Integrators for highly oscillatory Hamiltonian systems: an homogenization approach

Abstract : We introduce a systematic way to construct symplectic schemes for the numerical integration of a large class of highly oscillatory Hamiltonian systems. The bottom line of our construction is to consider the Hamilton-Jacobi form of the Newton equations of motion, and to perform a two-scale expansion of the solution, for small times and high frequencies. The approximation obtained for the solution is then used as a generating function, from which the numerical scheme is derived. Several options for the derivation are presented, some of them also giving rise to non symplectic variants. The various integrators obtained are tested and compared to several existing algorithms. The numerical results demonstrate their efficiency.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2010, 13 (2), pp.347-373
Liste complète des métadonnées

https://hal.inria.fr/inria-00165293
Contributeur : Frederic Legoll <>
Soumis le : lundi 30 juillet 2007 - 21:17:20
Dernière modification le : vendredi 25 mai 2018 - 12:02:03
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:42:44

Fichier

lebris_legoll_preprint_inria_v...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00165293, version 2

Citation

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: an homogenization approach. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2010, 13 (2), pp.347-373. 〈inria-00165293v2〉

Partager

Métriques

Consultations de la notice

461

Téléchargements de fichiers

126