The canonical equation of adaptive dynamics: a mathematical view

Abstract : The Darwinian evolution of a quantitative adaptive character is described as a jump process. As the variance of the distribution of mutation steps goes to zero, this process converges in law to the solution of an ordinary differential equation. In the case where the mutation step distribution is symmetrical, this establishes rigorously the socalled canonical equation first proposed by Dieckmann and Law (1996). Our mathematical approach naturally leads to extend the canonical equation to the case of biased mutations, and to seek ecological and genetic conditions under which evolution proceeds either through punctualism or through radiation.
Type de document :
Article dans une revue
Selection, Akadémiai Kiadó, 2001, 2, pp.73-83
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00164767
Contributeur : Nicolas Champagnat <>
Soumis le : mardi 4 décembre 2007 - 19:41:56
Dernière modification le : jeudi 11 janvier 2018 - 06:18:20
Document(s) archivé(s) le : jeudi 8 avril 2010 - 20:48:14

Fichier

FEJ-05.PDF
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : inria-00164767, version 1

Collections

Citation

Nicolas Champagnat, Régis Ferrière, Gérard Ben Arous. The canonical equation of adaptive dynamics: a mathematical view. Selection, Akadémiai Kiadó, 2001, 2, pp.73-83. 〈inria-00164767〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

536