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Abstract: Peer to peer overlay networks have proven to be a good support for storing and retrieving data
in a fully decentralized way. A sound approach is to structure them in such a way that they reflect the
structure of the application. Peers represent objects of the application so that neighbours in the peer to peer
network are objects having similar characteristics from the application’s point of view. Such structured
peer to peer overlay networks provide a natural support for range queries. While some complex structures
such as a Voronoï tessellation, where each peer is associated to a cell in the space, are clearly relevant to
structure the objects, the associated cost to compute and maintain these structures is usually extremely high
for dimensions larger than 2.

We argue that an approximation of a complex structure is enough to provide a native support of range
queries. This stems from the fact that neighbours are important while the exact space partitioning associated
to a given peer is not as crucial. In this paper we present the design, analysis and evaluation of RayNet,
a loosely structured Voronoï-based overlay network. RayNet organizes peers in an approximation of a
Voronoï tessellation in a fully decentralized way. It relies on a Monte-Carlo algorithm to estimate the size
of a cell and on an epidemic protocol to discover neighbours. In order to ensure efficient (polylogarithmic)
routing, RayNet is inspired from the Kleinberg’s small world model where each peer gets connected to
close neighbours (its approximate Voronoï neighbours in Raynet) and shortcuts, long range neighbours,
implemented using an existing Kleinberg-like peer sampling.
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Réseaux pair à pair multidimensionnels : construction par
approximation de structures complexes

Résumé : Les réseaux logiques fondés sur le paradigme pair-à-pair ont été reconnus comme un support de
choix pour le stockage et l’interrogation de grandes masses de données de manière répartie. Une approche
pertinente pour la construction de tels réseau est de les structurer de façon à ce qu’ils reflêtent la structure de
l’application dont ils sont le support. Ainsi, les pairs représentent des objets de l’application, de telle sorte
que les objets voisins dans le réseau partagent des acaractéristiques proches du point de vue de l’application.
De tels réseaux logiques structurés permettent un support naturel des requêtes complexes, comme les
requêtes au plus proche voisin ou encore les requêtes par plage de valeurs sur un ensemble d’attributs. Bien
que des structures comme le complexe de Voronoï, où chaque pair est associé à une cellule de l’espace de
désignation, sont clairement adaptées au problème considéré, les coûts associés à leur construction et à leur
maitien se révèlent prohibitifs dès lors que la dimension de l’espace de désignation est supérieure à 2.

Dans ce rapport, nous soutenons l’idée qu’une structure complexe peut être approximée. Une telle
approximation est suffisante pour permettre le support natif des requêtes complexes comme les requêtes
par plage de valeurs. Ceci découle du fait que les relations de voisinage sont ce qui importe le plus pour la
construction du réseau, tandis que le partitionnement en cellule n’est pas nécessaire tant que les relations
de voisinage peuvent être décidées. Ce rapport présente la construction, l’analyse et une étude de perfor-
mances expérimentales de RayNet, un réseau logique à structuration partielle, fondé sur le complexe de
Voronoï. RayNet organise les pairs (les objets) dans une approximation du complexe de Voronoï, calculé
de manière totalement répartie. À cette fin, il utilise un algorithme de Monte-Carlo qui estime la taille
d’une cellule et un protocole épidémique pour la découverte des relations de voisinage. Afin de permettre
un routage efficace (d’ordre polylogarithmique en la taille du réseau), RayNet s’inspire du modèle de ré-
seau petit-monde de Kleinberg, où chaque pair est connecté à un ensemble de voisins proches ainsi qu’à
un ou des voisin(s) longue distance, ou raccourcis. La construction de ces liens longs utilise un protocole
épidémique existant, proposant un échantillonage biaisé vers la répartition de Kleinberg et mis en œuvre
de manière répartie.

Mots-clés : Pair à pair, Protocoles épidémiques, Auto-organisation
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1 Introduction

1.1 Structure versus search expressiveness

Plethora of peer to peer overlay networks have been proposed in the past years to manage data collection
at a large-scale. Peer to peer overlays organize peers in a logical network and are characterized by their
underlying structure. As far as data management is concerned, they differentiate each other by the expres-
siveness and efficiency of the search functionality they support. The expressiveness of search relates to the
way data can be accessed: (i) exact search is used to access data objects identified by a unique identifier; (ii)
attribute-based search enables to access data using a set of attribute, value pairs; (iii) in range queries, the
attribute values are specified for a given range (a special case of which is nearest neighbour queries, where
the object that lie “nearer” to a target point, according to an application dependant metric, is retrieved). At
one end of the spectrum lie unstructured overlays in which each peer gets connected to a set of arbitrary
neighbours. Such networks rely on constrained flooding techniques to search for data [22]. This provides a
way to implement all types of search but such approaches often suffer from lack of efficiency. A query may
need to ultimately visit the whole network to ensure exhaustive results. Fully structured overlays lie at the
other end of the spectrum. In such networks, peers are organized along a precise structure such as a ring. In
DHT-based networks [21], each object gets associated to a given peer. Such networks provide an efficient
support for a DHT functionality. However, their expressiveness is naturally limited by the exact-match
interface they provide.

We argue that, in order to improve upon the efficiency of expressive queries, the structure of the peer
to peer overlay should reflect the application’s one. Peers are then application objects and get connected to
neighbours (i.e. sharing similar characteristics from the application point of view). Such a logical organi-
zation provides a natural support for nearest neighbours and range queries. Such peer to peer overlays then
support natively complex queries. Examples of such approaches are : Sub-2-Sub [27] and Meghdoot [11]
for content-based publish and subscribe or Skip-graph based overlays [1, 10]. Those structures are however
sometimes extremely complex to maintain accurately. For example, maintaining a Voronoï tessellation as
in [4] involves a high overhead when the dimension is greater than two [6], and is prone to high levels of
calculation degeneracy.

1.2 Weakening the structure.

In this paper we argue that a loose structure is actually enough from the search perspective. What really
matters is that each peer gets connected to carefully chosen neighbours, so that the graph can be exhaus-
tively visited. The exact logical structure is not as crucial, provided that its estimation enables correct
routing for all requests. In this paper, we propose a general approach based on a Monte-Carlo algorithm to
approximate a complex structure, in order to build a loosely structured overlay network. More precisely,
we propose an algorithm to approximate the size of Voronoï cells, upon which we build neighbourhood
relations.

1.3 Contributions.

The contributions of this paper are the following. First, we propose a general approach based on a Monte-
Carlo method to approximate the size of a Voronoï cell. Then we propose the design and evaluation
of RayNet, a weakly structured overlay network, achieving an approximation of a Voronoï tessellation.
Following the generic approximation method, each peer in RayNet relies on an epidemic-based protocol
to discover its neighbours. Using such a protocol, the quality of the estimation gradually improves to
eventually achieve a close approximation of a Voronoï tessellation. This protocol ensures that each peer gets
connected to its Voronoï-like neighbours while avoiding the need to accurately compute the exact Voronoï
cells, thus keeping the overall overhead low. Each peer in RayNet also maintains a set of long-range
links (also called shortcuts) to implement a small-world topology. Efficient (poly-logarithmic) routing in
RayNet is achieved by choosing the shortcuts according to a distribution advocated by Kleinberg in [18].
Both links are created by gossip-based protocols. Finally, we evaluate the performance of RayNet through
simulations and investigate its performance both in terms of bootstrapping time and routing performance.

RR n° 6248
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Figure 1: Illustration of the target structure (links are shown only for object oi).

Note that implementing the query algorithm is actually out of the scope of this paper, and that we focus on
the creation of the overlay itself.

2 Design rationale

2.1 System model.

We consider a system composed of n nodes, and a set of objects. We assume that each object is stored on
the node that has created it. For the sake of clarity, we assume that there is a one to one mapping between
an object and a physical node and denote such a pair as a peer in the rest of this paper 1. Application object
themselves are linked rather than computing entities. This design choice is similar to the one made for
Skip-Graphs based systems [1, 10].

We consider a d dimensional attribute space. Each object is exactly identified by a value for each
attribute2. The attribute values of an object represent the virtual coordinates of the object in the attribute
space. This may obviously lead to skewed distribution of objects in the naming space.

We assume that each peer maintains a partial view of the network, called its view and consisting of a
list of neighbours (IP addresses and coordinates).

2.2 Structuring the network using Voronoï diagrams

Figure 1 describes coarsely the targeted structure for a two dimensional data set. A set of objects (black
points) are maintained in the distributed application naming space. To achieve a structure that permits
nearest neighbour and range queries possibilities, peers having close attribute values should be linked to
each other in the overlay. Figure 1 shows such links for a sample object oi. Our general goal for the creation
of these links is as follows: for any point ptarget belonging to the application naming space, for a query
that passes through an object oi, either oi is the nearest to ptarget and is the solution, or oi knows a peer oj

that is nearer to the destination. This property ensures that a greedy routing process always succeeds, since
the distance to the destination point is reduced at each step during the query propagation process.

A structure that ensures this property is the Delaunay graph, which is the dual of the Voronoï diagram.
The Voronoï diagram of a set of generators points {p ∈ R

d} is a tessellation of R
d into disjoint cells. Each

cell vc(px) is composed of all points that are closer to px than to any other generator in the set. The links
we aim at creating are adjacencies relations between objects cells, and compose the Delaunay graph.

We have already successfully used Voronoï diagrams in the context of routing mechanisms [4] in a
structured object-to-object overlay, This overlay provides a native support for range queries and nearest
neighbour queries for datasets over two dimensions naming spaces. However, maintaining accurately this
structure is extremely costly when the dimension goes over 2 [6]. First, the number of neighbours an object
needs to handle in an overlay of dimension > 2 is growing exponentially with the dimension. Second,

1This can be easily extended, but allocation of objects to nodes or optimizations in presence of multiple objects per node are out
of the scope of this paper.

2Relaxing this assumption is possible but out of the scope of this paper.

INRIA
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the maintenance cost to keep exactly all these links consistent in spite of nodes and links failure increases
accordingly.

However, defining the exact Voronoï cells is more than what is actually needed to ensure that greedy
routing succeeds in such a network. What matters is actually the fact that each peer gets connected to
its “close” neighbours long all directions. Also, imposing a fixed size set of neighbours at each object is
desirable for scalability and load balancing purposes.

We base our design on the following observation: for an object o with neighbourhood consisting of
objects whose Voronoï cell shares a boundary with o’s cell, the volume of o’s cell in the tessellation of
all objects is the same as o’s cell volume in the Voronoï tessellation of only o and its neighbours. We
are thus interested in discovering neighbours (partial view of the network) o.view for each object o in
the system, for which the volume of o’s cell in the tessellation of o ∪ o.view is minimal. We use a fixed
size set of neighbours, and each object exchanges its current view of the network by means of a gossip-
based protocol. Figure 2 presents the principle of this evolution: the more peers an object detects, the
more opportunities of choosing a peer configuration it encounters to improve its zone approximation. In
the following section, we highlight the principles of gossip-based protocols used for overlay construction,
presents the biased peer-sampling protocol we use to provide small world characteristics to the overlay
(especially for routing efficiency purposes). We then describe the core of our protocol, that is gossip-based
construction of coverage and closeness at each peer, and the mechanisms that permit this construction,
Monte-Carlo Voronoï cell size estimation.

o’s cell in the
tesselation of

object o and
its view

o U o.view

Figure 2: Desired evolution of an object’s neighbourhood: convergence towards the smallest (estimated)
Voronoï cell. From random connections (left) to smallest possible zone (right).

3 Approximation through gossip

In this paper, we use gossip-based protocols to create and maintain the peer to peer overlay network.
Although the focus of this paper is to approximate the neighbourhood at each peer, ultimately routing
efficiently (in poly-logarithmic time) through the structure is an important concern. A small-world topology
is created to achieve this. In this section we provide some background on small-world networks and gossip-
based protocols. We then describe an existing gossip-based protocol that approximates a small-world
topology. Finally, we present how we extend the generic gossip-based protocol framework to build the
neighbourhood of each peer.

3.1 Small-world networks

Small-world network models were introduced to investigate the inherent routing capabilities of human re-
lations networks. In such network models, each peer is connected to its closest neighbours in a topology
as well as additional long-range contacts, also called shortcuts. Watts and Strogatz [28] introduce such a
small-world topology where shortcuts are picked uniformly at random. In 2000, Kleinberg [18] demon-
strated that poly-logarithmic routing could be achieved using a greedy algorithm if such shortcuts were
chosen according to a specific distribution (d-harmonic). In his work, Kleinberg consider a n × n grid
where every vertex has edges to its four direct neighbours and k (typically one) long-range neighbour(s).

RR n° 6248
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This long-range neighbour is chosen with a probability proportional to 1
ld

, where d is the dimension and
l is the Euclidean distance between the vertex and its remote neighbour. These results can be extended to
more general topologies and higher dimensions [3, 4, 8].

3.2 Gossip-based overlay construction

Gossip-based protocols, first introduced to reliably disseminate events in large systems, have now been
recognized as a scalable and reliable basic building block to instantiate and maintain peer to peer overlay
networks, and applications. Their scalability stems from their simplicity, their ability to capture system
dynamics and the emergent properties they lead to. They have been successfully applied to a large number
of settings from reliable broadcast [5] to overlay maintenance [9, 13, 24, 26], and from aggregation [16]
to system size estimation [23] and are now turned into a generic and sound substrate for building and
maintaining large-scale overlay networks [25].

A gossip-based protocol relies on a periodic exchange of information between peers. Such a period is
called a cycle. Each peer keeps a (usually fixed-size) set of peers, called its view. Periodically, each peer
picks a target from its view of the system, exchanges some information with it and processes the received
information. If the information exchanged relates to neighbourhood, such a protocol creates an overlay
network. We focus on such protocols in this paper. A gossip-based protocol is characterized by the three
following parameters:

• Peer selection policy: each peer pi chooses periodically a gossip target from its view pi.view;

• State exchanged: the state exchanged between peers is membership information and consists of a
list of peers (subset of their views);

• State processing: upon receipt of the list, the receiving peer merges the list of peers received with
its own view to compose a new list of neighbours (new view).

It turns out that these parameters can be tuned so that the resulting graph exhibit properties which are
extremely close to those of a random graph [9, 13, 26], providing a Peer Sampling Service: each peer’s
view contains a set of randomly drawn other peers from the network and this view changes at each cycle.
More generally, it has been shown that arbitrary structures can be maintained this way, including fully
structured peer to peer overlay networks [12, 24, 27].

For instance, it has been shown in [7] that the peer sampling protocol can be biased in order to ap-
proximate the distribution advocated by Kleinberg to improve routing in small-world networks. This can
be achieved by simply adapting the state processing phase, to keep in the view, a set of peers that exhibits
a Kleinberg-like long link length distribution. We use this protocol, called small-world peer sampling in
the remaining of this document, as the substrate of our protocol, to achieve efficient routing.

3.3 Approximating the close neighbourhood: Coverage and closeness

It has been shown in [12, 26] that the same generic gossip protocol can be used to enable each peer to create
links to its closest neighbours according to a given proximity metric. The peer selected to gossip with is
then chosen as the closest from the view, and the state processing keeps the closest peers from the union of
the local and received views. Such a clustering protocol is usually run concomitantly with a peer sampling
service in order to ensure connectivity and to leave peers with the ability to cluster nodes3.

In this paper we propose to use a generalization of such a protocol to approximate the neighbourhood
of a given peer. However, minimizing distances to each peer independently is not sufficient to ensure that
the routing will succeed in all directions. Thus, instead of optimizing each item of the view independently,
our approach is to decide on a new view as a whole. That means that, at each gossip cycle, set of peers are
examined as configurations (potential new views) and not independently. To the best of our knowledge,
this is the first time such an approach of generalization of gossip-based overlay construction protocols is
proposed.

3Obviously non uniform topologies would be prone to create disconnected clusters otherwise.

INRIA
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We denote as the utility of a new configuration the metric that permits us to decide whether a con-
figuration is better than the current view or not. This utility is the estimation of the Voronoï cell size, as
decided by our Monte-Carlo estimation algorithm, as introduced in Section 4.1. This metric ensures that
(1) closeness is achieved, which means that eventually a peer will get to know peers that are as close as
possible to itself but (2) coverage is ensured, i.e. eventually each portion of the space surrounding a peer is
covered by a neighbour, if such a peer exists in the system.

4 Protocol details

In this section we provide the details of building and maintaining RayNet. RayNet is based on a gossip-
based approach: at each cycle, an object o chooses a gossip partner od from its current view (or a subset of
its view) of the system to gossip with. After the state is exchanged, o then evaluates if there exists a new
view (configuration of objects) that ensures a better coverage and closeness. The candidate configurations
have thus to be considered as a whole, and peers objects can not be selected independently.

4.1 View evolution using Voronoï cell size estimation

4.1.1 Size of the view.

To ensure coverage and closeness, an object uses the estimated volume of its Voronoï cell based on its set
of neighbours. Effectively, greedy routing succeeds if o knows neighbours in each possible direction (to
get closer to any other target object) and close neighbours (when the target object is close to o).

If the volume of the Voronoï cell at o is minimal, then o knows Delaunay neighbours in any direction and
if the volume of this cell is the smallest possible one, then these peers are among o’s closest neighbours.
In general, 2d + 1 neighbours are enough to get a bounded Voronoï cell. In order to keep extra close
neighbours, we set the size c of objects views to c = 3d + 1. Moreover, we assume that peers exchange
their entire view during a gossip operation.

4.1.2 Monte-Carlo cell volume estimation.

Once views have been exchanged, object o needs to estimate the volume of its Voronoï cell, for every
possible configuration (on a naive basis; we show in the following Sections that examining all possible
configurations is not mandatory). The volume of the cell is computed for each configuration. That is, given
a set of objects o.view ∪ od.view = {o1, . . . , on}, for each possible configuration {oi1 , . . . , oic

} of size
c, we estimate the volume of the Voronoï cell of o in the tessellation of points o ∪ {oi1 , . . . , oic

}. Then, if
a new configuration is found, for which the volume of the cell of object o is reduced, this configuration is
used as o’s new view.

There is no need to effectively compute the cell itself, which would be computationally expensive
and prone to high levels of calculation degeneracy. Instead, we propose a new Monte-Carlo method for
estimating this volume. Figure 3 presents an illustration of this approach in a two dimensional space. Note
that this approach scales to higher dimensions.

A set of R rays is created, whose starting point is o and directions are drawn uniformly at random on
the unit hyper-sphere. To this end, we use the method described in [19] that provides uniform probability
distribution of points on the hyper-sphere. Algorithm 1.left describes the method. Rays (dashed lines
starting from o on Figure 3) will act as probes, for which we discover the closest intersection point pint

lying on the ray r with a (virtual) Voronoï cell of another object in the configuration, this object being the
object o2 for which λ = ||pint, o|| = ||pint, o2|| is minimal. For this, the function compDistOnRay() in
Algorithm 1.left computes λ for each point. Distances λ = ||pint, o2|| are represented by discontinuous
lines from o2 to the intersection pint on Figure 3. Lines (a) to (b) of Algorithm 1.left present the selection
of the closest peers for each ray. We keep all λ values for each ray (set Λ), and use them to compute the
estimation of the cell volume as follows (line (c) of Algorithm 1.left). Each ray r is associated to a ball of
radius λr whose volume is given by (BallV ol × (λr)

d)/R, where BallV ol is the volume of the unit ball
in dimension d. The volume of the estimated cell is the average value, for all rays, of volumes of such balls
(the contribution for each ray is represented as grey cones on Figure 3). Such an estimator of the volume of

RR n° 6248



8 Beaumont, Kermarrec & Rivière

the Voronoï cell is clearly unbiased, so that the estimated volume converges to the volume of the Voronoï
cell when R → +∞. Nevertheless, the convergence strongly depends on the shape of the Voronoï cell,
thus imposing the use of a large enough R (1.000 in the current implementation).

Figure 3: Illustration of the Monte Carlo method (o is the central point).

calcVolume()
parameters : config (SET[objects])
begin

SET[double] Λ← ∅
o.rays← createRays(R)

(a) for double[] r ∈ o.rays do
double λ←∞
for object oj ∈ config do

double l← compDistOnRay(r,oj)
if l < dist then

λ← l

(b) Λ← Λ ∪ λ
/* BallVol contains the unit Ball volume in
dimension d */

(c) return
BallV ol×

P

λ∈Λ
(λd)

R

end

update_naive()
parameters : od.view (SET[objects])
Local variables:
S : SET[objects]
vol : double

begin
o.current_vol← calcVolume(o.view)
foreach S ∈ Pc(view ∪ od.view) do

vol← calcVolume(S)
if vol < o.current_vol then

o.view ← S
o.current_vol← vol

end

Algorithm 1: Monte-Carlo algorithm for estimating the volume of the cell for object o (left) and
naive update algorithm for o receiving od.view (right).

4.2 Discovery of a new configuration: naive approach

We describe in this section and in Algorithm 1.right the naive approach to select a new view for an object
o upon reception of the view od.view. In order to determine the best view among the set of candidates, we
need to estimate the volume of the Voronoï cell of o for the subgraph S

⋃

o for each possible set S of c
peer objects in the augmented view. That is, each possible subset of size c among o.view ∪ od.view shall
be evaluated for replacement of o.view.

Evaluating all Cc
2c = O(c!) possible configurations would provide exhaustive and accurate results,

though at an unaffordable price. Therefore, we propose in the next Section a more realistic algorithm
significantly reducing the overall complexity to a cost that is linear in the space dimension d.

INRIA
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4.3 Discovery of a new configuration: efficient, linear time approach

Algorithm 2 presented in this section requires rays for a given object to be chosen once and for all upon
creation of the object, in order to save information between configurations’ associated cell volumes. Each
peer o maintains a bipartite graph best containing on one side peers objects of o.view, and on the other
side the rays o.rays. We denote by bestO(r) the Voronoï neighbour op of o according to ray r: it is the
node op such that a ray issued from o and whose direction is r first reaches the Voronoï cell of op (this entry
is never empty). Similarly, we denote by {bestR(op)} the set of rays for which op is the current Voronoï
neighbour of o (this set may be empty).

The objective is as follows: to compute o’s new view, for each object op in od.view ∩ o.view (i.e. all
peers for which {bestR(op)} does not contain any information), we determine the set of rays for which
od is the Voronoï neighbour of o in the augmented view Voronoï diagram. This operation is described by
lines (a) to (b) of Algorithm 2. Peers found to be a Voronoï neighbour of o for a given ray are stored in the
set improve, which has the same semantic as bestO, except that entries for some rays can be empty.

On line (c), either improve or bestO has information, for each ray, about which peer in the augmented
view is a Voronoï neighbour of o. The next step is to compute to which extent each peer is needed in
the new configuration. More precisely, given a peer ox, we compute the volume of the cell of o with all
peers but ox (lines (c)-(d)). If the volume of the cell increases dramatically, that means that peer ox was
mandatory to ensure closeness and proximity. On the other hand, if the volume remains the same, then
peer ox has no contribution to coverage nor closeness.

Note that, unlike the naive method (Algorithms 1), it is not necessary to iterate through all peers of the
tested configuration to find the peer with the smallest λ value. This information is usually contained in
either bestO, if such a peer lies in o.view, or in improve, if such a peer is a candidate peer from the distant
view. The only case when one needs to iterate through all peers is when the best known peer for a given
ray is ox, the currently ignored peer.

Volumes associated to each peer (i.e. the volume without that peer in the configuration) are stored in
the map volumes. This map is then sorted by decreasing volume values : starting from entries of peers that
contributes highly to coverage and closeness, to entries of peers that have no or few contribution to coverage
and closeness. The new configuration is built from the c peers that presents the maximum contribution, i.e.
peers of the first c entries of volume.

The cost of the approach is as follows: there are up to (r × c) calls to method distOnRay(), if all
c candidates were unknown to the current peer, and up to (2 × c) calls to calcVolume(). Each call to
distOnRay() has cost 1: it is a fixed size set of scalar products. Each call to calcVolume() takes r × (1 +
2×c−1
2×c

) operations, where the term 2×c−1
2×c

stands for the few cases where the “best” peer is the currently
ignored peer ox (on average, 1

2×c
occurrences per call). The overall cost is thus ' 5(r × c) operations. r

is a constant. c depends only on the dimension of the naming space d, i.e. c =O(d). The overall cost of the
improved update algorithm is thus O(d) operations.

5 Experimental evaluation

In this section, we evaluate RayNet along two metrics: (1) the time needed by a chaotic system to converge
towards an overlay where all routes succeed and (2) when such an overlay is created, how many steps are
required by greedy routing from any object to the nearest object of a target point, as a function of system
size. Expected results are respectively: (1) a fast convergence and self-organization towards full success for
routing requests and (2) a poly-logarithmic evolution of the route size according to the size of the system,
thanks to the small-world peer sampling layer.

We developed a simulator using Java, and ran simulations for populations of objects ranging from 500
to 7.000 objects. The dimension of the object naming space d is ranging from 2 to 6. All objects points are
drawn uniformly at random in this space. For all experiments, r =1.000 rays were used to estimate cell
volumes, and 3×d+1 neighbours are kept at each object. At each cycle, two exchanges take place, one for
the small-world peer sampling layer (8 peers out of 20 maintained peers are sent), the other for the coverage
and closeness layer (exchange of views). Also, for the first two cycles, each peer selects randomly 10 peers
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10 Beaumont, Kermarrec & Rivière

update()
parameters : op.view (SET[objects]) /* distant view */
Local variables:

improve (map ray→ object) init ∅ /*improve has the same semantic as bestO*/
volumes (list of pairs (object,volume)) init ∅

begin
(a) foreach ray r ∈ o.rays do

double bestλ =⊥
object imp =⊥
foreach object oj ∈ (od.view ∩ o.view) do

λ← distOnRay(r, oj)

if λ <

{

bestO(r) if bestλ =⊥
bestλ if bestλ 6=⊥

then

imp← oj

bestλ = λ

if bestλ 6=⊥ then
(b) improve[r] = imp

(c) foreach object ox ∈ o.view ∪ (od.view ∩ oi.view) do
(d) volumes← volumes ∪

pair(ox,calcVolumeImproved(best∪ improve, (od.view ∩ oi.view) r ox))
sort volumes by decreasing volume
o.view ← {volumes1.o, . . . , volumesc.o}
update bestO and bestR

end
Algorithm 2: Update of object’s view o.view : efficient approach. Sets bestO and bestR are constructed
and coherent i.r.t. the current o.view when starting the algorithm.

from the small-world peer sampling layer and assess them for potential inclusion in a new configuration to
bootstrap the coverage and closeness level.

5.1 Bootstrapping the overlay.

First, we evaluate the time RayNet takes to converge towards an overlay state where every routing requests
succeed. The overlay is initialized to a random graph for the small-world peer sampling layer, and no
peer for the coverage and closeness layer. This makes sense as bootstrapping from a chaotic state is the
worst case for gossip-based overlay construction mechanisms. More, following the proposal of [17] (with
successful instantiations such as [14, 24, 27]), this represents the case where a distributed application needs
the rapid instantiation of a routing substrate on top of a peer sampling layer. This experiment shows that
our proposal fits perfectly in this scope, while being obviously applicable to long-term runs.

Figures 4 presents the results for all dimensions, and for different object population sizes. Hit ratio
denotes the proportion of routes that succeed onto exactly the object that is nearest to the query destination.
At each cycle, 20.000 random (object, destination point) pairs are tested. As expected, the hit ratio increases
with the number of exchanges. In addition, perfect routing is achieved within at most 30 to 35 cycles,
regardless of the dimension. Note that the cycle period is to be defined by the application, and depends on
the trade-off between quality of service and cost on computing entities. It is possible however to bootstrap
faster by using shorter periods at the beginning and to decrease it when steady state has been reached.
In a dynamic scenario, objects would join gradually, and each object can use several short-term gossip
exchanges to insert themselves faster in the overlay. The hit ratio converges slightly slower if there are
more nodes. Note that this does impact neither the time a node would need to join an already constructed
overlay, nor the complexity of local self-organization of the structure. Figures 4 show that approximating
the structure does not impact routing correctness.
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Figure 4: Evolution of routes hit ratio for dimensions 2 to 6.

RR n° 6248



12 Beaumont, Kermarrec & Rivière

 0
 1
 2
 3
 4
 5
 6
 7

 5
00

 1
00

0
 1

50
0
 2

00
0

 3
00

0
 5

00
0

 7
00

0

H
op

s 
(m

ea
n)

Number of peers

dim 2
dim 3
dim 4
dim 5
dim 6

(a) Routing cost evolution.

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.8 1.85 1.9 1.95  2  2.05 2.1 2.15 2.2

Lo
g(

Lo
g(

H
op

s 
(m

ea
n)

))

Log(Number of peers)
(b) Highlights O(logx(n)) routing.

Figure 5: Routing efficiency (data for (a) and (b) is the same).

5.2 Routing efficiency.

The second evaluation metric is the routing efficiency: how many routing steps are needed on average to
route between a source object an a destination point. This metric is directly impacted by the performance
of the small-world peer sampling substrate as well as the quality of the close neighbourhood. It has a great
impact on the efficiency of search mechanisms that can be proposed over the RayNet overlay. Figures 5.(a)
and 5.(b) present the evolution of the routing costs as a function of the number of objects, for different
dimensions. Particularly, Figure 5.(b) plots the log log(mean hops) as a function of log(objects). The line
shape of Figure 5.(b) proves that route sizes are poly-logarithmic in the number of objects, as expected by
the small world characteristic of RayNet. We consider this property as being the key to scalability of future
search mechanisms. The reason why higher dimensions present smaller routing paths is due to the fact that
the size of the view at each objects increases linearly with the dimension d: for final steps (where small
world links are not used), more possibilities are available for deciding on the next step of the route, which
obviously slightly decreases the number of steps that use links from the coverage and closeness layer. This
shows that approximating the structure does not impact routing performance.

Details of routing performance is given by Figure 6. For each dimension, route size evolution is given,
along with the standard deviation. This Figures show that route size are balanced and that the distribution
of routes lengths approaches a normal distribution. That means that no route is several orders of magnitude
larger than another, which is a desirable behavior.

6 Related works

Other protocols were proposed to deal with multidimensional data querying and complex query support in
large scale distributed systems. Structured overlays with exact-search interface have been used to imple-
ment range queries [2] even if such overlays are not natively addressing such capabilities. These approaches
present relatively high costs of maintenance of the structures: either a second indexing mechanism based
on objects rather than on nodes is built, whose cost is added to the cost of the structured overlay itself, or a
single index is used but with the need for an implicit load balancing algorithm, to replace the inherent load
balancing provided by hash mechanisms. RayNet steps away from this approaches by being designed with
the native support for complex queries in mind from the beginning.

The authors used a similar approach to the one presented in this paper for the design of VoroNet [4].
This structured overlay organizes objects in an overlay that, like RayNet, reflects exactly the application
semantic space, by using the Delaunay graph as the basic routing substrate and explicit small-world con-
struction. Nonetheless, this approach suffers from two drawbacks: (1) maintaining the Delaunay complex
for higher dimensions would be too costly (and, as presented in the Introduction, too much for the desired
service) and (2) maintenance in two dimensions in face of churn is a difficult (yet not unsolvable) problem.
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Figure 6: Evolution of routes size, details with standard deviations for dimensions 2 to 6.
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14 Beaumont, Kermarrec & Rivière

RayNet addresses these two problems by (1) using an estimation of Voronoï cells as the basis for the con-
struction of a subset of the Delaunay complex and (2) using Gossip-Based, self-organizing protocols that
embed both protocol construction and re-organization in the same protocol, relieving the need for explicit
fault tolerance mechanisms.

Skip-Webs [1] are multidimensional data structures that permit querying of data on a large scale, with
multidimensional attributes. Nonetheless, maintaining such a structure in presence of churn may have a
tremendous cost. Note that using Gossip-based techniques to construct this “Skip-List-like” structure could
benefit from Gossip-based overlay construction protocols, such as the ones used for uni-dimensional data
in GosSkip [10].

7 Conclusion

In this paper, we presented a new approach to create overlays that reflect a distributed application shared
objects naming space. Organizing application objects in a distributed data structure based on the Delau-
nay graph of object points is sound but costly. We show that accuracy is not crucial and that reasonable
approximation does not impact routing in such a structure. This paper presents the design and evaluation
of RayNet, a peer to peer overlay that links objects in a multi-dimensional naming space, where each ob-
ject’s view is drawn according to an estimation of its Voronoï cell size using a Monte-Carlo algorithm.
Gossip-based protocols are extensively used to provide self-organization properties and routing efficiency.
Simulation results convey the soundness and efficiency of the approach.

Neext steps in this research are the following. First, we would like to investigate complex queries mech-
anisms for which RayNet was designed to be the support. At the moment, range queries are implemented
by using constraint flooding ; refined mechanisms can be proposed by carrying some state on the query dis-
semination messages. We would like to investigate the scalability to higher dimensions of the mechanisms
provided by [20]. Second, although gossip-based protocols are inherently resilient to nodes failures, few
research has been done on securing such protocols. Following the early proposal of [15], we would like to
investigate mechanisms to make our protocol resilient to adversary behaviours and detect malicious peers.

Acknowledgments We would like to thank François Bonnet, who helped us to integrate the gossip-based
small-world peer sampling in RayNet [7] and Philippe Duchon, whose comments and expertise helped us
on early stages of this work.
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