In Fig. 6, we depict the distribution of the
peer set size after10 simulated minutes over the first1000
peers in the torrent. As we can see, the later a peer joins the
torrent, the smaller its peer set size. More precisely, the peers
that join the torrent earlier reach their maximum peer set size.
In contrast, the peers that arrive later do not cumulate enough
incoming connections to saturate their peer set, and therefore,
their peer set size is around the maximum number of outgoing
connections of40. As a result, the average peer set size is only
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Fig. 6. The peer set size as a function of the peer id at timet = 10 minutes,
averaged over ten independent runs. The error bars indicatethe minimum and
maximum. Peers are ordered according to their arriving time, the smaller the
index the earlier the arrival time.The later a peer joins the torrent, the smaller
its peer set size.
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Fig. 7. The diameter of the overlay over time for the initial scenario,
averaged over ten independent runs. The error bars indicatethe minimum and
maximum.The average diameter is lower than 4 during the entire simulations.

65. In Fig. 6, one would expect peerP1000 to have a peer set
size of 40 and not30. In fact, among the50 peers returned
by the tracker at random, only30 had a peer set size lower
than 80. This is also the reason behind the oscillations in this
figure.

Diameter of the overlay: BitTorrent generates an overlay
with a short diameter. As we can observe in Fig. 7, the average
diameter of the overlay is between2 and4 most of the time1.
However, at the end time of the torrent, the overlay may get
partitioned. If we look closely at the right part of Fig. 7, we
notice that the minimum value of the diameter goes to zero, a
value we use to indicate partitions. Actually, after a massive
departure of peers, we may obtain many small partitions each
of tens of peers. The partitions are due to the minimum number
of neighborsδ a peer should reach before recontacting the
tracker for new peers. Indeed, to minimize the interaction
between peers and the tracker, a peer asks the tracker for more
peers only if its number of neighbors falls belowδ. Therefore,
as long as the peer set size is larger thanδ, to recover from

1In this paper, we compute the diameter of the overlay as the longest
shortest path between1000 peers of the overlay selected at random. This
method allows us to obtain very good approximation of the diameter and
speeds up the run time of the simulator.
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Fig. 8. The connectivity matrix of the BitTorrent’s overlayafter 10 minutes,
for a single run. We only show the first1000 peers. A dot at (i,j) means
that i and j are neighbors. We have a bottleneck of1640, which refers to the
number of connections between the first80 peers and the rest of the torrent.
BitTorrent does not generate a random graph.

a decrease in its peer set size, a peer has to wait for new
incoming connections from newly arriving peers, which does
not happen toward the end of the torrent. That is why the
torrent does not merge again. To prevent such a behavior, one
needs to assign a high value toδ. The value ofδ is then a
trade-off between having a connected overlay at the end of the
torrent, and a high load at the tracker.

In our analysis in Section IV-C, we show that a short
diameter is a necessary, but not sufficient, condition for an
efficient distribution of the file. We draw in Fig. 8 the shape
of the overlay generated by BitTorrent. We see that BitTorrent
does not generate a random overlay, and that the overlay has
a specific geometry. Indeed, Fig. 8 shows a clustering among
peers that arrive first. For example, peerP25 is connected only
to the first hundred peers. The reason is that whenP25 arrives,
it connects to all the24 peers already existing in the torrent.
Then,P25 waits for new arrivals in order to complete the 56
peers it still needs to saturate its peer set. According to Eq. (2),
these missing connections can be fulfilled after the arrivalof
75 peers on average,P26, . . . , P100. Similarly, when peerP200

arrives, it establishes up to 40 outgoing connections. However,
P200 needs to wait the arrival of a large number of peers in
order to complete its 40 incoming connections. This explains
why, as compared toP25, the neighbors ofP200 are selected
from a larger set of peers (i.e., betweenP60 andP600). Even
though we have this clustering phenomena, the overlay does
not include bottlenecks. Actually, the number of connections
between the first80 peers and the rest of the network is equal
to 1640. Therefore, the BitTorrent has the potential to allow a
fast expansion of the pieces.

Robustness to attacks and churn:We investigate the
robustness of the overlay to a massive departure of peers,
which can be due to an attack or a high churn rate. We
now consider how we simulate the attack scenario. First,
we consider the overlay topology shown in Fig. 8, which
represents a snapshot of the topology at timet = 10. Then,
we force the most connected peers to leave. For example,
assume that we want to evaluate the robustness of the overlay
to attacks after the departure of30% of the peers. In this case,
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Fig. 9. The number of partitions in the overlay as a function of the percentage
of departed peers, averaged over ten independent runs. In addition to the mean,
we also draw the min and max of our results.The overlay is robust to attacks
and churn.

we identify the30% most connected peers in the overlay and
we disconnect them from the overlay. Forcing a peer to leave
means that we remove all connections between this peer and
the rest of the torrent. Once these peers are disconnected, we
check whether the overlay becomes partitioned, i.e., includes
more than one partition. By varying the percentage of peers
that we force to leave, we are able to explore the robustness
limits of the BitTorrent overlay.

To simulate a churn rate, we proceed similarly as for the
case of an attack. The only difference is that, the peers that
we force to leave are selected randomly instead of the most
connected ones.

Fig. 9 shows that BitTorrent’s overlay is robust to attacks
and churn. Indeed, the overlay stays connected, i.e., thereis
a single partition, when up to80% of the peers leave due
to an attack or to churn rate. When more than85% of the
peers leave the torrent, partitions appear. However, thereis
one major partition that includes most of the peers and a few
others with one peer each.

For example, when95% of the peers leave the torrent due
to an attack, the result of1 run produced18 partitions. More
precisely, we had1 partition that included23 peers,2 partitions
that included each7 peers,2 other partitions with2 peers each,
and13 partitions with1 single peer each. Similarly, when95%
of the peers leave the torrent due to a high churn rate, the
overlay was split into4 partitions,1 partition with 43 peers,
1 partition with 5 peers, and2 partitions with1 peer each.

In summary, we have seen that the average peer set size
is significantly lower than the maximum peer set size, and
the peer set size of a peer depends on its arriving time in
the torrent. In addition, BitTorrent generates an overlay with
a short diameter, but this overlay is not a random graph.
However, the overlay is robust to attacks and churn.

B. Validation with Experiments

To validate our simulation results, we have run real ex-
periments using the mainline client 4.0.2 and its tracker
implementation that we described in details in Section III-B.
In Fig. 10(a) and Fig. 10(b) we draw the connectivity matrix
of the overlay as obtained from experiments and simulations
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(a) Experimental results

(b) Simulation results

Fig. 10. The connectivity matrix of the BitTorrent’s overlay after the
arrival of 420 peers, for a single run as obtained from real experiments and
simulations. A dot at (i,j) means that i and j are neighbors.Real experiments
and simulations show similar properties of the overlay.

respectively. The connectivity matrix is computed after the
arrival of 420 peers to the network. As we can see from these
two figures, the real experiments and the simulations show
similar properties of the overlay. As a result, our simulator pro-
duces accurate results, and as compared to real experiments, it
offers much more flexibility and allows us to consider larger
torrents. Therefore, in the following, we will give resultsonly
for simulations.

In the next sections, we will investigate how these results are
influenced by (1) the size of the torrent, (2) the maximum peer
set size, (3) the maximum number of outgoing connections,
and (4) the percentage of NATed peers. We will also discuss
in Section VI how peer exchange impacts those results.

C. Varying the Number of Peers

The torrent for the initial scenario is of moderate size.
Indeed, it consists of1867 peers and of a maximum of1200
simultaneous peers. To validate how the results of Section V-A
are impacted by larger torrents, we have considered two other
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Fig. 11. The average peer set size over time for different torrent sizes,
averaged over ten independent runs.The average peer set size is independent
of the torrent size.
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Fig. 12. The diameter over time for different torrent sizes,averaged over
ten independent runs.The diameter increases slowly with the torrent size.

torrent sizes:5598 and9329 peers. For the largest torrent, the
maximum number of simultaneous peers is6282.

Average peer set size:The average peer set size does not
depends on the torrent size. Indeed, Fig. 11 shows that the
average peer set size is roughly the same for the three torrent
sizes. For example, after 10 minutes, when the number of
simultaneous peers is1200 for the smallest torrent and6282
for the largest torrent, the average peer set size is the same
for the three torrents. The evolution of the peer set size for
the three torrents is similar to the once presented in Fig. 6.
The peer set size decreases from80 for the peers that join the
torrent early to around40 for the peers that arrive toward the
end.

Convergence speed:According to section IV-B, the con-
vergence speed of the peer set decreases when the torrent size
increases as shown in Fig. 3.

Diameter of the overlay: The diameter of the overlay
increases slowly with the torrent size. As we can observe in
Fig. 12, after 10 minutes, the diameter of the overlay is4
for the smallest torrent and5.5 for the largest torrent. The
connectivity matrix presents the same characteristics as in
Fig. 8 for the three torrents.

Robustness to attacks and churn:Fig. 13 shows that the
robustness of the overlay is independent of the torrent size. In
particular, the three overlays stay connected for up to85%
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Fig. 13. The robustness of the overlay under churn and attacks, averaged
over ten different experiments.The overlay shows similar robustness for the
different torrent sizes.

of peer departures. Then, the overlay is partitioned with a
single large partition and several partitions with a few peers.
To show the similarity at the robustness level for the different
torrent sizes, we now analyze the number of partitions that
we obtain with the attack scenario after the departure of90%
of the most connected peers. Our results show that the torrent
of 1867 peers becomes partitioned into4 partitions with one
partition of96 peers and three others of one single peer each.
Similarly, the torrent of5598 peers becomes partitioned into5
partitions with one partition of294 peers and four others of one
single peer each. Finally, the torrent of9329 peers becomes
partitioned into9 partitions with one partition of498 peers,
another partition of two peers, and seven other partitions of
one peer each. We found the same tendency for the churn
scenario.

In summary, we have investigated the impact of the torrent
size on the properties of the overlay formed by BitTorrent. We
have found that the results obtained for the initial scenario still
hold for larger torrents. Therefore, and in order to reduce sig-
nificantly the run time of these simulations, in the following,
we will focus on a torrent with1867 peers.

D. Impact of the Maximum Peer Set Size

The maximum peer set size is usually set to80. However,
some clients choose higher values of this parameter, e.g.,
mainline 5.x [5] has a maximum peer set size set to200.
In this section, we evaluate the impact of this parameter on
the properties of the overlay.

We run simulations with a maximum peer set size∆ varying
from 20 to 200. For each value of∆, we set the maximum
number of outgoing connectionsOmax to ∆

2 , the number of
peers returned by the tracker to∆+Omax

2 , and the minimum
number of neighborsδ to 20. Then, we evaluate the overlay
after10 simulated minutes, because it is the time at which the
number of simultaneous peers in the torrent reaches its upper
bound of1200 peers.

Note that there is no specific rule to set the value of the
number of peers returned by the trackerσ when we change the
maximum peer set size∆ and maximum number of outgoing
connectionsOmax. Intuitively, σ should be larger thanOmax.
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Average Peer Set Size vs. Maximum Peer Set Size

Fig. 14. The average peer set size as a function of the maximumpeer set
size, averaged over ten independent runs. The error bars indicate the minimum
and maximum.The average peer set size is a linear function of the maximum
peer set size.

The reason is that each peerPi seeks to initiateOmax

connections, which is only possible if the tracker providesPi

with the addresses of at leastOmax other peers in the torrent.
Yet, the value ofσ should not be much larger thanOmax in
order not to increase the load on the tracker. We tried several
values ofσ betweenOmax and ∆, but we obtained similar
results. Therefore, we decided to setσ to ∆+Omax

2 .
Average peer set size:The average peer set size increases

linearly with the maximum peer set size∆. Indeed, Fig. 14
shows that the average peer set size is roughly equal to2·∆

3 .
For instance, for a maximum peer set size of100, the average
peer set size is65.

We found this linear trend in all our simulations, but
the slope depends on the instant at which we perform the
measurements.

Convergence speed:We extend the analysis in Section IV-B
by considering a variable maximum peer set size∆ and a
maximum number of outgoing connectionsOmax. We rewrite
Eq. (2) as follows:

∆ − Omax =

Ns+K∑

n=Ns+1

Omax

n

∆

Omax

= 1 +

Ns+K∑

n=Ns+1

1

n
(4)

where∆ − Omax is the number of missing connections, i.e.,
the number of incoming connections the peer is still waiting
for, assuming that the peer has succeeded to initiateOmax

outgoing connections.Omax

n
is the probability that a peer

receives a new incoming connection from a new peer given
the number of peersn in the torrent. Recall thatNs represents
the torrent size at the moment of the arrival of peerPi, and
K is the average number of peers that should arrive after peer
Pi in order for this peer to complete its∆ − Omax missing
connections. We assume that no peer leaves the system. When
Omax = ∆

2 Eq. (4) is equivalent to1 =
∑Ns+K

n=Ns+1
1
n

, which is
Eq. (2). Therefore, whenOmax = ∆

2 , the convergence speed
is independent of the value of∆.

Diameter of the overlay: The diameter of the overlay
decreases slowly with the maximum peer set size∆ as shown
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Fig. 15. The diameter of the overlay as a function of the maximum peer set
size, averaged over ten independent runs. The error bars indicate the minimum
and maximum.The diameter decreases slowly after a peer set size of100.
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Fig. 16. The robustness of the overlay under churn and attacks, averaged
over ten different experiments.The robustness of the overlay increases with
the maximum peer set size.

in Fig. 15. The diameter is6.5 when ∆ is 20, 5.5 when ∆
is 40, 4.5 when∆ is 80, and3 when∆ is 200. However, in
contrast to the average peer set size, there is no clear trend
that can be used to predict the diameter as a function of the
maximum peer set size.

Robustness to attacks and churn:The robustness of the
overlay increases with the maximum peer set size∆ as shown
in Fig 16. For example, when we set∆ to 40, 80, and200,
the overlay is not partitioned for up to respectively65%, 80%,
and95% of peers that leave. There is no discernible distinction
between leaves due to churn or attacks.

However, if we carefully look at Fig. 16, we can see that
the attack scenario produces partitions when the percentage of
departed peers is at45%. To understand this behavior, we plot
in Fig. 17 the connectivity matrix of the overlay after attacking
45% of the peers. Fig. 17 shows that there are around12 peers
that are disconnected from the rest of the torrent.

From our previous results, we know that the peers that arrive
at the beginning of the torrent are the most connected ones and
highly connected among each other (see Fig. 8). In addition,
these first peers are the most concerned ones by the attack.
Recall that the attack scenario forces the most connected peers
to leave the torrent. Thus, with a45% of departed peers,
only very few of those first peers will remain present in the
torrent after the attack. These few peers will have a very few

Fig. 17. The connectivity matrix of the overlay after forcing 45% of the
most connected peers to leave the torrent, for a single run. Adot at (i,j) means
that i and j are neighbors.The first peers are disconnected from the rest of
torrent.

neighbors and will become disconnected from other peers.
However, if we consider a percentage of departed peers of
50% instead of45%, more peers will leave the torrent and
those12 peers will disappear. This means that the torrent will
be connected again. In contrast, if we consider a percentage
of departed peers of40% instead of45%, there will be more
peers present in the torrent after the attack, which helps the
torrent to remain connected.

In summary, the maximum peer set size does not have a
major impact on the properties of the overlay, as long as
the maximum peer set size is large enough to have a small
diameter. In our simulations, we do not see a major difference
in the overlay properties between a maximum peer set size
of 80 and 200. However, as the maximum peer set size
increases linearly the average peer set size, it also increases the
speed of replication of the pieces (according to Section IV-A).
Therefore, the main reason to increase the maximum peer set
size is to improve the speed of replication. But, there is a
tradeoff, as a larger maximum peer set size increases the load
on each client due to the larger number of TCP connections
to maintain and due to the signaling overhead per connection.

E. Impact of the Maximum Number of Outgoing Connections

The maximum number of outgoing connectionsOmax is
critical to the properties of the overlay. Indeed, whenOmax is
close to the maximum peer set size∆, the peer set size will
converge fast to∆, but new peers will find few peers with
available incoming connections, hence a larger diameter.

In this section, we evaluate the impact ofOmax on the
overlay properties. For the simulations, we set∆ to 80, the
minimum number of neighbors to20, and we varyOmax from
5 to 80 with a step of5. For each value of∆ andOmax, the
number of peers returned by the tracker is equal to∆+Omax

2 .
Average peer set size:Fig. 18 shows the evolution of the

average peer set size as a function of the maximum number
of outgoing connections. We see that the average peer set size
increases fast withOmax whenOmax is smaller than∆

2 , and
it increases slowly withOmax whenOmax is larger than∆

2 .
We notice that, a smallOmax leads to a small average peer
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Fig. 18. The average peer set size as a function of the maximumnumber
of outgoing connections, averaged over ten independent runs. The error bars
indicate the minimum and maximum.The average peer set size increases
slowly when the number of maximum number of outgoing connections is larger
than ∆

2
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Fig. 19. The peer set size vs. the peer id, at timet = 10 minutes, averaged
over ten independent simulations.The peer set size increases slowly when the
number of maximum number of outgoing connections is larger than ∆

2
.

set size. For example, whenOmax is equal to5, the average
peer set size is around10.

Convergence speed:In Fig. 19 we plot the peer set size
of each peer at timet = 10 minutes as a function of the
peer id for three values of the maximum number of outgoing
connections. These outdegree distributions of peers reflect the
convergence speed of peers towards their maximum peer set
size. As we can see from Fig. 19, the peer set size of the
different peers improves withOmax when Omax is smaller
than ∆

2 , and it increases slowly withOmax when Omax is
larger than ∆

2 . For example, after the arrival of the first
1000 peersP1, . . . , P1000, peer P500 has a peer set size of
34 when Omax is at 20 and a peer set size of70 when
Omax is at 40. However, when we increaseOmax from 40
to 60, the peer set size ofP500 increases from70 to 76 only.
This result means that, when we increaseOmax beyond ∆

2 ,
the convergence speed of a peer towards its maximum peer
set increases slowly. We explain this conclusion as follows.
According to Eq. (4), whenOmax increases,K decreases,
whereK is the number of peers that should arrive after a peer
Pi, so thatPi reaches its maximum peer set size. Indeed, when
Omax increases, the probability that a peer receives incoming
connections from new peers increases too. However, to derive

(a) maximum number of outgoing connections of70

(b) maximum number of outgoing connections of80

Fig. 20. The connectivity matrix of the BitTorrent overlay after 10 minutes
for a maximum number of outgoing connections of70 and 80, for a single
run. A dot at (i,j) means that i and j are neighbors.When we increaseOmax

beyond∆

2
, the connectivity matrix becomes more narrow around peer index

80.

Eq. (4), we assumed that a peer succeeds to establish all its
allowed Omax outgoing connections and that the number of
connections it misses is∆−Omax. This is the most optimistic
case, and it is not true whenOmax is larger than∆

2 . Indeed,
in that case, peers that arrive at the beginning of the torrent
are able to establish a lot of connections among themselves
and reach fast their maximum peer set size. However, those
peers leave few rooms for incoming connections, asOmax

is close to the maximum peer set size∆. Therefore, peers
that join later the torrent will not be able to establishOmax

outgoing connections, which results in a larger number than
∆ − Omax of missing connections. As a consequence, the
increase in the probability that a peer is selected by new
arriving peers is compensated by the increase in the number
of missing connections.

Diameter of the overlay: Taking a maximum number
of outgoing connectionsOmax larger than ∆

2 increases the
diameter of the overlay. As we can see in Fig. 21, forOmax

equal to40 (respectively70), the diameter of the overlay is
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indicate the minimum and maximum.Taking a maximum number of outgoing
connectionsOmax larger than ∆
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Fig. 22. The robustness of the overlay under churn and attacks, averaged
over ten different experiments.The robustness of the overlay increases slightly
with the maximum peer set size.

equal to4 (respectively5.5). WhenOmax is equal to∆, i.e.,
80, the overlay is partitioned. If we focus on the connectivity
matrix of the overlay, we observe how the overlay gets
partitioned into two partitions. Indeed, Fig. 20(a) shows that
when Omax is equal to 70, the connectivity matrix becomes
narrow around peer index 80. This results in the first80 peers
in the torrent being highly connected among themselves with
3115 connections, and poorly connected with the rest of the
torrent with170 connections. WhenOmax is equal to 80, the
first 80 peers become disconnected from the rest of the torrent.
This might be a major issue if the source of the torrent is
among those 80 peers, which is the regular case.

Robustness to attacks and churn:Fig. 22 draws the
robustness of the overlay with a maximum number of outgoing
connectionsOmax set to 20, 40, and 60. We observe that
large values ofOmax make the overlay slightly more robust
to attacks and churn. For example, in case of an attack, when
settingOmax to 20, the partitions appear after the departure
of 60% of the peers. In contrast, when settingOmax to 40
or 60, the partitions appear after the departure of85% of the
peers.

In Fig. 22, we can also show that, when we setOmax

of 20, the number of partitions decreases at the end of the
curve. The reason is that, when we force90% or more of the
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Fig. 23. The average peer set size vs. the percentage of NATedpeers,
averaged over10 independent runs. The error bars indicate the minimum and
maximum. The average peer set decreases linearly with the percentageof
NATed peers.

most connected peers to leave the network, aOmax of 20 will
produce a lot of partitions with a very few peers each. Thus,
increasing the number of departing peers removes those “one
single peer partitions”.

Note that, whenOmax is set to 40 (respectively to60),
the attack scenario produces partitions when the percentage
of departed peers is at45% (respectively50%). The reason
is that, among the most connected peers, the remaining peers
are very few to stay connected with the rest of the torrent.

In summary, setting the maximum number of outgoing
connectionsOmax to ∆

2 is a good tradeoff between the average
peer set size and the diameter of the overlay.

F. Impact of the Number of NATed Peers

In this section, we discuss the impact of the percentage
of NATed peers on the overlay properties. When a peer is
behind a NAT, it cannot receive incoming connections from
other peers in the torrent. However, it can initiate outgoing
connections to non NATed ones. For the simulations, we set
the maximum peer set size to80, the maximum number of
outgoing connections to40, the minimum number of neighbors
δ to 20, and the number of returned peers by the tracker to
50. Then, we vary the percentage of NATed peers from0% to
90% with steps of10.

Average peer set size:BitTorrent mitigates very efficiently
the impact of the NATed peers on the overlay. For example,
we see in Fig. 23 that as we increase the percentage of NATed
peers from0 to 30%, the average peer set size is reduced from
65 to 55. Indeed, the average peer set size decreases slowly
with the percentage of NATed peers. However, the slope of the
curve becomes much sharper when the percentage of NATed
peers exceeds60%.

Convergence speed:The convergence speed that we derive
in Eq. (2) holds for non NATed peers. When a peer is NATed,
it will establish at mostOmax outgoing connections, which is
the higher bound for its maximum peer set size.

Diameter of the overlay: NATed peers do not make the
diameter significantly larger. For example, as shown in Fig.
24, when10% (respectively80% of the peers are NATed,
the average value of the diameter is at4.5 (respectively5.5).
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Fig. 25. Robustness of the overlay with different percentage of NATed
peers.The robustness to churn does not depend on the percentage of NATed
peers, but the overlay is not robust to attacks when there areNATed peers.

However, in extreme cases where90% of the peers are NATed,
the diameter can reach9.

Note that, NATed peers may cause partitions. For example,
assume that peerPi is NATed. It may happen that, out of the
peers returned by the tracker toPi, no one has room for more
connections. As a result,Pi will not be able to establish any
outgoing connections. In addition, and because it is NATed,Pi

cannot receive connections from other peers. As a result, peer
Pi will be isolated alone (disconnected from the rest of the
torrent) until it contacts the tracker again and discovers more
peers. This behavior becomes more common as the percentage
of NATed peers increases.

Robustness to attacks and churn:The robustness of the
overlay to high churn rates does not depend on the presence
of NATed peers. Indeed, Fig. 25 shows that the overlay
stays connected when up to80% of peers leave the torrent.
However, the overlay is not robust to attacks when there is
a large number of NATed peers. Indeed, Fig. 25 shows that
when there are50% of NATed peers, the overlay starts to be
partitioned when25% of the peers leave due to an attack.
We see that the number of partitions decreases for a large
percentage of departing peers, because as there are many small
partitions, increasing the number of departing peers removes
those partitions.

In summary, NATed peers decrease significantly the robust-

ness of the overlay to attacks.

VI. I MPACT OF PEER EXCHANGE ON THE OVERLAY

We have seen that BitTorrent generates overlays with a short
diameter that are robust to churn and attacks. However, the
time for a peer to reach its maximum peer set size depends
on the torrent size and peer arrival rate. One way to reach
faster the maximum peer set size is to increase the number
of requests to the tracker in order to discover more peers and
establish more connections. However, such requests increase
the load on the tracker, whereas the tracker is known to have
scarce resources [18], [19].

In Mai 2005, Azureus 2.3.0.0 [20] introduced a new feature,
namely peer exchange(PEX), where neighbors periodically
exchange their list of neighbors. For example, assume that
peersPi andPj are neighbors. Then, every minute,Pi sends
its list of neighbors toPj and vice versa. As a result, each
peer knows its neighbors and the neighbors of its neighbors.
The intuition behind PEX is that peers will be able to discover
fast a lot of peers and consequently achieve a larger peer set
size.

Note that the results that we have given in previous sections
are for the case of BitTorrent without PEX, e.g., the official
BitTorrent client [5]. In this section, we extend our work and
analyze how PEX impacts the overlay topology of BitTorrent.
PEX is becoming very popular and, in addition to Azureus,
it is now implemented in several other P2P clients including
KTorrent, libtorrent,µTorrent, or BitComet, but with incom-
patible implementations. To the best of our knowledge, the
impact of PEX has never been discussed previously.

A. Simulating PEX

To evaluate the impact of PEX on the overlay topology, we
added this feature to our simulator exactly as it is implemented
in Azureus. Concerning the communications between peers
and the tracker, all what we described in Section III-B is
still valid. That is, the tracker keeps two lists,Lnated and
Lnot−nated peers. And, when a peerPi joins the torrent, it
gets from the tracker up toσ peers randomly selected from
Lnot−nated. Then,Pi stores those IP addresses in itsLPi

tracker

list and initiates sequentially up toOmax connections to those
peers. Moreover,Pi will be added at the tracker to either
Lnated or Lnot−nated.

We now explain the modifications that we made in our
simulator. Assume that, at timet = 0, a connection has
been established between two peersPi andPj . Just after,Pi

sends its list of neighbors toPj and vice versa. Then, every
1 simulated minute,Pi andPj repeat this exchange process.

Assume now that, after performing PEX with its neighbor
Pj , Pi discovers peerPk. Then, Pi checks whether (1) it
already has a connection withPk or (2) it already knows
Pk from the tracker. If none of these two conditions holds
true, thenPi addsPk to the list LPi

pex of peers it discovered
through PEX. Note that,Pi may receive the IP address ofPk

from many neighbors. In this case,Pk will appear only once
in LPi

pex.
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Fig. 26. Evolution of the outdegree of peers with time with PEX,
averaged over ten independent runs. The error bars indicatethe minimum
and maximum.PEX produces an average peer set size that is very close to
the maximum peer set size.

Note that, when establishing connections, peers discovered
from the tracker are given more priority. For example, assume
that peerPi decides to initiate a new connection, which can be
due to the departure of one of its neighbors or after discovering
new peers. In this case,Pi contacts first the peers it has
discovered from the tracker. If none of those peers accepts the
connection request,Pi contacts the peers that it discovered
through PEX.

B. Analysis of PEX

We implement PEX in our simulator and run simulations
with the following parameters. We set the maximum peer set
size to80, the maximum number of outgoing connections to
40, the minimum number of neighbors to20, and the number
of peers returned by the tracker to50. However, due to the
gossiping messages between peers, the PEX feature makes our
simulator very slow. In order to save time, we run simulations
for a torrent of1000 peers that arrive to the torrent within the
first 60 simulated minutes according to Eq. 1. The departure
of peers is scheduled during the next simulated60 minutes,
and it follows a random uniform distribution. For example, if
peerA arrives at timet = 30, it will leave the network at a
random time uniformly selected betweent = 60 andt = 120.
Still, this torrent allows us to understand how the overlay is
constructed with PEX and how it evolves as peers join and
leave.

Average peer set size:PEX meets its intended goal and
permits peers to be at their maximum peer set size most of
the time as shown in Fig. 26. Moreover, PEX prevents the
average peer set size from decreasing in case of a massive
departure of peers. Indeed, when a peer loses a connection
due to the departure of a neighbor, it can replace it by a new
connection to one of its neighbors’ neighbors. As a result, the
average peer set size stays at its maximum value of80 as long
as there are80 peers in the torrent.

Convergence speed:Each peer reaches its maximum peer
set size within a few gossiping period (that we set to one
minute in our simulations).

Diameter of the overlay: The increase in the average peer
set size comes at the expense of a larger diameter. As we see
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Fig. 27. Evolution of the overlay diameter with time with PEX, averaged
over ten independent runs. We plot the mean, max, and min values. PEX
generates overlays with very large diameter.
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Fig. 28. The topology evolution with PEX with 9 peers. Connections
established with the tracker information are shown with solid lines, and
connection established with PEX are shown with dashed lines.

in Fig. 27, the maximum value of the diameter reaches20
when the number of peers in the torrent is1000.

To explain why PEX produces such a long diameter, we plot
in Fig. 28 the evolution of a torrent with 9 peers (P1, . . . , P9)
that arrive sequentially, one every 1 unit of time. In this
example, we set the maximum peer set size to 4, the maximum
number of outgoing connections to 2, and the number of peers
returned by the tracker to 2. At timet = 0, there is only peer
P1. At time t = 2, P2 joins the torrent and connects toP1. At
time t = 3, P3 arrives and connects toP1 andP2. Then,P4

arrives and connects to two existing peers selected at random,
say P1 and P2. At the end of timet = 3, PEX has not yet
been used. At timet = 4, P5 arrives and connects toP3 and
P4, which in turn tellP1 andP2 about this new neighbor. At
this time,P1 andP2 each has a room for one more outgoing
connection and both connect toP5. Thus, at timet = 4, only
peersP3 and P4 can accept new incoming connections, i.e.,
P1, P2, andP5 have already reached the maximum number of
connections. At timet = 5, peerP6 joins the torrent and gets
from the tracker the addresses ofP1 andP4. However,P6 can
only initiate a connection toP4, as P5 has already reached
its maximum peer set size. PeerP7 arrives at timet = 6,
gets the addresses ofP3 andP5 and initiates one connection
to P3. Then,P8 joins the torrent at timet = 7, obtains the
addresses ofP2 and P6 and initiates only one connection to
P6. At time t = 8, peerP9 arrives and gets the addresses
of P6 and P7. Given that these two peers have not reached
their maximum peer set size,P9 succeeds to connect to both
of them. Afterward,P6 tells its neighborP8 aboutP9, thus a
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Fig. 29. The connectivity matrix of the overlay distribution with PEX after
59 minutes, for a single run. A dot at (i,j) means that i and j are neighbors.
At t = 59, almost all the1000 peers have joined the network and no peer
has left yet.We observe a chain-like overlay.

new connection is initiated fromP8 to P9. Then,P9 tells P7

aboutP8 and a new connection is initiated fromP7 to P8.
As we can see, PEX tries to maximize the number of

outgoing connections at each peer. Peers keep on gossiping
and whenever they discover new peers, they establish new
connections if they still have room for. However, the disad-
vantage is that peers that arrive at the beginning establisha
lot of connections among each other and leave only a few free
connections for the peers that arrive afterward. In the example
that we consider here,P1, . . . , P5 are highly interconnected
and they leave only two connections for next peers. Similarly,
when peersP6, . . . , P9 arrive, they connect to the overlay at
peersP3 and P4 and then interconnect strongly with each
other.

As a result, PEX leads to a clustering phenomena, where
each cluster contains approximately a number of peers close
to the maximum peer set size. Each cluster exhibits a high
intra-cluster connectivity and a poor inter-cluster connectivity
with the cluster that arrives just before and to the one that
arrives just after. To confirm our analysis, we draw in Fig. 29a
snapshot of the connectivity matrix of the overlay distribution
after 60 minutes when the first1000 peers have arrived
in the torrent. The clustering phenomena appears clearly in
the figure, which explains the large diameter of the overlay.
As we explained in Section IV-C, such a chain-like overlay
constraints the distribution time in the system to be a linear
function of the number of clusters. As compared to the overlay
generate by the tracker only, this chain-like overlay becomes
less efficient when the number of clusters becomes larger than
the number of pieces. Typical files distributed using BitTorrent
includes an average of1000 pieces. In this case, this chain-like
overlay will become inefficient when the number of clusters
is larger than1000, i.e., the number of peers is larger than
800.000 peers. Current torrents are much smaller and they
rarely exceed 100.000 peers and therefore, no one has noticed
yet the negative impact of the PEX on the download time of
files.

Let us now go back to Fig. 27. If we carefully look at
this figure, at timet = 60 minutes, the average value of the
diameter drops from18 to 11. Actually, at t = 60 minutes,
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(b) Impact of churn on the PEX overlay

Fig. 30. Robustness of the chain-like overlay generated by PEX. The PEX
overlay can be easily partitioned by simply attacking a peer, its neighbors,
and its neighbors of neighbors.

peers start leaving the torrent. At the same time, the last peers
to join the torrent also arrive att = 60 minutes. Those departed
peers will allow the arriving ones to connect at different levels
of the chain and not only at the tail, which consequently
reduces the diameter of the overlay.

To better explain this behavior, consider the overlay shown
in Fig. 29. In this chain-like overlay, all peers are at their
maximum peer set size except those that are at the tail. Assume
now that peersP1, . . . , P15, leave the torrent. Assume that,
at the same time,P985, . . . , P1000, join the torrent. In this
case, the departed peersP1, . . . , P15, will leave rooms for
incoming connections inside the first cluster, i.e., at the head
of the chain. Thus, the arriving peersP985, . . . , P1000, will be
able to establish connections to the tail as well as the head of
the chain. As a result, the head and tail of the chain become
connected and the diameter of the overlay drops by half. Still,
the diameter remains very high when compared to an overlay
generated only by the tracker.

Robustness to attacks and churn:Surprisingly, the overlay
produced with PEX is robust to churn rate and to the attack
that targets the most connect peers. As shown in Fig. 30(a)
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and Fig. 30(b), the overlay stays connected with up to80%
of the peers leaving the torrent.

As we can see in Fig. 30(a), up to80% of departed peers,
the attack scenario produces a maximum number of partitions
of 2. Actually, out of the ten runs that we performed, we
obtained partitions with only1 run. In particular, we obtained
one major partition and a second one with only1 peer. For
example, for80% of departed rate, we obtained1 partition that
includes167 peers and a second partition with only1 peer.
Same conclusions apply on the churn scenario.

Even though PEX shows good robustness to the attack that
we have been using so far, this chain-like overlay can be easily
partitioned by using more sophisticated attacks that target a
peer, its neighbors, and its neighbors of neighbors.

In summary, even if PEX significantly decreases the time
for a peer to reach its maximum peer set size, it creates a
chain-like overlay that is not robust against partitions and
whose diameter is large. This large diameter will lead to a
long download time of files when the number of simultaneous
peers is large. We plan to evaluate how much this overlay
impacts the efficiency of the transfer when compared to an
overlay created only by the tracker.

VII. D ISCUSSION

A. Summary of our Contributions

We have conducted a large set of simulations to investigate
the properties of the overlay formed by BitTorrent. Below is
a list of our main contributions.

• First, we have analyzed the relation between the overlay
properties and the performance of BitTorrent. In partic-
ular, we have shown that a large peer set size increases
the efficiency of BitTorrent, and that a small diameter is a
necessary, but not sufficient, condition for this efficiency.

• Second, we have shown for the first time that the overlay
generated by BitTorrent is not a random graph, as it
is commonly believed. The connectivity of a peer with
neighbors in the torrent is highly biased by its arriving
order in the torrent. Whereas it is beyond the scope of this
study to evaluate the robustness of the overlay structure
to elaborated attacks, i.e., attacks that do not only focus
on the most connected peers, it is an interesting area for
future research. In particular, it is critical to understand
such issues when a public service is to be built on top of
BitTorrent.

• Third, we have evaluated the impact of the maximum
peer set size and of the maximum number of outgoing
connections. Whereas there are several magic numbers in
BitTorrent, we have identified that the maximum peer set
size is a tradeoff between efficiency and peers overhead,
and we have explained why the maximum number of
outgoing connections must be set to half of the maximum
peer set size.

• Finally, we have identified two potentially significant
problems in the overlay, which deserve further investi-
gations. We have shown that a large number of NATed
peers decrease significantly the robustness of the overlay
to attacks, and we have shown that peer exchange creates

a chain-like overlay that might adversely impact the
efficiency of BitTorrent.

In conclusion, we expect this study to shed light on the
impact of the overlay structure on BitTorrent efficiency, and
to foster further researches in that direction.

B. Future Work

Our future work will progress along two avenues.
• Mitigate the impact of NATed peers on the robustness

of the overlay. Actually, with its current implementation,
BitTorrent produces an overlay where non-NATed peers
have a higher connectivity than NATed ones. As a result,
one can create partitions by attacking the non-NATed
peers, which are the most connected ones. One possible
solution to this problem is to allow NATed peers to initiate
more connections than non-NATed ones. For example,
one can imagine that the tracker reports the number of
NATed peers to new peers so that they can weight their
maximum number of outgoing connections. Our goal is
to still have a highly connected graph, but without peers
with significantly more connections. The intuition behind
this solution is that the robustness of the overlay would
improve. This solution, and in particular how to weight
the maximum number of outgoing connections, will be
subject to further investigation.

• Extend peer exchange in order to still converge fast to the
maximum peer set size while maintaining a low diameter
overlay. Indeed, with the current implementation of peer
exchange, peers converge fast to their maximum peer set
size, but only peers that are at the tail of the overlay
chain have rooms for incoming connections. As a result,
new arriving peers can only connect to the tail of the
overlay chain. We are investigating possible solutions to
this problem whose main goal is to add randomness in
the overlay generated with peer exchange.
One solution is to allow peers coming from the tracker
to preempt connections of peers discovered with peer
exchange. For example, assume that peerPi has reached
its maximum peer set size and amongst its neighbors,
there isPj that it discovered with peer exchange. Assume
now thatPk joins the torrent and receives the IP address
of Pi from the tracker. IfPk initiates a connection toPi,
Pi will accept this connection and drop its connection to
Pj .
Another solution is to add randomness during the con-
struction of the overlay. For instance, instead of collecting
a list of neighbors of its neighbors, which creates locality
in the graph construction, a peerPi can ask neighbors to
randomly selected peers. The rational is to discover and
create connections to peers that are far fromPi in the
overlay. The choice of the random function to discover
those peers is critical and currently under investigation.
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