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Running head: From individual processes to evolutionary dynamics

Abstract

A distinctive signature of living systems is Darwinian evolution, that is, a propen-
sity to generate as well as self-select individual diversity. To capture this essential fea-
ture of life while describing the dynamics of populations, mathematical models must
be rooted in the microscopic, stochastic description of discrete individuals character-
ized by one or several adaptive traits and interacting with each other. The simplest
models assume asexual reproduction and haploid genetics: an offspring usually in-
herits the trait values of her progenitor, except when a mutation causes the offspring
to take a mutation step to new trait values; selection follows from ecological interac-
tions among individuals. Here we present a rigorous construction of the microscopic
population process that captures the probabilistic dynamics over continuous time of
birth, mutation, and death, as influenced by the trait values of each individual, and
interactions between individuals. A by-product of this formal construction is a general
algorithm for efficient numerical simulation of the individual-level model. Once the
microscopic process is in place, we derive different macroscopic models of adaptive
evolution. These models differ in the renormalization they assume, i.e. in the lim-
its taken, in specific orders, on population size, mutation rate, mutation step, while
rescaling time accordingly. The macroscopic models also differ in their mathematical
nature: deterministic, in the form of ordinary, integro-, or partial differential equa-
tions, or probabilistic, like stochastic partial differential equations or superprocesses.
These models include extensions of Kimura’s equation (and of its approximation for
small mutation effects) to frequency- and density-dependent selection. A novel class
of macroscopic models obtains when assuming that individual birth and death oc-
cur on a short timescale compared with the timescale of typical population growth.
On a timescale of very rare mutations, we establish rigorously the models of “trait
substitution sequences”’ and their approximation known as the “canonical equation of
adaptive dynamics”. We extend these models to account for mutation bias and random
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drift between multiple evolutionary attractors. The renormalization approach used in
this study also opens promising avenues to study and predict patterns of life-history
allometries, thereby bridging individual physiology, genetic variation, and ecological
interactions in a common evolutionary framework.

Key-words: adaptive evolution, individual-based model, birth and death point pro-
cess, body size scaling, timescale separation, mutagenesis, density-dependent selection,
frequency-dependent selection, invasion fitness, adaptive dynamics, canonical equation,
nonlinear stochastic partial differential equations, nonlinear PDEs, large deviation princi-
ple.

1 Introduction

Evolutionary biology has long received the enlightenment of mathematics. At the dawn
of the twentieth century, Darwinian evolution was viewed essentially as a formal theory
that could only be tested using mathematical and statistical techniques. The founding
fathers of evolutionary genetics (Fisher, Haldane and Wright) used mathematical models
to generate a synthesis between Mendelian genetics and Darwinian evolution that paved
the way toward contemporary models of adaptive evolution. However, the development of
a general and coherent framework for adaptive evolution modelling, built from the basic
stochastic processes acting at the individual level, is far from complete (Page and Nowak,
2002). Mathematical models of adaptive evolution are essentially phenomenological, rather
than derived from the ‘first principles’ of individual birth, mutation, interaction and death.
Here we report the rigorous mathematical derivation of macroscopic models of evolution-
ary dynamics scaling up from the microscopic description of demographic and ecological
stochastic processes acting at the individual level. Our analysis emphasizes that different
models obtain depending on how individual processes are renormalized, and provides a
unified framework for understanding how these different models relate to each other.

Early models of adaptive evolution pictured the mutation-selection process as a steady
ascent on a so-called ‘adaptive landscape’, thereby suggesting some solid ground over which
the population would move, under the pressure of environmental factors (Wright, 1969).
The next theoretical step was to recognize that the adaptive landscape metaphor misses
one-half of the evolutionary process: although the environment selects the adaptations,
these adaptations can shape the environment (Haldane, 1932; Pimentel, 1968; Stenseth,
1986; Metz et al., 1992). Therefore, there is no such thing as a pre-defined adaptive
landscape; in fact, the fitness of a phenotype depends upon the phenotypic composition of
the population, and selection generally is frequency-dependent (Metz et al., 1992; Heino
et al., 1998). Throughout the last 50 years this viewpoint spread and affected not only
the intuition of evolutionary biologists, but also their mathematical tools (Nowak and
Sigmund, 2004). The notion of adaptive landscape accross mathematical evolutionary
theories is reviewed in Kirkpatrick and Rousset (2005).

Game theory was imported from economics into evolutionary theory, in which it be-
came a popular framework for the construction of frequency-dependent models of natural
selection (Hamilton, 1967; Maynard Smith and Price, 1973; Maynard Smith, 1982; Hof-
bauer and Sigmund, 1998, 2003; Nowak and Sigmund, 2004). With adaptive dynamics
modelling, evolutionary game theory was extended to handle the complexity of ecological



systems from which selective pressures emanate. However, the rare mutation and large
population scenario assumed by adaptive dynamics modelling implies that the complexity
of stochastic individual life-history events is subsumed into deterministic steps of mutant
invasion-fixation, taking place in vanishingly small time by the whole population as a sin-
gle, monomorphic entity (Metz et al., 1996; Dieckmann and Law, 1996). Thus, adaptive
dynamics models make approximations that bypass rather than encompass the individual
level (Nowak and Sigmund, 2004).

An alternate pathway has been followed by population and quantitative genetics, do-
mains in which the emphasis was early on set on understanding the forces that maintain
genetic variation (Biirger, 2000). The ‘continuum-of-alleles’ model introduced by Crow
and Kimura (1964) does not impose a rare mutation scenario, but otherwise shares the
same basic assumptions as in evolutionary game theory and adaptive dynamics models:
the genetic system involves one-locus haploid asexual individuals, and the effect of mutant
alleles are randomly chosen from a continuous distribution. The mathematical study of
the continuum-of-alleles model has begun only relatively recently (see Biirger, 1998, 2000
and Waxman, 2003 for reviews) in a frequency-independent selection framework. The
mutation-selection dynamics of quantitative traits under frequency-dependent selection has
been investigated thoroughly by Biirger (2005) and Biirger and Gimelfard (2004) in the
wake of Bulmer’s (1974), Slatkin’s (1979), Nagylaki’s (1979), Christiansen and Loeschcke
(1980) and Asmussen’s (1983) seminal studies. After Matessi and Di Pasquale (1996),
among others, had emphasized multilocus genetics as causing long-term evolution to de-
part from the Wrightian model, Biirger’s (2005) approach has taken a major step forward
in further tying up details of the genetic system with population demography.

Recent advances in probability theory (first applied in the population biological con-
text by Fournier and Méléard, 2004 and Champagnat, 2004b) make the time ripe for
attempting systematic derivation of macroscopic models of evolutionary dynamics from
individual-based processes. By scaling up from the level of individuals and stochastic pro-
cesses acting upon them to the macroscopic dynamics of population evolution, we aim
at setting up the mathematical framework needed for bridging behavioral, ecological and
evolutionary processes (Jansen and Mulder, 1999; Abrams, 2001; Ferriére et al., 2004;
Dieckmann and Ferriére, 2004; Hairston et al., 2005). Our baseline model is a stochastic
process describing a finite population of discrete interacting individuals characterized by
one or several adaptive phenotypic traits. We focus on the simplest case of asexual re-
production and haploid genetics. The infinitesimal generator of this process captures the
probabilistic dynamics, over continuous time, of birth, mutation and death, as influenced
by the trait values of each individual and ecological interactions among individuals. The
rigorous algorithmic construction of the population process is given in Section 2. This
algorithm is implemented numerically and simulations are presented; they unveil qualita-
tively different evolutionary behaviors as a consequence of varying the order of magnitude
of population size, mutation probability and mutation step size. These phenomena are
investigated in the next sections, by systematically deriving macroscopic models from the
individual-based process. Our first approach (Section 3) aims at deriving deterministic
equations to describe the moments of trajectories of the point process, i.e. the statistics
of a large number of independent realizations of the process. The model takes the form
of a hierarchical system of moment equations embedded into each other; the competition
kernels that capture individual interactions make it impossible, even in the simple mean-



field case of random and uniform interactions among phenotypes, to find simple moment
closures that would decorrelate the system.

The alternate approach involves renormalizing the individual-level process by means
of a large population limit. Applied by itself, the limit yields a deterministic, nonlin-
ear integro-differential equation (Section 4.1). For different scalings of birth, death and
mutation rates, we obtain qualitatively different limiting PDEs, in which some form of
demographic randomness may or may not be retained as a stochastic term (Section 4).
More specifically, when combined with the acceleration of birth (hence the acceleration
of mutation) and death and an asymptotic of small mutation steps, the large popula-
tion limit yields either a deterministic nonlinear reaction-diffusion model, or a stochastic
measure-valued process, depending on the acceleration rate of the birth-and-death pro-
cess (Section 4.2.1). When this acceleration of birth and death is combined with a rare
mutation limit, the large population approximation yields a nonlinear integro-differential
equation, either deterministic or stochastic, depending again upon the acceleration rate of
the birth-and-death process (Section 4.2.2). In Section 5, we assume that the ancestral
population is monomorphic and that the timescale of ecological interactions and evolution-
ary change are separated: the birth-and-death process is fast while mutations are rare. In
a large population limit, the process converges on the mutation timescale to a jump pro-
cess over the trait space, which corresponds to the trait substitution sequence of adaptive
dynamics modelling (Section 5.1). By rescaling the mutation step (making it infinitesimal)
we finally recover a deterministic process driven by the so-called “canonical equation of
adaptive dynamics” first introduced by Dieckmann and Law (1996) (Section 5.2).

Throughout the paper E(-) denotes mathematical expectation of random variables.

2 Population point process

Our model’s construction starts with the microscopic description of a population in which
the adaptive traits of individuals influence their birth rate, the mutation process, their
death rate, and how they interact with each other and their external environment. Thus,
mathematically, the population can be viewed as a stochastic interacting individual system
(cf. Durrett and Levin 1994). The phenotype of each individual is described by a vector
of trait values. The trait space X is assumed to be a subset of [-dimensional real vectors
and thus describes [ real-valued traits. In the trait space X, the population is entirely
characterized by a counting measure, that is, a mathematical counting device which keeps
track of the number of individuals expressing different phenotypes. The population evolves
according to a Markov process on the set of such counting measures on X’; the Markov
property assumes that the dynamics of the population after time ¢ depends on the past
information only through the current state of the population (i.e. at time t). The infinites-
imal generator describes the mean behavior of this Markov process; it captures the birth
and death events that each individual experiences while interacting with other individuals.

2.1 Process construction

We consider a population in which individuals can give birth and die at rates that are
influenced by the individual traits and by interactions with individuals carrying the same
or different traits. These events occur randomly, in continuous time. Reproduction is



almost faithful: there is some probability that a mutation causes an offspring’s phenotype
to differ from her progenitor’s. Interactions translate into a dependency of the birth and
death rates of any focal individual upon the number of interacting individuals.

The population is characterized at any time ¢ by the finite counting measure

It)
V= 6, (2.1)
=1

where d,, is the Dirac measure at . The measure v; describes the distribution of individuals
over the trait space at time ¢, where I(t) is the total number of individuals alive at time
t, and z},... ,a:tl ® denote the individuals’ traits. The time process v¢ evolves in the set of
all finite counting measures. Notice that the total mass of the measure v is equal to I(t).
Likewise, v4(I") represents the number of individuals with traits contained in any subset
1(t)
' of the trait space, and / o(x)v(de) = Z @(x}), which means that the total “mass” of
X

individuals, each of them being “weighted”lb;' the “scale” ¢, is computed by integrating ¢
with respect to vy over the trait space.

The population dynamics are driven by a birth-mutation-death process defined as fol-
lows. Individual mortality and reproduction are influenced by interactions between indi-
viduals. For a population whose state is described by the counting measure v = Zle Onis
let us define d(x,U * v(z)) as the death rate of individuals with trait x, b(z,V * v(x))
as the birth rate of individuals with trait x, where U and V are the interaction kernels
affecting mortality and reproduction, respectively. Here * denotes the convolution opera-
tor, which means that U and V give the “weight” of each individual when interacting with
a focal individual, as a function of how phenotypically different they are. For example,
Usxv(z) = Zle U(x — x'). Mutation-related parameters are expressed as functions of
the individual trait values only (although there would be no formal difficulty to include
a dependency on the population state, in order to obtain adaptive mutagenesis models):
wu(x) is the probability that an offspring produced by an individual with trait x carries a
mutated trait, M (z, z) is the mutation step kernel of the offspring trait « + z produced by
individuals with trait . Since the mutant trait belongs to X, we assume M(z,z) = 0 if
x + z does not belong to X.

Thus, the individual processes driving the population adaptive evolution develop through
time as follows:

e At t =0 the population is characterized by a (possibly random) counting measure
vg. This measure gives the ancestral state of the population. Whether the ancestral
state is monomorphic or polymorphic will prove mathematically important later on.

e Each individual has two independent random exponentially distributed “clocks” a
birth clock with parameter b(x, V *14(x)), and a death clock with parameter d(z, U *
vi(x)). Assuming exponential distributions allows to reset both clocks to 0 every
time one of them rings. At any time ¢:

e If the death clock of an individual rings, this individual dies and disappears.



o If the birth clock of an individual with trait = rings, this individual produces an
offspring. With probability 1 — p(z) the offspring carries the same trait z; with
probability pu(z) the trait is mutated.

e If a mutation occurs, the mutated offspring instantly acquires a new trait « + z,
picked randomly according to the mutation step measure M (x, z)dz.

Ifv = Zle 0, represents the population state at a given time ¢, the infinitesimal
dynamics of the population after ¢ is described by the following operator on the set of real
bounded functions ¢ (so-called infinitesimal generator):

I
Lo(v) = Z[l — u(@)]b(z", V x v(@")[p(v + 0,:) — ¢(v)]
+ ) ula )b, V s v(a)) / [p(v + 0yiy.) — QW) M (2, 2)dz
i=1 R!
I
+ ) d(@, U v(a')[p(v = 0,) — ¢(v)]. (2.2)
i=1

The first term of (2.2) captures the effect on the population of birth without mutation; the
second term, that of birth with mutation; and the last term, that of death. The density
dependence of vital rates makes all terms nonlinear.

At this stage, a first mathematical step needs be taken: the formal construction of the
process is required to justify the existence of a Markov process admitting L as infinitesimal
generator. There is a threefold biological payoff to such a mathematical endeavor: (1)
providing a rigorous and efficient algorithm for numerical simulations (given hereafter); (2)
laying the mathematical basis to derive the moment equations of the process (Section 3);
and (3) establishing a general method that will be used to derive macroscopic models
(Sections 4 and 5).

We make the biologically natural assumption that all parameters, as functions of traits,
remain bounded, except for the death rate. Specifically, we assume that for any population
state v = Zle 8., the birth rate b(x, V * v(z)) is upper bounded by a constant b, that
the interaction kernels U and V are upper bounded by constants U and V, and that there
exists a constant d such that d(z,U * v(x)) < (1 4 I)d. The latter assumption means
that the density dependence on mortality is “linear or less than linear”. Lastly, we assume
that there exist a constant C' and a probability density M such that for any trait z,
M(z,z) < CM(z). This is implied in particular if the mutation step distribution varies
smoothly over a bounded trait space. These assumptions ensure that there exists a constant
C such that for any population state described by the counting measure v = Zle 04, the
total event rate, i.e. the sum of all event rates, is bounded by CI(I + 1). Indeed, without
density dependence, the per capita event rate should be upper bounded by C, making the
total event rate upper bounded by CT (since I is the size of the population); the influence
of density dependence appears through the multiplicative term I + 1.

Let us now give an algorithmic construction of the population process (14):>0. At any
time t, we must describe the size of the population, and the trait vector of all individuals
alive at that time. At time ¢ = 0, the initial population state vy contains I(0) individuals.



The vector of random variables Xg = (X8)1gi§ 1(0) denotes the corresponding trait values.
More generally the vector of traits of all individuals alive at time ¢ is denoted by X;. We
introduce the following sequences of independent random variables, which will drive the
algorithm. First, the values of a sequence of random variables (W )ren+ with uniform law
on [0, 1] will be used to select the type of birth or death events. Second, the times at which
events may be realized will be described using a sequence of random variables (73 )xeny With
exponential law with parameter C' (hence E(7) = 1/C). Third, the mutation steps will
be driven by a sequence of random variables (Zj)pen with law M (2)dz.

We set Th = 0 and construct the process inductively over successive event steps k > 1
as follows. At step k — 1, the number of individuals is I;_1, and the trait vector of these

. . . . ’Tk Tk;
dividuals is X . We define T), = Tp,_1 + ———————. The te _—
individuals i T s ne T} k—1 e+ 1) rm o Ue a7 1)

represents the minimal amount of time between two events (birth or death) in a population
of size I;,_1 (this is because the total event rate is bounded by CI_1(Ix_1 + 1)). At time
Ty, one chooses an individual i = ¢ uniformly at random among the I 1 alive in the
time interval [Tj_1,Tk); this individual’s trait is X}k_l. (If Iy—1 = 0 then v, = 0 for all
t > Ty_1.) Because C(I_1 + 1) gives an upper bound on the total event rate for each
individual, one can decide of the fate of that individual by making use of the following
rules:
i I i J
o If 0 < W, < A ZJ(](IIkUE)—(l—Ti)l ) = W{(Xr,_,), then the chosen in-
dividual dies, and I = I — 1.

o I Wi{(Xr, ,) < Wy < Wi(Xg,_,), where

. . I . .

: : 1= p(Xg, (X5, 205 VX, | — X7, )
WZ X — WZ X k—1 lifl )= k—1 k—1

2( Tk71) 1( Tk71) + C(Ikz—l i 1) )

then the chosen individual gives birth to an offspring with the same trait, and I =
I_1+ 1.

o If Wi(Xr,_,) < Wy, < Wi(Xr,_,, Zk), where

Wg(Xkau Zk’) = WQZ‘(XTkﬂ)"i'

i j Ty - i j j
M<XTk71)b(X%k717 ijill V(Xkal B X%k—l))M(X%k717 Zk')

CM (Zy)(Iy—1+1)

then the chosen individual gives birth to a mutant offspring with trait erpkil + Zy,
and I, = I, + 1.

o If Wy, > Wi(Xy,_,, Zk), nothing happens, and Iy, = Ij_;.

Mathematically, it is necessary to justify that the individual-based process (v¢)i>0 is
well defined on the whole time interval [0, 00); otherwise, the sequence T} might converge
to a finite accumulation point at which the population process would explode in finite time.
To this end, one can use the fact that the birth rate remains bounded. This allows one
to compare the sequence of jump times of the process vy with that of a classical Galton-
Watson process. Since the latter converges to infinity, the same holds for the process v,
which provides the necessary justification.

)



The process (v¢)e>0 is Markovian with generator L defined by (2.2). From this follows
the classical probabilistic decomposition of 14 as a solution of an integro-differential equa-
tion governed by L and perturbed by a martingale process (Ethier and Kurtz 1986). In
particular, (2.2) entails that for any function ¢, bounded and measurable on X

| emtdn) = mio)+ [ plapnia)
+%?L<U—MWDMEV*%@D—ﬂ%U*%@»)ﬂ@%W@%
+ /0 t /X u(m)b(x,V*ys(x))( /R | go(:z:Jrz)M(:p,z)dz)Vs(dx)ds, (2.3)

where the time process m;(y) is a martingale (see appendix) which describes the random
fluctuations of the Markov process v. For each ¢, the random variable m;(p) has mean
zero and variance equal to:

L//{ﬁ@ﬂlu@mmw*mwwd@ﬂ*mm»
0 X
+ (e, V(o) [

©*(x + 2)M (x, z)dz} vs(dz)ds. (2.4)
R!

This decomposition, developed in the appendix, will be the key to our approximation
method. Equation (2.3) can be understood as providing a general model for the ‘phenotypic
mass’ of the population that can be associated with any given ‘scale’ ¢, p(x) being the
‘weight’ of trait « in the phenotypic space X

2.2 Examples and simulations

A simple example assumes logistic density dependence mediated by the death rate only:

b(z,¢) = b(z), d(z,¢) = d(x)+ a(z)C, (2.5)

where b, d and « are bounded functions. Then

d(z,U xv(z)) =d(z) + a(x) /X Uz — y)v(dy). (2.6)

Notice that, in the case where u = 1, the individual-based model can also be interpreted as
a model of “spatially structured population”, where the trait is viewed as a spatial location
and mutation is analogous to dispersal. This is the type of models studied by Bolker and
Pacala (1997, 1999), Law et al. (2003) and Fournier and Méléard (2004). The well-known
case U = 1 corresponds to density dependence involving the total population size, and will
be termed “mean field”.

Kisdi (1999) has considered a version of (2.5)—(2.6) for which

X = [074]7 d(z) =0, Oé(.%') =1, /L(x) =K,

bx)=4—2z, Ux—-y)=— (2.7)



and M (z,z)dz is a centered Gaussian law with variance o2 conditioned to the fact that
the mutant stays in [0, 4]. In this model, the trait « can be interpreted as body size; (2.7)
means that body size has no effect on the mutation rate, influences the birth rate negatively,
and creates asymmetrical competition reflected in the sigmoid shape of U (being larger is
competitively advantageous). Thus, body size x is subject to (frequency-independent)
stabilizing selection and mediates frequency- and density-dependent selection through in-
traspecific competition. As we shall see in Section 4, the constant K scaling the strength
of competition also scales population size. Following Metz et al. (1996), we refer to K as
the “system size”.

We have performed simulations of this model by using the algorithm described in the
previous section. The numerical results reported here (Fig. 1 and 2) are intended to
show that a wide variety of qualitative behaviors obtains for different combinations of the
mutation parameters o, u and system size K. In each figure 1 (a)—(d) and 2 (a)—(d), the
upper panel displays the distribution of trait values in the population at any time and the
lower panel displays the dynamics of the total population size, I(t).

These simulations hint at the different mathematical approximations that we establish
in Sections 4 and 5. Figures 1 (a)—(c) represent the individual-based process (14, I(t)) with
fixed ;4 and o, and with an increasing system size K. As K increases, the fluctuations of
the population size I(t) (lower panels) are strongly reduced, which suggests the existence
of a deterministic limit; and the support of the measure v; (upper panels) spreads over
the trait space, which suggests the existence of a density for the limit measure (see Sec-
tion 4.1). Figure 1 (d) illustrates the dynamics of the population on a long timescale, when
the mutation probability p is very small. A qualitatively different phenomenon appears:
the population remains monomorphic and the trait evolves according to a jump process,
obtained in Section 5.

In Figure 2, the underlying model involves accelerating the birth and death processes
along with increasing system size, as if the population were made up of a larger number of
smaller individuals, reproducing and dying at higher rates (see Section 4.2). Specifically,
we take

b(z,() = K"+ b(z) and d(z,()=K"+d(x)+(,
where b(z), d(z), p(x), U(z) and M(z,z) are defined as in (2.7). Notice that the “demo-
graphic timescale” of population growth, that occurs at rate b(z, () —d(z, ¢), is unchanged.

There is a noticeable qualitative difference between Figs. 2 (a)—(b), where n = 1/2, and
Figs. 2 (¢)—(d), where n = 1. In the latter, we observe strong fluctuations in the population
size, early extinction happened in many simulations (Fig. 2 (d)) and the evolutionary
pattern is finely branched, revealing that the stochasticity of birth and death persists and
generates a new form of stochasticity in the large population limit (see Sections 4.2.1
and 4.2.2).
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Figure 1: Numerical simulations of trait distributions (upper panels, darker is higher fre-
quency) and population size (lower panels). The initial population is monomorphic with
trait value 1.2 and contains K individuals. (a—c) Qualitative effect of increasing system size
(measured by parameter K). (d) Large system size and very small mutation probability

(). Running time was chosen so that similar ranges of trait values were spanned by all
simulated evolutionary trajectories.
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Figure 2: Numerical simulations of trait distribution (upper panels, darker is higher fre-
quency) and population size (lower panels) for accelerated birth and death and concur-
rently increased system size. Parameter n (between 0 and 1) relates the acceleration of
demographic turnover and the increase of system size. (a) Rescaling mutation step. (b)
Rescaling mutation probability. (¢-d) Rescaling mutation step in the limit case n = 1; two
samples for the same population. The initial population is monomorphic with trait value

1.2 and contains K individuals. 1



3 Moment equations

Moment equations have been introduced in theoretical population biology by Bolker and
Pacala (1997, 1999) and Dieckmann and Law (2000) (referred hereafter as BPDL), following
on from the seminal work of Matsuda et al. (1992), as handy analytical models for spatially
extended populations. A similar approach has been proposed independently by McKane
and Newman (2004) to model population dynamics when individual stochastic processes
operate in spatially structured habitats. Hereafter, we use the analogy between population
processes defined on trait space versus physical space to construct the moment equations of
the population evolutionary dynamics. The “philosophy” of moment equations is germane
to the principle of Monte-Carlo methods: computing the mean path of the point process
from a large number of independent realizations. (The orthogonal stance, as we shall see in
Section 4, is to model the behavior of a single trajectory while making the initial number
of individuals become large).

Let us define the deterministic measure E(v) associated with a random measure v by

/ o(x)E(v)(dz) = E(/ o(z)v(dx)). Taking expectation in (2.3) and using E(m(¢)) =
X X

0, one can obtain an equation for [, ¢(x)E(v)(dz) involving the expectations of integrals
with respect to v(dzx) or v(dz)v(dy). Thisis a complicated equation involving an unresolved
hierarchy of nonlinear terms. Writing an equation for F(v(dz)v(dy)) is feasible but yields
integrals with respect to v(dz)v(dy)r(dz), and so on. Whether this approach in general
may eventually help describe the population dynamics in the trait space is still unclear.
Let us consider the case of logistic density dependence (see Section 2.2) where d(x,() =
d(z) + a(x)(, b(x,¢) = b(x) and u(x) = 1. Taking expectations in (2.3) with ¢ = 1 yields:

N(t) = N(0) + /0 t {E ( /X b(z) — d(a:)]ys(dx))
iy (/XX o(2)U(z — y)us(dx)us(dy)) } ds, (3.1)

where N(t) = E(I(t)) is the “mean” population size at time t. The specific case where b,
d and « are independent of x, and U is symmetrical (cf. Law et al., 2003), corresponds to
the BPDL model of spatial population dynamics. Equation (3.1) then recasts into

N=(b-dN - a/ U(r)Cy(dr) (3.2)
R!

where Cy is defined at any time ¢ as a “spatial covariance measure” (sensu BPDL) on R!,
given by

/ U(r)Cy(dr) = E < / U — y)z/t(d:r)ut(dy)> . (3.3)

Rl XxX

A dynamic equation for this covariance measure then obtains by considering the quantities
Jp U(r)Cy(dr) as functions ¢(v) in (2.2), but the equation involves moments of order 3,

which prevents “closing” the model on lower-order variables. Even in the simplest mean-
field case U =1, we get

N(t) = (b— d)N(1) — aF < /X » ut(dx)yt(dy)> . (3.4)
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Because of the expectation, the covariance term cannot be written as a function of the
first-order moment N (t), and, therefore, Eq. (3.4) does not simplify.

Even if there is no construction of a closed equation satisfied by E(v), we are able to
show, in the general case, the following important qualitative property: if the deterministic
measure E(1p) of the initial population admits a density pp with respect to the Lebesgue
measure, then for all ¢ > 0, the deterministic measure E(14) of the population has a prob-
ability density p;. To see this, apply (2.3) to ¢ = 14 where A has zero Lebesgue measure.
Taking expectations then yields E( [, ¢(x)v(dz)) = [, E(1)(dz) = 0, which gives the
required result. As a consequence, the expectation of the total size of the population at
time t is N(t) = E([,v(dz)) = [, pi(x)dz, and pi(x)dx/N(t) gives the probability of
observing one individual at time ¢ in a small ball centered in x with radius dx. In partic-
ular, this result implies that, when the initial trait distribution E(rvg) has no singularity
with respect to the Lebesgue measure, these singularities, such as Dirac masses, can only
appear in the limit of infinite time.

This has biological implications on how one would analyze the process of population
differentiation and phenotypic “packing” (Bernstein et al., 1985). Such a population model
should not be expected to converge in finite time towards neatly separated phenotypic
peaks if the ancestral phenotypic distribution is even slightly spread out as opposed to
being entirely concentrated on a set of distinct phenotypes. Thus, the biologically relevant
question that theory may address is not whether packing can arise from a continuous
phenotypic distribution, but rather whether initial differentiation (ancestral phenotypic
peaks) is amplified or buffered by the eco-evolutionary process.

4 Large-population renormalizations of the individual-based
process

The moment equation approach outlined above is based on the idea of averaging a large
number of independent realizations of the population process initiated with a finite number
of individuals. If K denotes the initial number of individuals, taken as a measure of the
“system size” sensu Metz et al. (1996), an alternative approach to deriving macroscopic
models is to study the exact process by letting that system size become very large and
making some appropriate renormalization. Several types of approximations can then be
derived, depending on the renormalization of the process.

For any given system size K, we consider the set of parameters Uk, Vi, bx, dx, Mk,
px satisfying the previous hypotheses and being all continuous in their arguments. Let v/
be the counting measure of the population at time . We define a renormalized population
process (X/<);>0 by

XF = 2l
(X[/)i>0 is a measure-valued Markov process. As the system size K goes to infinity, the
interaction kernels need be renormalized as Ux(z) = U(x)/K and Vi(z) = V(x)/K.
A biological interpretation of this renormalization is that larger systems are made up of
smaller individuals, which may be a consequence of a fixed amount of available resources
to be partitioned among individuals. Thus, the biomass of each individual scales as 1/K,
and the interaction kernels are renormalized in the same way, so that the interaction terms
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Uk v and Vi * v that affect any focal individual stay of the same order of magnitude as
the total biomass of the population.

Martingale theory allows one to describe the dynamics of X as the sum of a determin-
istic trajectory and a random fluctuation of zero expectation. The decomposition obtains
by equations similar to (2.3) and (2.4), in which all coefficients depend on K, and the
variance (2.4) of the martingale part is also divided by K. Deriving approximation limits
for these two terms leads to the alternative choices of timescales that we present in this
section. In particular, the nature (deterministic or stochastic) of the approximation can
be determined by studying the variance of the random fluctuation term.

4.1 Large-population limit

Let us assume that, as K increases, the initial condition Xé< = %I/é( converges to a

finite deterministic measure which has a density £ (when this does not hold, the following
convergence results remain valid, but from a mathematical viewpoint the limit partial
differential equations and stochastic partial differential equations have to be understood
in a weak measure-valued sense). Moreover, we assume that bx = b, dx = d, ux = u,
My = M. Thus, the variance of the random fluctuation of X/ is of order 1/K, and when
the system size K becomes large, the random fluctuations vanish and the process (X/);>0
converges in law to a deterministic measure with density &; satisfying the integro-differential
equation with trait variable x and time variable t:

utu(z) = [(1 — ()b, V * &(x)) — d(z, U * &4())] &4(z)
/ My, = — )p(u)b(y, V * £(y))é(v)dy. (4.1)

This result re-establishes Kimura’s (1965) equation (see also Biirger 2000, p. 119, Eq. (1.3))
from microscopic individual processes, showing that the only biological assumption needed
to scale up to macroscopic evolutionary dynamics is that of a large population. Importantly,
Eq. (4.1) extends Kimura’s original model to the case of frequency-dependent selection.
The convergence of XX to the solution of (4.1) is illustrated by the simulations shown in
Fig. 1 (a)—(c). The proof of this result (adapted from Fournier and Méléard, 2004) strongly
relies on arguments of tightness in finite measure spaces (Roelly, 1986). Desvillettes et
al (2004) suggest to refer to & as the population “number density”; then the quantity
= + §t(w)dz can be interpreted as the “total population density” over the whole trait
space This means that if the population is initially seeded with K individuals, Kn(t)
approximates the number of individuals alive at time ¢, all the more closely as K is larger.
The case of logistic density-dependence with constant rates b, d, « leads to an interesting
comparison with moment equations (cf. Section 3). Then (4.1) yields the following equation
on n(t):

—(b-dn-a /X U= p(o)daly)dy (12)

In the mean-field case U = 1, the trait z becomes completely neutral, and the population
dynamics are not influenced by the mutation distribution anymore — they are driven
simply by the classical logistic equation of population growth:

= (b—d)n — an?. (4.3)
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Comparing (4.3) with the first-moment equation (3.4) emphasizes the “decorrelative” effect
of the large system size renormalization: in the moment equation model (3.4) that assumes
finite population size, the correction term capturing the effect of correlations of population
size across the trait space remains, even if one assumes U = 1.

4.2 Large-population limit with accelerated births and deaths

We consider here an alternative limit obtained when large system size is combined with
accelerated birth and death. This may be useful to investigate the qualitative differences
of evolutionary dynamics across populations with allometric demographies: larger popu-
lations made up of smaller individuals. This leads in the limit to systems in which the
organisms have short lives and reproduce fast while their colonies or populations growth
or decline on a slow timescale. This applies typically to microorganisms, e.g. bacteria
and plankton, including many pathogens within their hosts. Yoshida et al. (2003) have
provided striking experimental evidence for rapid evolutionary changes taking place during
long ecological cycles, and Thompson (1998) and Hairston et al. (2005) have emphasized
the importance of convergent ecological and evolutionary time to understand temporal
dynamics in ecological systems.

For mathematical simplicity, the trait space X is assumed here to be the whole RE.
The boundedness assumptions on the rates d, b, and on the interaction kernel U (see
Section 2) are maintained. We consider the acceleration of birth and death processes at
a rate proportional to K" while preserving the demographic balance; that is, the density-
dependent birth and death rates scale with system size according to bx (z,¢) = K'r(x) +
b(z,¢) and di(x,() = K'r(z) + d(z,(); hence bi(x,() — dx(z,() is unchanged, equal
to b(x,() — d(z,(). The allometric effect is parameterized by the positive and bounded
function r(z) and the constant n; r(z) measures the contribution of the birth process to the
phenotypic variability on the new timescale K. As before (cf. Section 4.1), the interaction
kernels U and V are renormalized by K. Two interesting cases will be considered hereafter,
in which the variance of the mutation effect pux My is of order 1/K". That will ensure
convergence of the deterministic part in (2.3). In the large-population renormalization
(Section 4.1), the variance of fluctuations around the deterministic trajectory was of order
1/K. Here, the variance of fluctuations is of order K" x 1/K, and hence stays finite
provided that n € (0, 1], in which case tractable limits will ensue. If n < 1, the variance
is zero and a deterministic model obtains. If n = 1, the variance does not vanish and
the limit model is stochastic. These two cases are illustrated by the simulations shown in

Fig. 2 (a)—(d).

4.2.1 Accelerated mutations and small mutation steps

We consider here that the mutation probability is fixed (ux = p), so that mutations are
accelerated as a consequence of accelerating birth, while assuming infinitesimal steps: the
mutation kernel Mg (z, z) is the density of a random variable with mean zero and variance-
covariance matrix 3 (x)/K" (where ¥(x) = (X45(2))1<i j<i) (see the appendix for technical
assumptions on Y). For example, the mutation step density Mg (x,z) is taken as the
density of a centered vector (dimension [) of independent Gaussian variables with mean 0
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and variance 0% (z) = o%(x)/K":

0\ 12
M) = (g ) ol K720 (4.4

where o?(z) is positive and o/rfi is assumed to be a Lipschitz function bounded over R!
and bounded away from 0. Thus, in larger systems (larger K), the phenotypic changes
affecting mutants, as measured in the unchanged trait space, are smaller.

Let us assume that the initial condition Xf& = %I/g converges to a finite measure
&. When < 1, we can prove that the sequence of processes (XX )KeN+ converges as
K increases to a weak measure-valued solution of the deterministic partial differential

equation

Oée(x) = [b(x, V x &(x)) — d(2, U x &(2))) () + %A(U%M&)(%’) (4.5)

This provides a new extension to frequency-dependent selection of the Fisher reaction-
diffusion equation, which was known as an approximation of Kimura’s equation for small
mutation effects (Kimura, 1965). The evolutionary dynamics are monitored over the de-
mographic timescale of the population, which can be thought of as the timescale over
which ‘typical’ episodes of population growth or decline, as measured by b(x, () — d(z, (),
take place. The ‘typical’ amount of population phenotypic change generated by mutation
per unit time is bxpux o = p(K"r + b)(0? /K" ~ pro?é;. This rate indeed appears
in the Laplacian diffusion term which corresponds to the Brownian approximation of the
mutation process (Ewens, 2004).

When n = 1, the rescaling is similar to the one leading from a branching random
walk to a superprocess (Dynkin, 1991) and an analogous argument gives rise to a (ran-
dom) measure-valued process as macroscopic model. Indeed, the sequence of processes
(XK)KGN* converges as K increases to a continuous process (X¢)i>0 where Xy = £ and
X, is a finite measure which is formally a weak solution of the stochastic partial differential
equation

0 Xi(x) = [b(x,V x« Xy(z)) — d(z, U * Xy(x))] Xe(x) + %A(UQTuXt)(.%)
+ /21 (z) Xy (2)W. (4.6)

Here W is the so-called space-time white noise (Walsh, 1984). This term captures the ef-
fect of demographic stochasticity occurring in the ‘super fast’ birth-and-death process (i.e.
with 77 = 1). The measure-valued process X is called superprocess and appears as a gen-
eralization of Etheridge’s (2004) superprocess model for spatially structured populations.
Here again, the Laplacian diffusion term corresponds to the Brownian approximation of
the mutation process (Ewens, 2004). This specific approximation is recovered because of
the appropriate time rescaling when making mutations smaller and more frequent.

The proof of the first convergences makes use of techniques very similar to those used
in Section 4.1. The proof of the second statement requires additional results that are
specific to superprocesses (Evans and Perkins, 1994) in order to establish uniqueness of
the limit process. Both proofs are expounded in the appendix, for the general case of the

mutation kernel with covariance matrix 2}&,’;), and the corresponding general results can be
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stated as follows. When 1 < 1, the process XX converges to the solution of the following
deterministic reaction-diffusion equation:

0a(x) = b, V + () — (o, U s &@)]e(e) + 5 S BluSi@)e), (A7)

1<i,5<l

where 8%— f denotes the second-order partial derivative of f with respect to x; and z;
(x = (x1,...,24)). When n = 1, the limit is the following stochastic partial differential
equation:

O Xi(x) = [b(z,V x Xy(x)) — d(x,U * Xy(2))] Xe(z) + % Z 6%(7“/12in¢/)($)

1<i,j<l
+ /2r(x) Xy ()W (4.8)

The simulations displayed in Figs. 2 (¢)—(d), compared with Fig. 2 (a), give a flavor of
the complexity of the dynamics that the individual process can generate under the condi-
tions leading to the superprocess models (4.6) or (4.8). Two distinctive features are the
fine branching structure of the evolutionary pattern, and the wide fluctuations in pop-
ulation size that occur in parallel. In fact, replicated simulations show that the system
often undergo rapid extinction (Fig. 2 (d)). The results of our simulations suggest that
the super fast timescale involved here is a general cause for complex population dynamics
on the demographic timescale and for extinction driven by the joint ecological and evolu-
tionary processes, which is germane to the phenomenon of evolutionary suicide described
in adaptive dynamics theory (Dercole et al., 2002; Ferriére et al., 2002; Dieckmann and
Ferriére, 2004); this may be largely independent of the ecological details of the system.
This conjecture is supported by the mathematical proof of almost sure extinction obtained
by Etheridge (2004) in her study of a related superprocess describing spatial population
dynamics.

4.2.2 Rare mutations

Here, the mutation step density M is kept constant, while the mutation rate is decelerated
proportionally to 1/K": pug = u/K". Thus only births without mutation are accelerated.
As in Section 4.2.1, the macroscopic model keeps track of the phenotypic distribution over
the population demographic timescale, which coincides here with the mutation timescale.
Again, the limit model can be deterministic or stochastic, depending on whether the allo-
metric parameter n is less than 1 or equal to 1, respectively.

Let us assume that the initial condition X{* = % & converges to the finite measure
with density &. When 1 < 1, the sequence of processes (X®)gen+ converges, as K
increases, to a measure-valued process with density & solution of the following deterministic
nonlinear integro-differential equation:

O () = [b(x, V + &()) — d(z, U * §(2))]& () + /]Rl My, x —y)pu(y)r(y)Si(y)dy. (4.9)

This equation is similar to (4.1), where the allometric effect rate r appears in lieu of the
birth rate b in the mutation term; this is because the per capita mutation rate is equal to
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urbr = (u/K")(K"r + b) &~ ur, while the mutation step density is kept constant. Simu-
lations of the individual process under the conditions leading to this model are shown in
Fig. 2 (b). When n = 1, we obtain, by arguments similar to those involved in Section 4.2.1,
that the limit model is a measure-valued (random) process, which obtains as weak solution
of the stochastic integro-differential equation

0p X1 (x) = [b(w, V * Xi(x)) — d(a, U Xy (2))] Xe () + N M(y,z — y)u(y)r(y) Xe(dy)

4+ 2r(2) X ()W (4.10)

where W is a space-time white noise.

Equations (4.9) and (4.10) are obtained in a limit of rare mutations, with accelerated
birth and death, on a timescale such that the order of magnitude of the individual muta-
tion rate remains constant. In the next section, we study the behavior of the population
process in a limit of rare mutations and accelerated birth and death, on an even longer
timescale, such that the order of magnitude of the total mutation rate in the population
remains constant. This assumption of extremely rare mutations leads to a different class
of stochastic models which will provide a description of the population dynamics on a slow
evolutionary timescale.

5 Renormalization of the monomorphic process and adaptive
dynamics

Metz et al. (1996) have introduced an asymptotic of rare mutations to approximate the pro-
cess of adaptive evolution with a monomorphic jump process. The jump process describes
evolutionary trajectories as trait substitution sequences developing over the timescale of
mutations. Dieckmann and Law (1996) have further introduced ingenious heuristics to
achieve a deterministic approximation for the jump process, solution to the so-called canon-
ical equation of adaptive dynamics. Metz et al.’s notion of trait substitution sequences and
Dieckmann and Law’s canonical equation form the core of the current theory of adaptive
dynamics. In this section, we present a rigorous derivation of the stochastic trait substitu-
tion sequence jump process from the individual-based model initiated with a monomorphic
ancestral condition. Qur derivation emphasizes how the mutation scaling should compare
to the system size (K) in order to obtain the correct timescale separation between mutant
invasion events (taking place on a short timescale) and mutation occurrences (defining the
evolutionary timescale). Next we recover a generalized canonical equation as an approx-
imation of the jump process in an asymptotic of small mutation steps. We also propose
a diffusion approximation of the jump process which allows one to study the timescale on
which a change of basin of attraction for an evolutionary trajectory can occur, providing
insights into patterns of macroevolutionary change (for related theoretical considerations,
see Rand and Wilson, 1993).

5.1 Jump process construction from IBM

The mathematically rigorous construction of the jump process from the individual-based
model requires that we first study the behavior of a monomorphic population in the absence
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of mutation, and next the behavior of a dimorphic population, involving competition, after
a mutation has occurred. In the limit of large system size (K — oo) without mutation (u =
0), with only trait = present at time ¢ = 0, we have X = n{(2)6, and X5 = n(z)d, for
any time t. Using the same scaling parameters as in Section 4.1 (Ux = U/K, Vg = V/K,
bi and dx independent of K), the convergence result stated therein tells us that nf (z)
approaches n;(z) when K becomes large, and Eq. (4.1) (in its weak form) becomes

a
dt

where p1(z,n¢(x)) = b(z, V(0)ne(x)) — d(z, U(0)n(z)). We will assume that pi(x,0) > 0,
that pi(x,n) — —oo when n — +oo, and that, for any trait x, this differential equa-
tion possesses a unique positive equilibrium 7 (z), necessarily satisfying b(z, V(0)n(zx)) =
d(xz,U(0)n(x)). Then, it takes only elementary calculus to prove that any solution to (5.1)
with positive initial condition converges to ni(x). In the case of linear logistic density-
dependence introduced in Section 2.2 (b(z,({) = b(z) and d(z,({) = d(z) + a(x)(), the
equilibrium monomorphic density n(x) is (b(x) — d(x))/a(z)U(0).

When the population is dimorphic with traits = and y, i.e. when XX = nf(2)d, +
ni (y)8,, we can define ny(x) and n¢(y) for any t as before. Then & = n¢ (), + ne(y)dy
satisfies Eq. (4.1), which can be recast into the following system of coupled ordinary dif-
ferential equations:

ny(x) = pi(@,ne(z))ne(x) (5.1)

d
dgnt(fﬂ) = p2(x,y, ne(x), e (y) ) () 5.2
217 W) = pa(y, @, me(y), me())ne ()

where po(x,y,n,n') = b(z,V(0)n + V(z —y)n') — d(z,U(0)n + U(z — y)n’). Notice that
p2(z,y,m,0) = pi(x,n). The system (5.2) possesses two (non-trivial) equilibria on the
boundary of Ry x Ry, (n(x),0) and (0,72(y)), which must be stable in the horizontal
and vertical direction, respectively. We then state as a rule that “y invades x” if the
equilibrium (7(z), 0) of (5.2) is unstable in the vertical direction; this can be shown to occur
if pa(y,x,0,n(x)) > 0 (Ferriere and Gatto, 1995; Geritz et al., 2002; Rinaldi and Scheffer,
2000). We further say that “invasion of x by y implies fixation” if pa(y, x,0,7(x)) > 0 entails
that all orbits of the dynamical system (5.2) issued from sufficiently small perturbations
of the equilibrium (n(x),0) in the positive orthant converge to (0,7(y)). Our construction
needs to assume that this property holds for almost any mutant trait y borne out from
x. Geritz et al. (2002) and Geritz (2004) have actually proved that this is true for general
models when the mutant trait is close to the resident and the resident is sufficiently far from
special trait values corresponding to branching points or extinction points of the trait space
X. From a biological viewpoint, the quantity p2(y, z,0,n(x)) is the fitness of mutant y in
a resident population of trait x at equilibrium (Metz et al., 1992), which we will hereafter
denote by f(y,x) and refer to as the fitness function. Notice that the fitness function f
satisfies the usual property that f(x,z) = 0 for any trait value z.

The heuristics of trait substitution sequence models (Metz et al., 1996) assume that a
monomorphic population reaches its ecological (deterministic) equilibrium before the first
mutation occurs. As a mutant arises, it competes with the resident trait, and sufficient
time is given to the ecological interaction for sorting out the winner before a new mutant
appears. In the simplest case, only one trait survives: either the mutant dies out (due to
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stochasticity or selective inferiority), or it replaces the resident trait (due to stochasticity
or selective superiority). Therefore, on a long timescale, the evolutionary dynamics can be
described as a succession of “mutation-invasion” events corresponding to jumps in the trait
space.

These heuristics raise conflicting demands on the mutation rate that only a full math-
ematical treatment can resolve. First, mutation events should be rare enough so that the
next mutant is unlikely to appear until the previous mutant’s fixation or extinction is set-
tled. Second, mutation events should be frequent enough, so that the next mutation is not
delayed beyond the time when the resident population size is likely to have stochastically
drifted away from its equilibrium. Large deviation theory (Dembo and Zeitouni 1993)
and results on Galton-Watson processes can be used to determine the correct mutation
timescale for which both conditions are satisfied. The mathematical work is reported in
Champagnat (2004a), and the end result of biological interest is that, if the mutation prob-
ability is taken as px(x) = ugp(z), where ux converges to zero when K goes to infinity,
then the mutation probability and the system size should scale according to

e wug < KligK for any C > 0. (5.3)
Equation (5.3) implies in particular that Kug tends to 0 as K tends to infinity; therefore,
for each time t, the time change ¢/ Kuy represents a long time scaling. This slow timescale
is that of the mutation process: the population size is of the order of K, and the per capita
mutation rate is proportional to ug, hence the population mutation rate is of the order of
Kug. Conditions (5.3) may be rewritten as

log K < o <K forany ¢,C >0,
Kug

and obtains because log K is the typical time of growth and stabilization of a successful
mutant, and exp(CK) is the typical time over which the resident population is likely to
drift stochastically away from deterministic equilibrium (problem of exit from a domain,
Freidlin and Wentzel, 1984).

Under assumption (5.3), the method developed in Champagnat (2004a) can be adapted
to prove that, as the system size K becomes large, the process Xt[/(KUK = %ut[/(KUK con-
verges, when the initial distribution is monomorphic with trait x, to the process n(Y;)dy,
in which the population is at any time monomorphic. The time process involved, (Y3):>0,
is Markovian and satisfies Yo = x. This is a jump process with infinitesimal generator L
given, for all bounded measurable function ¢ : X — R, by

Leo(x) = /Rl(@(fﬁ +2) —p@)lg(x + 2, 2)] M(xz, 2)dz (5:4)

where

ol 2) = el VOn(e)n(e) g 5.

([z]+ denotes the positive part: [z]4 = 0if 2 < 0; [z]4 = z if 2 > 0). The generator’s

form (5.4) means that the process Y; jumps from state x with rate R(x) = / [9(x + z,2)]+ M (z, 2)dz
R!
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to the new state x + z, where z follows the law [g(x + z,2)|+ M (2, 2)dz/R(x). The simula-
tion shown in Fig. 1 (d) illustrates this convergence result and the behavior of the process
(Y2)to0-

The expression for g given by Eq. (5.5) can be understood as follows. When the
population is monomorphic with trait x, its density reaches a given neighborhood of its
equilibrium 72(x) in finite time, i.e. within an infinitesimal time with respect to the timescale
of mutation; this can be shown by using results on stochastic comparison between (v/%)
and logistic birth-and-death processes. Then, the population size being close to 7(x),
the population mutation rate is close to ugp(z)b(z, V(0)n(z))Kn(z). Therefore, on the
mutation timescale, the mutation rate is given by u(x)b(x, V(0)n(z))n(x), which yields
one part of (5.5). The other part deals with the invasion of a mutant trait y, which can be
divided into three phases (Fig. 3), as is done classically by population geneticists dealing
with selective sweeps (Kaplan et al. 1989, Durrett and Schweinsberg 2004). Initially, there
is only one mutant individual; the population it spawns may go extinct quickly even if its
fitness f(y,x) is positive, due to demographic stochasticity. To estimate the probability of
such early extinction, we compare the number of mutant individuals, as long as it is small
with respect to the resident population size, with Galton-Watson processes, with constant
birth and death rates. This first phase ends when the mutant density reaches a fixed small
level v and corresponds in Fig. 3 to the time interval [0, ¢1]. Here, the mutant birth rate is
close to b(y, V(y — x)n(z)), and the mutant death rate is close to d(y, U(y — z)n(z)). The
probability of survival of a Galton-Watson process with these parameters is given classically
as [f(y,z)]+/bly, V(y — z)n(z)), which yields the second part of (5.5). If invasion occurs,
which is possible only if f(y,x) > 0, the resident and mutant densities get close to the
solution of Eq. (5.2), represented by the dotted curves between ¢; and t9 in Fig. 3; this is
phase 2. Since we assume that “invasion implies fixation”, the resident density converges
to 0 and reaches level v in bounded time. The third phase (between times ty and t3 in
Fig. 3) is analyzed by means of a comparison argument between the number of resident
individuals and a Galton-Watson process similar to the previous one, which allows us to
prove that the resident population goes extinct in infinitesimal time with respect to the
mutation timescale. These arguments can be expounded formally by adapting the method
of Champagnat (2004a). The times ¢; and t3 — to are of the order of log K, while to — 1
only depends on 7.

The mathematical derivation of the jump process model (5.4) and (5.5) emphasizes that
the rare-mutation and large-population limits must be taken simultaneously if one is to
model evolutionary dynamics as a stochastic trait substitution sequence. The large popula-
tion limit by itself can only yield the deterministic model (4.1) (generalized Kimura’'s equa-
tion). On the other hand, the dynamics of a finite population on the mutation timescale are
trivial under the rare mutation scenario: the population goes immediately extinct almost
surely on that timescale. This follows from the fact that the individual-based process v (cf.
Section 2.1) that drives the dynamics of the total (finite) population size I(t) is stochas-
tically bounded by a logistic birth-death process with birth and death rates of order I(t)
and I(t)?, respectively; this process goes almost surely extinct in finite time. Therefore, it
is always possible to pick v small enough so that extinction occurs instantaneously on the
mutation timescale set by ¢/u.

In order to extend this result to the case where the coexistence of several traits is
possible, i.e. when the “invasion-implies-fixation” assumption is relaxed, the probabilistic
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Figure 3: The three phases of the invasion and fixation of a mutant trait y in a monomorphic
population with trait z. Plain curves represent the resident and mutant densities n/* (z)
and nf (y), respectively. Dotted curves represent the solution of Eq. (5.2) with initial state
no(x) = n(z) and no(y) = €.

component of our approach can easily be generalized. The major difficulty is an analytical
one: we would need to assume that, for any k and for any set of traits {x1,...,x}, the
k-morphic system of coupled differential equations, that generalizes (5.2), admits a unique
stable equilibrium towards which any solution with positive initial condition converges.
Such an assumption is very restrictive and excludes the possibility of nonequilibrium at-
tractors. As far as we know, no such analytic condition has been established even for
restricted classes of ecological models.

5.2 Canonical equation and extensions

In order to perform the small mutation renormalization of the jump process constructed
in the previous section, we introduce a (small) parameter € > 0 by which the mutation
step is multiplied, and we define a family of Markov jump processes {(z§)i>0}e>0 with
infinitesimal generator

Lip(z) = 5% /Rl(w(l’ +e2) —p(a)lg(x + ez, )| M(x, 2)dz. (5.6)

This model assumes the unusual time scaling by e =2 which is required to avoid the process
becoming constant in the limit of infinitesimal mutation steps (¢ — 0) as a consequence
of g(z,x) = 0. The approach we used to study the renormalization of the individual
point process in Sections 4.1 and 4.2 applies here again to prove (Champagnat et al.,
2001; Champagnat, 2004b) convergence and recover the canonical equation of adaptive
dynamics: under general regularity assumptions on g and M, when € — 0, the family
of processes {(zf)i>0}e>0 converges to the unique solution (Z;);>o to the (deterministic)
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ordinary differential equation

% = /Rl 2]z - Vig(7, 7))+ M (7, d2), (5.7)

where Vg denotes the gradient of g(x,y) with respect to the first variable .

In the case where M (x,-) is a symmetrical measure on R! for any trait = in X, (5.7) can
be recast into the classical form of the “canonical equation” (Dieckmann and Law, 1996):

B S@Vie(a.D) (5.8)

where ¥(x) denotes the variance-covariance matrix of the mutation kernel M (x,-). Cham-
pagnat (2004b) proved a similar result for polymorphic populations in which a generalized
“invasion-implies-fixation” principle holds, which is true away from branching points (or
extinction points). Thus, the scope of the canonical equation appears to be as broad as
the “invasion-implies-fixation” principle can be.

The equilibria of Egs. (5.7) and (5.8) satisfy Vig(z,z) = 0 and are classically called
“evolutionary singularities”.

5.3 Higher-order approximation

The large population assumption that goes along with the invasion-implies-fixation prin-
ciple entails that adaptive change may only be directional — in the direction determined
by Vig(z,z). However, in large yet finite populations, stochasticity may cause a mutant
to invade even if its fitness is negative, so that adaptive evolution may proceed in any
direction of the trait space. To account for this feature, we introduce a new model of
adaptive dynamics in the form of a stochastic differential equation driving a diffusion pro-
cess. The infinitesimal generator of this diffusion is a first-order approximation in ¢ of the
generator (5.6) of the directional jump process, in the limit of small mutation jumps. Inter-
estingly, the second-order differential operator obtained in this way possesses degenerate
and discontinuous coefficients, rendering the classical theory of diffusion processes (see e.g.
Karatzas and Shreve, 1988) non applicable. These bad regularity properties come from the
non smooth function [-]4+ appearing in the rescaled generator (5.6). The weak existence of
solutions to this stochastic differential equation has been proved in Champagnat (2004b)
under general regularity assumptions on g and M.

In the special case where the trait space X’ equals R and the mutation law M (zx, ) is
symmetrical, let o?(x) be the variance of M (x,-), and Ms(x) = [;° 2° M (x, z)dz; then the
stochastic differential equation is

AXE = [B1(X?) + eBo(X7)|dt + /e A(XE)dW, (5.9)

where By (z) = 30%(2)019(z, x), Ba(z) = 1 M3(2)sign[01g(z, 2)|07g(x, z), A(z) = M3(x)|org(z, )|,
and W is a standard Brownian motion. Brownian motion theory then suggests to probe
the behavior of this one-dimensional process when the canonical equation possesses mul-
tiple locally stable equilibria. The results of Champagnat (2003) can be applied here to
show that when an ancestral population is surrounded by an attracting ESS (evolution-
arily stable strategy) and an attracting branching point (cf. e.g. Geritz et al., 1998), this

23



one-dimengional evolutionary process will almost surely home in at the ESS, rather than
going through the branching point. This mathematical result substantiates the numeri-
cal observation that branching is usually a very slow phenomenon; thus, when mutations
steps are small, branching points are so difficult to reach as to leave time for the system
to stabilize at an ESS if there is one within mutational reach. Therefore, to ensure that a
population with unknown monomorphic ancestral state undergoes evolutionary branching,
all of the attracting evolutionary singularities should be branching points.

In general, the issue of evolutionary dynamics drifting away from trajectories predicted
by the canonical equation can be investigated by considering the asymptotic of the prob-
ability of ‘rare events’ for the sample paths of the diffusion. By ‘rare events’ we mean
diffusion paths drifting far away from the canonical equation. The probability of such
rare events is governed by a large deviation principle (Wentzell, 1976a, 1976b; Freidlin and
Wentzel, 1984): when ¢ goes to 0, the probability that the sample path of the diffusion
process is close to a given rare path ¢ decreases exponentially to 0 with rate I(y), where
the ‘rate function’ I can be expressed in terms of the parameters of the diffusion. The
difficulty lies in the fact that the diffusion coeflicient A is null at the evolutionary singular-
ities and that the drift term Bs is discontinuous at the same points, and the same problem
arises for any value of the dimension [ of the trait space. The large deviation principle
has been obtained by Champagnat (2003) for any value of the trait space dimension, and
implies in particular that the paths of X7 converge in probability to the solution of the
canonical equation (5.8) when e goes to 0.

This result can be used to study the long-time behavior of the diffusion process when
there are multiple attractive evolutionary singularities and the dimension of the trait space
X is 2 or greater. Let us introduce the ‘quasi-potential’ H(z,y) as the minimum of the
rate function I over all the trajectories linking x to y. When ¢ is small, the most likely
path followed by the diffusion when exiting the basin of attraction G of some evolutionary
singularity «*, is the one minimizing the rate function I over all the trajectories linking x*
to the boundary of G. Therefore, the time needed to exit G can be shown (Champagnat,
2003) to be of the order of or greater than exp[H /e| for small e, where H is the minimum
of H(z*,y) over all the y in the boundary of G. Moreover, the exit event occurs with
probability converging to 1 in any neighborhood of special points of the basin’s boundary
where the quasi-potential H(z*,-) is minimum, so that one can predict the next basin
of attraction visited by the diffusion. From a biological standpoint, this result provides
a quantitative tool for analyzing the macroevolutionary notion of punctuated equilibria
(Rand and Wilson, 1993; Stanley, 1979). The model generally predicts that the order of
magnitude of the time spent in the neighborhood of evolutionary equilibria, between rapid
evolutionary moves, is the exponential of the inverse of the mutation step standard devia-
tion. This theory also predicts the sequence order of evolutionary singularities (equilibria
or general attractors) that the evolutionary process is most likely to visit (Freidlin and
Wentzel, 1984).

6 Discussion and conclusion

Martingale and large deviation theories provided us with the new probabilistic tools which
were necessary for deriving and unifying models of evolutionary dynamics from stochastic
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nonlinear processes operating at the individual level. Different macroscopic models obtain
depending on the renormalizations applied to the stochastic individual-based model. Here-
after we review the different models thus obtained and highlight how some of them relate
to models previously known in quantitative genetics and evolutionary ecology. Then we
review the biological insights that one can gain from the very construction of these models.
Finally, we outline some promising directions for the analysis and further extensions of
these models.

6.1 Unifying macroscopic models of evolutionary dynamics

A Monte-Carlo approach yields a hierarchy of equations describing the dynamics of the
moments of population number in trait space. A similar approach has been taken heuris-
tically by Bolker and Pacala (1997, 1999), Dieckmann and Law (2000) and McKane and
Newman (2004) to construct macroscopic models of population dynamics in physical (ge-
ographic) space while accounting for individual dispersal. Our mathematical derivation
sheds light on the structural features of the model which makes the problem of moment
closure so challenging, especially the fact that, in general, the covariance measure may not
have a density.

Alternatively to the Monte-Carlo approach, various macroscopic models obtain for
different timescale separations, under the common assumption of the system size be-
ing large. The large-population limit by itself yields a generalization to frequency- and
density-dependent selection scenarios of Kimura’s (1965) continuum-of-alleles model (a
nonlinear integro-differential equation). The assumption of small mutational effects, un-
der which Kimura derived a diffusion approximation of his model, can be made while
simultaneously accelerating the individual process of birth and death. This leads to sepa-
rating the timescale of individual birth and death (assumed to be fast) from the timescale
of population demography (over which significant population growth or decline occurs).
This timescale separation may be most appropriate to study the interplay of ecological
and evolutionary processes in microorganisms (Turchin, 2003; MacLean, 2005), including
pathogens in which the concern of rapid evolution urges the need for appropriate modeling
tools. The resulting model is a reaction-diffusion equation similar to Kimura’s approxi-
mation and generalized to frequency- and density-dependent selection. Interestingly, the
scaling exponent (7, between 0 and 1) which defines the proper acceleration of birth and
death as the population size is made larger, has no effect on the macroscopic dynamics,
except when 17 = 1 which corresponds to maximum birth-death acceleration. In this case,
the macroscopic model is structurally different, as it takes the form of a stochastic partial
differential equation. Simulations of the individual process in this case (Fig. 2 (¢)-(d))
show that the evolutionary dynamics has a finely branched, fractal structure (we suspect
that its Hausdorff dimension is between 1 and 2); the population displays wild fluctuations
in total size, and faces a high risk of rapid extinction—a phenomenon akin to evolutionary
suicide (Dieckmann and Ferriere, 2004).

The separation of the (fast) individual birth and death timescale and slow population
demography can also be assumed under a rare- (rather than small-) mutation scenario. A
model similar to Kimura’s integro-differential equation obtains, but in which the ‘loss’ of
individual births with any given trait due to mutation is not apparent. This reflects the fact
that when the birth process is fast while the mutation probability becomes infinitesimal,
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the change in the frequency of any given trait due to mutation is caused predominantly
by ‘incoming’ mutants born from progenitors carrying other trait values. As before, the
macroscopic model does not depend upon the birth-death acceleration exponent 1, except
when birth and death are made maximally fast (n = 1), in which case the model is a
stochastic nonlinear integro-differential equation.

The previous limits make the timescales of ‘typical’ mutation steps and ‘typical’ vari-
ation in population size coincide. An alternative approach is to assume that variation in
population size occurs on a fast timescale compared to the timescale of mutation steps.
This is the basis for modeling evolutionary dynamics as stochastic trait substitution se-
quences (Metz et al., 1996), which underlies the adaptive dynamics approach. We show
that such trait substitution sequences are trajectories of a jump process which obtains un-
der the assumption of an ancestral population being monomorphic. Our approach clearly
isolates and solves the two key issues raised by the heuristics of the original derivation
of adaptive dynamics models (Dieckmann and Law, 1996). One issue is underscored by
the construction of the infinitesimal generator of the jump process. In Dieckmann-Law’s
heuristics, the population growth of a mutant is described by a Galton-Watson branching
process, which appropriately assumes that the mutant population is finite; at the same
time, however, the mutant branching process is parameterized by the density of the res-
ident population which is assumed to be infinitely large. Resolving the tension between
these conflicting assumptions requires that the whole system be regarded as finite, which
then raises the issue that the resident population, being large yet finite, may stochastically
drift away from the deterministic equilibrium predicted by the infinitely large population
limit. The issue is taken care of by using large deviation theory to specify the appropriate
mutation timescale over which this is unlikely to happen.

The second issue with the canonical equation heuristics (Dieckmann and Law, 1996)
was the notion that the solution to the equation should describe the mean trait value in
the population for small mutation steps. Our derivation shows that, in fact, the canonical
equation drives the ezxact path of the jump process in the limit of infinitesimal mutation
steps, which provides a mathematical justification for Dieckmann and Law’s “mean path”
interpretation. Our derivation further implies that the canonical equation orbits describe
population change on a ‘super long’ timescale: firstly, time ¢ is scaled as ¢/Kug where
ug = o(1/K) is the order of magnitude of mutation probability (rare mutation assumption)
and secondly, time is scaled by 1/ where ¢ is the order of magnitude of mutation steps.
This rescaling may be taken as a formal definition for the notion of a ‘macroevolutionary’
timescale.

6.2 Biological insights from the process of model construction

A general conclusion that emerges from this work is that how timescales of individual
processes compare to each other can have a major impact on the structure of macroscopic
models (integro-differential equations versus reaction-diffusion equations, deterministic ver-
sus stochastic), hence on the evolutionary dynamics predicted by these models. This was
lucidly anticipated by Barton and Polechova (2005) in a commentary of the limitations of
adaptive dynamics models, and is herein illustrated by simulations (Figs. 1 and 2), that
hint at a whole array of strikingly different qualitative behaviors:

e In large populations, the process of diversification is faster (compare Figs. 1 (a)
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and (b)) and can turn from gradual (Fig. 1 (b)) to discontinuous and step-wise
(Fig. 1 (¢)).

e For a given system size, extreme mutation rarity changes the prediction of diversifying
dynamics in which both stabilizing selection and disruptive selection play strong roles
(Fig. 1 (b)), to a pattern dominated by stabilizing selection in which the population
remains essentially monomorphic (Fig. 1 (d)).

e When rare mutations occur in a large population of individuals reproducing and
dying at high rates, phenotypic diversification occurs, although more slowly and to
a lesser extent (Fig. 2 (b)).

e In a large population of individuals reproducing and dying fast, mutations that are
small rather than rare will cause a discontinuous pattern of diversification similar
to Fig. 1 (c), see Fig. 2 (a). However, as mutation parameters p and o become
smaller, the tendency for diversification is strongly limited, which demonstrates that
the timescale of diversification is highly sensitive to the mutation pattern.

e However, maximal acceleration of birth and death associated with minimal mutation
steps in large systems generates yet another type of evolutionary dynamics, involving
a high rate of diversification of the population into fine phenotypic clusters combined
with a high rate of extinction of these clusters; the resulting evolutionary pattern has
a remarkable fractal structure, as seen in Fig. 2 (¢). In particular, the pattern shown
in that figure suggests that there might exist a general scaling relationship between
the width of phenotypic clusters and their rate of extinction.

A simplistic aspect of our models resides in the absence of physiological, social or
environmental structure: the individual life history is reduced to the simplest possible
birth and death process. Although this simplifying assumption narrows down the scope
of our theory, it has the merit of making the models thus obtained directly comparable to
the classical models of population genetics, quantitative genetics and adaptive dynamics,
which were derived under a similar assumption. Much generality, however, is kept in
our treatment of density dependence and in the way adaptive traits influence individual
processes.

When considering the acceleration of birth and death, the most general case we could
handle involved rescaling the birth rate as

bic = b <x % \ 1/) (@)K (6.1)

(and similar rescaling for the death rate). This relationship between birth and system
size lends itself to interpretation within the context of allometries and life-history scaling
(Calder, 1984; Charnov, 1993; Brown et al., 2004). Equation (6.1) means that for large
system size, density dependence is effectively ‘felt’ by any individual as a consequence of
the large number of competitors (rather than the individual effect of each competitor),
which suggest that large system size implicitly comes along with individuals being small.
Let us introduce the notion of a ‘taxonomic size’ (or mass) m to express such a relationship
more precisely. One can think of m as a macroscopic parameter (characteristic of a species

27



or taxonomic group) which is fixed on the microevolutionary scale over which = can change
adaptively. It is known (Damuth, 1987; Belgrano et al., 2002) that the system size, K,
scales with the —3/4 power of (taxonomic) body mass, m. Thus, across the range of
large system sizes, i.e., small organisms, the birth rate given by Eq. (6.1) is approximately
equal to r(a:)m_?’"/ 4. Thus, this model makes it possible to explore the adaptive evolution
of the intercept, r(x), (at least over a range of sufficiently small mass) of the power law
that scales birth rate with body mass—an issue currently attracting much attention from
life-history biologists (Economo et al., 2005; McCarthy and Enquist, 2005).

The idea that most mutations are caused by molecular processes that ultimately are
consequences of metabolism have led Gillooly et al. (2005) to predict that point mutations
occur at a rate proportional to metabolic rate, i.e. the rate at which energy and materials
are taken up from the environment and used for maintenance, growth and reproduction.
The metabolic rate, and therefore the point mutation rate should scale as the —1/4 power
of body mass, m, hence as the +1/3 power of system size, K (Gillooly et al., 2001).
Provided that the mutation step variance scales as K", this pattern is consistent with
model (6.1) with n = 1/3. However, when considering a large population of individuals
subject to fast birth and death processes and rare mutation, the mutation rate, bx ik,
is approximately equal to ru and hence is independent of system size. Such tension
with Gillooly et al.’s (2005) predictions may stem from their disputably combining the
metabolic approach to scaling mutation rates with Kimura’s neutral theory of molecular
evolution (Kimura, 1968); in fact, body mass and metabolic rates do change in a process
of non-neutral evolution, which warrants seeking an extension of Gillooly et al.’s (2005)
theory by making use of the framework presented here.

All mutation parameters are assumed to be potentially influenced by trait values, which
makes it possible to study the evolution of the mutagenesis process itself. An important
feature of our theory is that it does not assume that mutational effects are symmetrical
around the progenitor’s trait values. Relaxing the symmetry assumption on the mutation
distribution leads to extending the canonical equations to the case of biased mutation.
This may be important for several reasons (Pomiankowski et al.; 1991), two of them being
structural: the measurement of any mutation bias (or the lack thereof) is scale dependent.
If mutation is unbiased given one definition of a character and one scale of measurement
then it must be biased for many other definitions and scales. Also, mutation bias may be
trait-dependent: there may be little bias away from evolutionary singularities, but strong
bias close to singularities that are extreme points of the trait set. There are genetic reasons
for which the opposite may happen too. Mukai (1964) predicted that during episodes of
directional selection, characters should show a negative correlation between mutation bias
and the direction of selection; there may be weak mutation bias close to the adaptive
optimum, but strong bias away from the optimum. Mutagenesis studies provide further
evidence for the occurrence of mutation bias in quantitative traits (see e.g. Pomiankowski et
al., 1991, and Lai and Mackay, 1990). Whole-genome sequence analysis in a single-stranded
DNA bacteriophage has recently provided direct evidence for the effect of mutation bias
on the course of adaptive evolution (Rokyta et al., 2005).

One aspect that deterministic limits of selection dynamics fail to account for is random
drift—the stochastic fixation of an allele with negative fitness, or as a corollary, the stochas-
tic extinction of an allele with positive fitness. Our extension of the canonical equation
as a diffusion process represents a first step towards general incorporation of this effect in
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macroscopic models derived from individual stochastic processes. The mathematical nature
of the diffusion model suggests to focus analysis on the consequences of multistability in the
canonical equation, that is, the coexistence of several attractive evolutionary singularities.
This focus hinges on the celebrated issue of disentangling the ecological and evolutionary
causes and consequences of empirical records of punctualism, i.e., ‘saltatory’ dynamics
characterized by long phases of phenotypic stasis interspersed with rapid transitions (e.g.
Stanley, 1979). Specifically, even though our diffusion model of adaptive dynamics assumes
that the population remains monomorphic, the model’s properties underscore the possibil-
ity of contrasting macroevolutionary patterns dominated either by punctuated equilibria,
or by radiation events. Radiation occurs when the population diversifies into two or more
phenotypic branches (which may correspond to speciation in sexually reproducing species)
(e.g. Schluter, 2000). It might be possible to develop a diffusion model allowing for evolu-
tionary branching, for which our analysis could be extended to compare the time needed
for phenotypes to diverge around branching points with the time taken by the population
to jump between the basins of these branching points. Although branching may be a ubiqg-
uitous property of attractive evolutionary singularities (Doebeli and Dieckmann, 2000),
there might be ecological and genetic conditions under which evolution would proceed
through punctuated equilibria and long-term evolutionary cycles, rather than branching
and radiation, in species that yet possess multiple branching points.

6.3 Conclusions

Recently Page and Nowak (2002) showed that apparently disparate deterministic models
of evolutionary dynamics are, in fact, part of a single unified framework, while emphasizing
that “stochastic, spatial or individual-based approaches (... ) are notoriously more difficult
to develop and analyze, and therefore much less amenable to any attempt of unification”.
By making use of advanced mathematical tools of probability theory (martingales, large
deviations), this work achieves unification of quantitative-genetics and adaptive-dynamics
models, together with other, previously unknown, macroscopic models of adaptive evo-
lution. Our presentation underlines biological ingsights gained from the process of model
construction itself. The obvious step to be taken next is model analysis, e.g. establish-
ing existence and uniqueness of stationary solutions and characterizing their structure (in
the wake of Biirger and Bomze’s (1996) study of Kimura’s equation), but this is not triv-
ial. Even the numerical simulation of trajectories of the stochastic macroscopic models
prove to raise formidable computational difficulties. Further directions for future research
are prompted by the challenge of relaxing two pivotal assumptions of our approach: the
large system size approximation, and the simplistic structure of the trait space. Thus,
the next generation of models should (i) assume large yet finite populations, and there-
fore study birth-mutation-death processes conditional on population non-extinction (e.g.
Gosselin, 2001); and (ii) acknowledge the complex structure of real phenotypic space and
genotype-phenotype mapping (e.g. Stadler et al., 2001) to account for developmental noise
and plasticity in variable environments (e.g. Pigliucci, 2003), and therefore use probability
measures on infinite-dimensional function spaces to model individual traits. This agenda
delineates some of the new frontiers facing the mathematical exploration of adaptive evo-
lution.
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Appendix

We develop here the proof of the convergence results to (4.5) and (4.6) stated in Sec-
tion 4.2.1. The other results of Section 4 obtain by similar arguments.

We denote by Mp = Mp(R!) the set of finite measures on Rl = X' endowed with the
weak topology, and by D([0,T], M) the set of right-continuous and left-limited functions
from [0,7] to Mp, endowed with the Skorohod topology. We will also use, when it is
convenient, the notation (v, f) for [ f(z)v(dz).

We rely on all the assumptions of Section 2.1, of the beginning of Section 4 and of Sec-
tion 4.2.1. In particular, the variance-covariance matrix of My (z, z) is given by ¥(x)/K",
and we will assume that the third-order moment of Mg (z, z) is bounded by C/K"*¢ uni-
formly in « for some constants C' and ¢ > 0. Let us also assume that, if v/ denotes the
symmetrical square root matrix of X, the function v/>ru is bounded and Lipschitz. We
will also assume that b(z, () and d(z, () are globally Lipschitz with respect to the second
variable, that Xg< converges in law to & for the weak topology in Mg and that

sup E[(XE,1)3] < +o0. (A.2)
K
Since XX = %I/K, and using (2.2), the process X ¥ is a Markov process with generator

LEo() = K [ (K"() + b, V o 0(@)) (1 — pl(@) (60 + =02) — 6())(de)

Rl K

+K | (K'r(2) + b2,V v(z))) () / (o(v + %5:v+Z> — ¢(v)) Mk (2, z)dzv(dx)
R! R!

+K Rl(K"r(z) +d(z,U xv(z)))(p(v — %%) — o(v))v(dr). (A.3)

A simple computation using the boundedness of b and the Gronwall Lemma allows
us to prove the following lemma (see the proof of Theorem 3.1 in Fournier and Méléard,
2004):

Lemma A.1 For any K, if E[(XE,1)%] < +o0, then, for any T > 0,
E | sup (XX, 1)3] < 4.
t€[0,T

By standard probabilistic arguments, one obtains a martingale decomposition for func-
tions of X¥: for any bounded and measurable functions ¢ on Mp such that |p(v)| +
|ILE¢(v)| < C(1+ < v,1 >3), the process

H(XE) — p(x ) — /0 LR (X ) ds (A4)

is a martingale. In particular, applying this property to ¢(v) = (v, f) and ¢(v) = (v, f)?
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for each measurable bounded function f, we obtain
[ f@xt ) =mi 4 [ p)x§ (da)
R! R!
+ / /Rl(b(x, Vo« XE(2) —d(z,U « XE(2))) f(2) X5 (dx)ds (A.5)
/ / z) + bz, V* XKz )))< f(x+z)MK(x,z)dz—f(x))XsK(dx)ds,
R! R!

K?f

where m, ' is a martingale with variance (quadratic variation)

= [ [ o rstevexE@( [ e e 2@ ) X s

+ / / (2K"r(z) + b(x, V « X5 (2)) + d(z, U * Xf(a:)))fQ(a:)Xf(dx)dS} (A.6)
0 JR!
Then the convergence results of Section 4.2.1 can be stated as follows.

Theorem A.2

1) Assume all the assumptions above and 0 < n < 1. Assume also that the measure &y
1s deterministic.

Then, for each T > 0, the sequence of processes (X) belonging to D([0,T], Mr) con-
verges (in law) to the deterministic continuous function (&)i>0 € C([0,T], MF), unique
solution satisfying supcpo 1] (&,1) < 00, of the integro-differential equation written in its
weak form: for each function f € Cg(RZ),

) = (€0, ) / / (2, % £a(x)) — d(x, U * & () f(2)€x(da)ds

/ /l e i (2)05; f ()5 (d)ds (A7)

1<z ]<l

2) Assume moreover that there ewists ¢ > 0 such that r(z)u(z)s*S(x)s > c||s||* for
each x and s € R, Then for each t > 0, the measure & has a density with respect to the
Lebesgue measure.

Remark A.3 In case 2), Eq. (A.7) may then be written as

() = (blaV 5 () ~ dUr6(0) J60) + 5 3 F0uZue)@), (A9

1<i,j<i
which yields the Fisher reaction-diffusion equation (4.5) in the case where ¥(z) = o*(z)Id.

Theorem A.4 Assume all the assumptions above and n = 1. Here, & may be stochastic.

Then, for each T > 0, the sequence of processes (X)) converges in law in D([0,T], M)
to the unique (in law) continuous superprocess X € C([0,T], M), defined by the following
condilions:

sup E [(X,1)%] < o0, (A.9)
te[0,T]
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and for any f € CE(RY),

il = (X0, f) — (X, f) — & / /R S (@)% f (2) X (da)ds

1<z,j<l
- /0 le(:(:) [b(x,V « Xs()) — d(z,U * X¢(x))] Xs(dz)ds (A.10)

s a continuous martingale with quadratic variation

mft: t r(z) f2(z sldx)as. .
p=2 [ [ @)X o) (A1)

Remark A.5 The conditions characterizing the process X above can be formally rewritten
as Eq. (4.8) of Section 4.2.1, but not rigorously since, apart from the case l =1, we suspect
that X; has a.s. no density with respect to the Lebesgue measure.

Proof of Theorem A.2
1) We divide the proof into six steps. Let us fix T' > 0.

Step 1  Let us first show uniqueness for (A.7).
First, we need to define the evolution equation associated with (A.7). It is easy to
prove that if £ is a solution of (A.7) satisfying sup,c(o77(&, 1) < oo, then for each test

function () = ¥ (t,z) € Cg’z(RJ'_ x R!), one has
(60 16e) = (Eor o) / / (2,V % £,(2)) — (@, U * &(2)))(5, 26, (da)ds

/ / (o) + 57 Z% (2))€s(da)ds. (A12)

Now, since the function /Xry is Lipschitz continuous and bounded we may define the
transition semigroup (P;) with infinitesimal generator f — Srud; PPy 82 f. Then, for

each function f € CZ(R!) and fixed ¢ > 0, choosing ¥(s,z) = P, f(z) ylelds

&, f) = (&0, Pif) / / (2, V *&(2)) — d(z,U % &(2)))Pi_s f (x)€s(dx)ds, (A.13)

since O5v (s, ) + 302 (x)r(z) p(x) Agtp(s, z) = 0 for this choice.

We now prove the uniqueness of a solution of (A.13).

Let us consider two solutions (&;)s>0 and (&)¢>0 of (A.13) satisfying SUP;c(0,7] (& + &, 1) =
Ap < +00. We consider the variation norm defined for pq and puo in Mp by

[l = pall = sup | (= 2, £ |- (A.14)
FEL= (Y, ||flleo<1

Then, we consider some bounded and measurable function f defined on R! such that
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[|f]loc <1 and obtain

t
(& =&, )| < /0 /Rl (b(z,V x &(x)) — d(z,U % &(2))) Pr_s f(2)[€s(dx) — Es(d)]| ds
+ /0 /Rl(b(:z, Vs &g(2)) — bz, V % &(2))) Pr_s f(2)E(dz) | ds
+ /0 /R l(d(x,U*fs(ﬂf)) —d(x,U * &())) Py_s f (x)Es(dx) | ds. (A.15)

Since ||f|leo < 1, then ||Pi_sf||oo < 1 and for all 2 € R,
|(b(x, V  &s(2)) — d(z, U * &(@))) Pi—sf ()] < b+d(1 + UAr).

Moreover, b and d are Lipschitz continuous in their second variable with respective con-
stants Kj and K. We then obtain from (A.15) that

t
(& =&, f)1 < [b+d(1+UAr) + KyArV + KqArU | /0 €5 — &l |ds. (A.16)

Taking the supremum over all functions f such that [|f|[cc < 1, and using Gronwall’s
Lemma, we finally deduce that for all t < T, || — &|| = 0. Uniqueness holds.

Step 2 Next, we establish some moment estimates. First, we check that for all
T < o0,
sup sup E[(XF,1)3] < cc. (A.17)
K tel0,1)
To this end, we use (A.4) with ¢(v) = (v, 1)3. (To be completely rigorous, one should first
use ¢(v) = (v,1)3 A A, make A tend to infinity and then use Lemma A.1 to ensure the
convergence of all terms except the last, and apply the monotone convergence theorem to
the last term). Taking expectation, we obtain that for all ¢ > 0, all K,

B [(X5 107 = B[(X5,1)7]
- /Ot E URZ (K" () + Kbz, V « XE(2))] {[<X§<, 1)+ %}3 —(xK, 1>3} XSK(dx)] ds
+/0 E URI {K"™r(2) + Kd(z,U * XE(2))} {[(X;K, 1) — %]3 — (XK, 1)3} XsK(d:r)] ds.
Neglecting the non-positive death term involving d, we get
B [(X{,1)°] < E[(X,1)7]
1

! 1 K 1.3 K\ _
# [ o] [ e {ioc o + P o

1

—® - 2(xkE, 1>3} Xf(dx)] ds

K

¢ 1

+ / E [ Kb(z,V « XE(2)) {[<X§<, 1)+ 2P = (X5 1>3} Xf(dx)} ds.
0 R!
But for all z > 0, all € € (0,1], (z+¢€)3—2® < 6e(1+2?) and |(z+€)> + (v —€)3—223| = 6€2x.
We finally obtain

E[(xF1)°] < BE[(x{1)?] +C’/tE (XE 1)+ (xE 1%+ (XK 1)3] ds.
0
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Assumption (A.2) and Gronwall’s Lemma allow us to conclude that (A.17) holds.
Next, we need to check that

sup E ( sup <XtK,1>2> < 0. (A.18)
K te€[0,T

Applying (A.5) with f =1, we obtain
t
) = () + [ oV XE @) — da, U XE @) XE (da)ds +
0 JR!

Hence

t
sup (X[°,1)% < C(<X§<, )%+ b/ (X5, 1)%ds + sup Imf“\?)
s€[0,1] 0 s€[0,1]

Thanks to (A.2), Doob’s inequality and Gronwall’s Lemma, there exists a constant C} not
depending on K such that

s€[0,t]

E ( sup (XK, 1>2> <C (1+ E [(m™1)]).

Using now (A.6), we obtain, for some other constant Cy not depending on K,
B [(mfh) <c/ (XKD +E[(XEF1)?])ds < G,

thanks to (A.17). This concludes the proof of (A.18).

Step 3 We first endow Mp with the vague topology, the extension to the weak
topology being handled in Step 6 below. To show the tightness of the sequence of laws
QY = £(XE) in P(D([0,T), MF)), it suffices, following Roelly (1986), to show that for
any continuous bounded function f on R!, the sequence of laws of the processes (XX, f) is
tight in ([0, T],R). To this end, we use Aldous’ criterion (Aldous, 1978) and Rebolledo’s
criterion (see Joffe and Métivier, 1986). We have to show that

supE< sup (XK ,f>|) < o, (A.19)

K te[0,T)

and the tightness of the laws of the predictable quadratic variation of the martingale part
and of the finite variation part of the semimartingales (XX, f), respectively.

Since f is bounded, (A.19) is a consequence of (A.18). Let us thus consider a couple
(S, S") of stopping times satisfying a.s. 0 < S < 5" <S40 <T. Using (A.5), we get

S+46
E[(mSfye - <’mK’f>s} <FE [C/S (<XSK, 1) + (XK, 1)2) ds| < C6,

the last inequality coming from (A.18), and a similar inequality is obtained for the finite
variation part. Therefore, the sequence Q¥ = £(X¥) is uniformly tight.
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Step 4 Let us now denote by @Q the limiting law of a subsequence of Q. We still
denote this subsequence by Q. Let X = (X;);>0 a process with law Q. We remark that
by construction, almost surely,

1
s s XS ) - ()<
te[0,T] feL>(RL)||fllo<1

This implies that the process X is a.s. strongly continuous.

Step 5 The time T > 0 is fixed. Let us now check that, almost surely, the process X
is the unique solution of (A.7). Thanks to (A.18), it satisfies sup,cpo (Xt 1) < +o0 as.,

for each T. We now fix a function f € C3(R') (the extension of (A.7) to any function f in
C? is not hard) and some ¢t < T
For v € C([0,T], MF), we set

! = (1, f (1, x,Vxvs(z)) —d(z,U * vs(x x)vs(dx)ds,
o) = | : / [0V ) = U s a)) @)
_ /0 /R ) Zz” 2)vs(dz)ds. (A.20)

We have to show that
Eq |93 (X) + ¥ (X)|] =0. (A.21)

By (A.5), we know that for each K,
= W)+ (X,

where

v (XK = / / )+ bz, V « XK (2)))
R?
( flea 4+ 2)Mg(z,2)dz — f(m)>X§(dx)ds. (A.22)
R!
Moreover, (A.18) implies that for each K,

C’ K" CrrK"
E[ymf’fﬂ:E[vaf) ~L= [/ {(XE 1)+ (XK 1) }d] .
(A.23)
which goes to 0 as K tends to infinity, since 0 < 1 < 1. Therefore,

lim B[} (X5) + WK (X)) =0

Since X is a.s. strongly continuous, since f € Cg’(]Rl) and thanks to the continuity of
the parameters, the functions ¥} and W? are a.s. continuous at X. Furthermore, for any
v € D([0,T], MF),

|0} (v) + Wi(v)| < Cpr sup (1+ (s, 1>2) . (A.24)
s€[0,T7]
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Hence using (A.17), we see that the sequence (U} (X 5)+W2(XK)) x is uniformly integrable,
and thus

lim B (|93 (X7) + OF(XT)]) = B (J9;(X) + ¥F(X)]).- (A.25)
Now we have to deal with U2 (X&)~ w2(XK). The convergence of this term is due to
the fact that the measure MK(CE, z)dz has mean 0, variance X(z)/K", and third moment

bounded by C/K"*¢ (¢ > 0) uniformly in x. Indeed, if H f(x) denotes the Hessian matrix
of f at x,

= . T 1z* )z 23 T, 2)dz
[ttt = [ (10045 V1@ + 5 HIW): +0G)) Mi(z2)a

— fl@) + ;Z Z}j{(f) % f () + 0(%). (A.26)

where K"o(4) tends to 0 uniformly in z (since f is in C}), as K tends to infinity. Then,

1= 5y () 1
w0 = [ [ @)t Vo) (5 5 5o ot ) XE s

and

2K 1 1
0 W) < 0 < X1 > (g Kol ).

Using (A.18), we conclude the proof of (A.21).

Step 6 The previous steps imply that the sequence (X ) converges to & in D([0, T], M),
where M is endowed with the vague topology. To extend the result to the case where Mg
is endowed with the weak topology, we use a criterion proved in Méléard and Roelly (1993):
since the limiting process is continuous, it suffices to prove that the sequence ((X%,1))x
converges to (£,1) in law, in D([0,T],R"). One may of course apply Step 5 with f = 1,
which concludes the proof.

2) Let us now assume the non-degeneracy property r(z)u(x)s*(x)s > c||s||? for each
z,s € Rl That implies that for each time ¢t > 0, the transition semigroup P;(z,dy)
introduced in Step 1 of this proof has for each x € R! a density function p;(z,y) with
respect to the Lebesgue measure. Hence (A.13) writes

[t = [ ([ omteai) )
// b,V % €(x)) — d(z, U+ &y(a (/f ptsxy)dy>§s(dﬂf)

Using the boundedness of f and of the parameters, and sup,<7 (&, 1) < 400, we apply
Fubini’s theorem and deduce that

f(@)e(dz) = / Hy(y) (1) dy
R! R!

where H € L*([0,T], L*(R")), which implies that & has a density with respect to the
Lebesgue measure for each time ¢t < T
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Proof of Theorem A.4

We use a similar method as previously. Steps 2, 3, 4 and 6 of this proof are essentially
the same. Therefore, we have to prove the uniqueness (in law) of the solution to the
martingale problem (A.9)-(A.11) (Step 1), and that any accumulation point of the sequence
of laws of XX is solution of (A.9)~(A.11) (Step 5).

Step 1 This uniqueness result is well-known for the super-Brownian process (defined
by a similar martingale problem, but with b =d =0, r = uy = 1 and ¥ = 1Id, see Roelly
1986). Asin Etheridge (2004), we use the version of Dawson’s Girsanov transform obtained
in Evans and Perkins (1994, Theorem 2.3), which implies the uniqueness of the law of X,
provided that the condition

t
B (/ / bz, V + X,(2)) — d(z, U * XS(:):))]QXS(d:r)ds> < 40
0 JR
is satisfied. This is easily obtained from sup,cpo ) E[(Xt, 1)3] < o0.

Step 5 Let us call Qf = £(XX) and denote by @ a limiting value of the tight
sequence Q¥ and by X = (Xt)t>0 a process with law Q. Because of Step 4, X belongs
a.s. to C([0,T], Mr). Let us show that X satisfies conditions (A.9)-(A.11). Equation (A.9)
is straightforward from (A.18). Let us consider a function f in C3(R!), and prove that the
process m{ defined by (A.10) is a martingale (the extension to every function in C? is not
hard). For 0 < s1 < ... < s, < s < t, some continuous bounded maps ¢1,...¢, on Mp, we
introduce the function ¥ from D([0, 7], MF) into R defined by

V() = 610 )bu v {01 1) = e Py = 5 [ [ (o) 325008 e (o)

_ / le(a:) [b(x,V xvy(x)) — d(x,U * vy(x))] yu(dx)du}. (A.27)
Our aim is to show that
E(¥(X))=0. (A.28)
It follows from (A.5) that
0=FE [¢1(X§)...¢R(X5Kn) {th’f - meH = E[W(X5)] - Ag, (A.29)
where Ay is defined by
A = E[on (XK ) X5) [ [ w {r@k [ [ o221z 10)-30 T4 08 5(0)]

b, Vs XE@)] [ Miclw,2)f(x + 2)dz — f(@)] X (do)du].

R!

It turns out from (A.26) that Ax tends to 0, as K grows to infinity, and from (A.18), that
the sequence (|W(X%)|)f is uniformly integrable. Hence,

lim B (j(X™)]) = Eq (19(X))). (A.30)
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Thus, (A.28) holds, and therefore, m/ is a martingale.
It remains to show (A.11). To this end, we first check that

N = (007 = oy = [ [ 2@ @)X (o)
—/0 2(Xs, f) f(m) b(x, V * Xs(z)) — d(z,U * X4(x))] Xs(dx)ds
t
- [ 2 / (05 205 )X, s (A.31)

is a martingale. This can be done exactly as for m{ , using the semimartingale decomposi-

tion of (X/X, f)2, given by (A.4) applied to ¢(v) = (v, f)2. Next, Ito’s formula applied to
(A.10) implies that

(Xtaf>2_<XOaf>2_<Mf>t_/ Xs»f / f $ V*Xs(x)) —d(m,U*Xs(x))]Xs(dx)ds

/0 <Xs,f>/ ZZU X,(dz)ds

is a martingale. Comparing this formula with (A.31), we obtain (A.11).
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