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Abstract: New theoretical results are presented here on the recently intro-
duced model called mixed states MRF. Such models were introduced in the
context of image motion analysis and are useful to represent information which
can take both discrete values accounting for symbolic states, and real values cor-
responding to continuous measurements. In particular, results are given when
the global energy for the Gibbs formulation expressing the mixed states model,
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and a second term related to the continuous part. This decomposition theorem
permits to define conditional mixed states models in a very simple way.

Key-words: Image motion analysis, Markov Random Fields, Mixed States.

Joint collaboration between the Equipe Associé INRIA FIM, Fluides, Images et Mouve-
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Champs de Markov aléatoires à états mixtes

avec étiquettes symboliques et valeurs

multi-dimensionnelles réelles

Résumé : De nouveaux résultats théoriques sont presentés ici sur le modèle
récemment introduit appelé Champs de Markov Aléatoires à États Mixtes.
Ces modèles ont été introduits dans le contexte de l’analyse du mouvement
dans des séquences d’images, et sont utiles pour représenter l’information qui
peut prendre des valeurs discrètes correspondant à des états symboliques, et
des valeurs réelles correspondant à des mesures continues. En particulier, des
résultats sont donnés quand l’énergie globale pour la formulation de Gibbs,
exprimant le modèle à états mixtes, peut être décomposée en une partie discrète
et une partie continue. Cette décomposition permet de définir les modèles
conditionnels à états mixtes d’une manière très simple.

Mots-clés : Analyse de mouvement en images, champs de Markov aléatoires,
états mixtes.



Mixed States MRF’s 3

1 Introduction

Usually in statistics one is either interested in random variables that are discrete
in nature, (dices, card games, photon counting, nuclear decay, etc), or that
are continuous, meaning that its distribution function is absolutely continuous,
and hence they have a probability density function defined as the derivative of
the distribution function, as is the case, for example, of the Gaussian random
variables. In some situations, one may be interested in modeling a variable that
may take some discrete values in a set with non-zero probability mass, while for
the other values not in the given set, the random variable may be modeled as a
continuous distribution. Examples, might be the daily rainfall, [11], for which
there are days with no rain with non zero probability, while for the rainy days
a continuous distribution random variable might be appropriate. In quantum
mechanics one is faced with such situations, as for example in solid state-physics
when one considers the solution of the band model for semiconductors. Another
example arises in the field of reliability when modeling the mean life time of some
component, for which there is a non zero mass probability of failure at time zero,
while for time greater than zero an absolutely continuous distribution might be
appropriate. In particular, these models appear to be of interest in low level
modeling of motion in image processing. In previous work, [2], [7], [8], [17], [18],
[19], [20], [21], [25], it has been found that when modeling motion in complex
images, as for example a video sequence showing public in a stadium, or a scene
of a tree waving under the wind, among other examples, the histogram of the
velocity vectors at each pixel show a large probability mass at zero velocity,
while the second component of the mixture may be appropriately modeled with
a Gaussian distribution in many situations.

These examples suggest the introduction of mixed states random variables,
[2], [7], [8], [21]. That is, variables that have mass probability concentrated in
isolated points, while they have a probability density for the rest of the real line.

Image motion analysis involves challenging issues such as motion detection,
segmentation, estimation, recognition or classification, [3], [22], [24]. In this con-
text, compact and efficient representations of image motion are needed. Digital
information present in or extracted from images may be expressed as numerical
values or discrete values (i.e., abstract labels). Moreover, these two types of
variables may more deeply reflect two different classes of information: contin-
uous real values (either in one-dimensional or multi-dimensional spaces) versus
symbolic values (one or several symbols). However, these two classes should not
be necessarily viewed as two exclusive states or as consecutive states (e.g., after
a decision step). Indeed, a physical variable can take both continuous and dis-
crete values, namely it can be a mixed states variable. To give a simple example
related to image motion analysis, a locally computed motion quantity can be ei-
ther null or not. Then, it can be helpful to explicitly consider that it takes either
a discrete value expressing the absence of motion, or that continuous real values
account for the actual measurements. A discrete value may not necessarily be a
specific real value, it may also be taken as a pure symbolic value as well. As an
example, when considering optical flow, the label could be related to the pres-
ence of motion discontinuities while the corresponding continuous values are the
velocity vectors. Evaluating the distribution of measured values, and accounting
for local context, are of key importance in numerous image sequence analysis
tasks (e.g. in motion modeling, detection, segmentation, estimation, recogni-
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4 Cernuschi-Fŕıas

tion, or learning issues). Therefore, defining probabilistic mixed states models
appears as an attractive objective. Markov Random Fields (MRF) are widely
used in image analysis, [4]. Recently, the so called mixed states auto-models
were introduced, [2], (i.e., MRF models with two-site cliques), as a generaliza-
tion of the models studied in [1]. These models were used for modeling and
segmenting motion textures with convincing experimental results, [8].

New theoretical results, in the form of Gibbs potentials, allow to significantly
extend the power expression and the effective and flexible use of these models,
that may open new investigation avenues in image motion analysis tasks.

The contributions presented here are made along the following lines:

1. A detailed measure theoretic formulation of the mixed states random vari-
ables is given.

2. The cases in which the probability mass is concentrated either in discrete
real values and/or in symbolic labels is thoroughly analyzed.

3. A full account is given for Markov Random Fields of mixed states random
variables corresponding to a mixture of a probability mass in a known real
value, and an absolutely continuous distributed real random variable as
second component of the mixture, when there is no interaction between
the potentials of the discrete and the absolutely continuous components
of the Gibbs representation.

4. The generalized Markov Random Fields presented here are of general form
in the sense that no stationarity assumption is assumed, moreover, at each
of the sites the corresponding random variables may take values in different
spaces.

5. The theoretical approach introduced here permits to analyze mixed states
Markov Random Fields for any clique size, hence extending the previous
results given in [2], [11], [12], [21], which are only valid for random variables
belonging to the exponential family and up to cliques of size two.

2 Mixed States Random Variables

2.1 Preliminaries

It is well known that the distribution function of a random variable taking one-
dimensional real values may be decomposed in the convex combination of three
parts: a discrete part, an absolutely continuous part, and a singular continuous
part, all with respect to the Lebesgue measure. The random variables considered
here have as distribution function a convex combination of a discrete and an ab-
solutely continuous (with respect to Lebesgue measure) distribution functions.
These distribution functions do not have a probability density function with re-
spect to the Lebesgue measure, but they are absolutely continuous with respect
to a measure which is the sum of the unit mass probability at the discrete points
plus the Lebesgue measure over the real line. Call the corresponding Radon-
Nikodym derivative a ”mixed states probability density function (ms-pdf)” and
the corresponding random variable, a ”mixed states random variable”. This
idea permits to immediately consider random variables on more general spaces.

INRIA



Mixed States MRF’s 5

In particular, as previously discussed, it is of interest to study random variables
that take values either in a countable set of labels L with probability 0 < ρ < 1,
or in Rn with probability 1− ρ. That is, given a probability space (Ω,F , P), it
is of interest to analyze random variables of the form X : Ω → L ∪ Rn.

The following convention is used for upper scripts of probability related func-
tions: the upper script m will correspond to mixed states related formulations,
the upper script d will correspond to discrete states formulations, while a will
correspond to formulations related to absolute continuity with respect to the
Lebesgue measure.

2.2 Distribution function for one dimensional real random

variables

Let’s start with a brief review of distribution functions for one dimensional real
random variables.

The following results may be found in any standard text on probability
theory such as [5], as well as any standard text on measure theory such as [10]
or [13].

Consider a finite measure space (Ω,F , P) where Ω is some abstract space,
F is a σ-algebra of subsets of Ω and P is a finite measure for the measurable
space (Ω,F). A probability space is a finite measure space with P(Ω) = 1.

Call N the set of non-negative integers. Call R the set of the real numbers,
and call B the Borel σ-algebra of subsets of R, i. e. the minimal σ-algebra
generated, say, by the open subsets of R.

A real finite-valued random variable X is a function from Ω to the real
numbers R, such that the inverse image of any Borel set B ∈ B belongs to F ,
i. e. X−1(B) ∈ F , ∀B ∈ B.

Let’s introduce the measure µX for the measurable space (R, B) as: for
every subset B ∈ B define µX(B) = P(X−1(B)). The measure µX is called the
measure induced by the random variable X , see theorem 3.1.3, [5]. Alternatively
P(X−1(B)) is also denoted as P(X ∈ B), so that µX(B) = P(X−1(B)) =
P(X ∈ B). Hence (R, B, µX) is a measure space, and as a matter of fact it is
a probability space since µX(R) = P(X−1(R)) = P(X ∈ R) = P(Ω) = 1.

Define the distribution function of the random variable X as FX(x) =
P(X ∈ (−∞, x]) = P(X ≤ x). Note that some authors, e. g. [16], define
the distribution function as the probability of the inverse image of the open set
(∞, x), i. e. FX(x) = P(X < x), instead of the set (−∞, x] as done here,
following [5].

The distribution function obtained is a non-decreasing function, with:

lim
x→−∞

FX(x) = 0,

lim
x→+∞

FX(x) = 1,

which is continuous on the right at each x ∈ R, and has a limit on the left at
each x ∈ R. As for the last property, if the distribution function is defined as
in [16], the function is continuous on the left at each x ∈ R, and has a limit on
the right at each x ∈ R. Again, the definitions in [5] are used here. Conversely,
any function satisfying the preceding properties, is the distribution function of
some random variable.

RR n° 6255



6 Cernuschi-Fŕıas

An additional most important property for what follows, is that the set
of discontinuities of the distribution function, being an increasing function, is
countable.

A distribution function that is continuous everywhere is called a continuous
distribution function.

Define ut(x) as the step function u : R → R, for which ut(x) = 0 if x < t,
and ut(x) = 1 if x ≥ t. Note that ut(x) = u0(x − t). The function ut(x) is
called the point mass distribution at t, [5]. Note that ut(x) is always continuous
on the right.

A function that can be represented in the form
∑

l πl uξl
(x) where ξl is a

countable set of real numbers, with ξl 6= ξn if l 6= n, and where πl ≥ 0 for
every l and

∑

l πl = 1, is called a discrete distribution function. Note that this
function is well defined as a distribution function since it satisfies the previously
mentioned properties. The corresponding random variable takes the value ξl

with probability πl, and for a value x such that x 6= ξl, ∀l, it takes such a value
with probability 0.

A first result, see theorem 1.2.3, [5], is that every distribution function can
be written as the convex combination of a discrete and a continuous distribution
functions. Such a decomposition is unique. That is, the distribution function
FX(x) may be decomposed as: FX(x) = ρ F d

X(x) + (1 − ρ) F c
X(x), with 0 ≤

ρ ≤ 1, where F d
X(x) and F c

X(x) are respectively, the corresponding discrete and
continuous distribution functions. As for F c

X(x), since it is a bounded non-
increasing function, then, it has non-negative derivative almost everywhere, but
not necessarily this function is the integral of its derivative.

Define, [5], a function F : R → R as absolutely continuous in (−∞, +∞)
with respect to the Lebesgue measure λ, (i. e. λ((x, x′)) = x′ − x, so that
λ(dt) = dt), iff there exists a function f in L1(R, B, λ), such that for every

x < x′: F (x′)−F (x) =
∫ x′

x
f(t) dt. Hence, an absolutely continuous distribution

function F a
X(x) is the integral of its derivative, which exists almost everywhere

with respect to the Lebesgue measure λ, i. e. λ-ae. That derivative is defined
as the probability density function of the random variable X and will be denoted
as pa

X(x), so that F a
X(x) =

∫ x

−∞ pa
X(t) dt, and pa

X(x) = dF a
X(x)/dx, λ-ae.

Define, [5], a distribution function F : R → R as singular iff it is not iden-
tically zero and F ′ exists and equals zero λ-ae, i. e. almost everywhere with
respect to Lebesgue measure.

The main result is theorem 1.3.2, [5]: every distribution function can be
written as the convex combination of a discrete, a singular continuous, and
an absolutely continuous distribution functions. This decomposition is unique.
That is FX(x) = ρ1 F d

X(x) + ρ2 F a
X(x) + ρ3 F s

X(x), with 0 ≤ ρi ≤ 1, for

i = 1, 2, 3, and
∑3

i=1 ρi = 1, where F d
X(x), F a

X(x), and F s
X(x) are respectively,

discrete, continuous, and singular continuous distribution functions.
Another basic important result, is given by theorem 3.2.2 , [5], see also [16],

[6], [13]. That is, let the random variable X on (Ω,F , P) induce the probability
space (R, B, µX), and let f : R→ R be Borel measurable, then:

∫

Ω

f(X(ω)) P(dω) =

∫R f(x) µX(dx) =

∫ +∞

−∞

f(x) dFX(x),

provided that any of these integrals exists. Note that these integrals are different
in nature: the first is a Lebesgue integral defined over the space (Ω,F , P), the

INRIA



Mixed States MRF’s 7

second is a Lebesgue integral defined over the space (R, B, µX), while the third
is a Lebesgue-Stieljes integral in the real line.

Let s be a statement taking the values TRUE or FALSE. Define the
function taking real values 1(s) as 1(s) = 1 if s = TRUE, while 1(s) = 0 if
s = FALSE. For a given set B ⊆ R, define 1B(x) = 1(x ∈ B), i. e. 1B(x)
is the characteristic or indicator function of the set B. Abusing notation put1ξ(x) for 1{ξ}(x) if ξ is an isolated point. Define 1∗B(x) = 1 − 1B(x) and put1∗ξ(x) for 1∗{ξ}(x).

Let B ∈ B, and take f(x) = 1B(x) in the previous result, then:
∫R 1B(x)µX(dx) =

∫

B

µX(dx) = µX(B) =

∫ +∞

−∞

1BdFX(x).

This, together with the definition of the distribution function, shows that there
is a one to one correspondence between the induced measure and the distribution
function for a given random variable.

Call a discrete random variable, a random variable whose distribution func-
tion is discrete, and call absolutely continuous random variable, a random vari-
able whose distribution function is absolutely continuous.

For the cases considered here, let’s assume that the random variable X has no
singular component, that is, the distribution function of the random variable X
is a convex combination of a discrete and an absolutely continuous (with respect
to Lebesgue measure) distribution functions. Call such a random variable a real
mixed states random variable. Hence, the distribution function Fm

X of a real
mixed states random variable, has the form: Fm

X (x) = ρ F d
X(x)+(1−ρ) F a

X(x) =
ρ
∑

l πl uξl
(x) + (1 − ρ)

∫ x

−∞
pa

X(t) dt, with 0 ≤ ρ ≤ 1. It is readily checked
that µm

X , the induced measure by the real mixed states random variable X , has
the form: µm

X(B) = ρ
∑

l πl 1B(ξl) + (1 − ρ)
∫

B
pa

X(t) dt, for each B ∈ B.
In [15] there is a study on the decomposition of the distribution function

of real random variables in Rn. In particular it is shown that discontinuities
in the distribution function occur in planes parallel to the axes. The nature of
discontinuities in Rn, is far more complicated due to the possibility of probability
mass concentration in hyper-volumes of dimension less than n. It may happen
that there is mass concentration in curves, surfaces, volumes, or hyper-volumes
of dimension less than n, which are not presently discussed here.

2.3 Probability density function

Here, the probability density for a real mixed states random variable will be
analyzed. As previously discussed, when a random variable X has an abso-
lutely continuous distribution function, then such a function is the integral
of its derivative, which exists λ-ae. In such a case the derivative is called
the probability density function. For a real mixed states random variable,
its distribution function is a convex combination of a discrete and an abso-
lutely continuous distribution functions with respect to the Lebesgue measure:
Fm

X (x) = ρ F d
X(x) + (1 − ρ) F c

X(x) = ρ
∑

l πl uξl
(x) + (1 − ρ)

∫ x

−∞
pa

X(t) dt,
with 0 ≤ ρ ≤ 1. If ρ > 0, then the distribution function Fm

X (x) is not absolutely
continuous with respect to the Lebesgue measure and then a probability density
can not be defined. In this case two possible directions may be taken.

A first direction would be to consider a generalized probability density func-
tion pm

X(x) in the distributional sense, [23], [9], loosely in the form: pm
X(x) =

RR n° 6255



8 Cernuschi-Fŕıas

ρ
∑

l πl δ(x − ξl) + (1 − ρ) pa
X(x), 0 ≤ ρ ≤ 1, where δ(x) is the Dirac delta

”function” centered at x = 0, πl is the probability mass at x = ξl, and pa(x)
is the probability density of an absolutely continuous distribution function
with respect to Lebesgue measure. Loosely one has 1B(0) =

∫

B
δ(x)dx, and

ua(x) = u0(x − a) =
∫ x

−∞ δ(t − a) dt. As is well known the Dirac ”function”
δ(x) is not a function in the ordinary sense, so that necessarily such an approach
should be formally based on the theory of distributions, in either the view of
[23], or the view of [9]. This approach may also be loosely viewed as a mixture of
a discrete and a continuous random variable. As a matter of fact, this intuitive
approach was taken in [7], considering the previous distributional density as the
limit of a mixture of Gaussian random variables, one centered at zero with a a
fixed very low variance σ0, i. e. very small with respect to the variance of the
second Gaussian component, so that the first Gaussian component could loosely
be interpreted as a Dirac delta function. In [8], [7] Markov Random Fields with
mixed states random variables were used, where there appears a number of tech-
nical problems when dealing with the Dirac delta generalized function. In [7]
to circumvent those difficulties and give a rather intuitive presentation of the
theory, a mixture of Gaussian random variables was used to give a feeling of the
results. Formalizing the distributional approach seems too complicated when
dealing with mixed states Markov Random Fields, so that to formalize these
models a measure theoretic approach is proposed.

2.4 Measure theoretic approach

As previously discussed, the second approach is measure theoretic. A formal
approach is presented next, and theoretical results are given regarding the struc-
ture of real mixed states random variables, as to obtain general results that
permit to construct models using these variables, such as those previously dis-
cussed in [2], [7], [8], [11], [12], [21], as well as other estimation, classification,
segmentation, detection, and filtering problems in more complicated situations
presently under study.

Recall that a measure ν is absolutely continuous with respect to a measure
ζ both for the same measurable space, if for all measurable subsets B such that
ζ(B) = 0 it is ν(B) = 0.

Call a measure of the form ν(B) =
∑

i ci 1B(di) with ci ≥ 0 for the mea-
surable space (R, B), a discrete measure, whether

∑

i ci, is finite or not, and
a measure of the form ν(B) =

∫

B
g dλ, with g : R → R a fixed non-negative

measurable function, g ≥ 0, λ-ae, an absolutely continuous measure with re-
spect to the Lebesgue measure λ, whether the integral is finite or not. Let
f : R → R be an arbitrary non-negative measurable function, then, if ν is a
discrete measure:

∫

fdν =
∑

i cif(di), while if ν is absolutely continuous w.r.t.
λ it is:

∫

f dν =
∫

f g dλ. Also, if ν is of the form ν = νd + νa, where
νd and νa are respectively discrete and absolutely continuous w.r.t. λ, then:
∫

f dν =
∑

i ci f(di) +
∫

f g dλ. It follows that this result is also true for
f ∈ L1(R, B, ν).

Recall that a real mixed states random variable, is defined as a random
variable with distribution function Fm

X (x) = ρ F d
X(x) + (1 − ρ) F a

X(x).

INRIA



Mixed States MRF’s 9

As previously discussed the induced measure generated by a real mixed states
random variable X takes the form:

µm
X(B) = ρ µd

X(B)+(1−ρ) µa
X(B) = ρ

∑

l

πl 1B(ξl)+(1−ρ)

∫

B

pa
X(t) dt, (1)

for each B ∈ B, where both µd
X and µa

X are probability measures. Hence,
the Lebesgue integral of a non-negative measurable function f : R → R with
respect to the measure space (R, B, µX) is:

∫

f(t) µm
X(dt) = ρ

∑

l πl f(ξl)+(1−
ρ)
∫R f(t) pa

X(t) dt. It follows that this result is also true for f ∈ L1(R, B, µm
X).

Let’s introduce the measure m(B), for each B ∈ B, for the measurable space
(R, B) as:

m(B) =
∑

l

1B(ξl) +

∫

B

dx = md(B) + λ(B), (2)

for each B ∈ B, where λ(B) is the Lebesgue measure of B, and md is the
discrete measure md(B) =

∑

l 1B(ξl).
Next, let’s show that the induced measure µm

X is absolutely continuous with
respect to the measure m, that is µX << m. The result to be proved is that if for
B ∈ B it is m(B) = 0, then µm

X(B) = 0. Suppose B ∈ B is such that m(B) = 0,
then 1B(ξl) = 0, for each l, so that ξl /∈ B, for each l, and then

∑

l πl1B(ξl) = 0.
Also, since m(B) = 0, then λ(B) = 0, but then,

∫

B
pa

X(t) dt = 0. Combining
these two results µm

X(B) = 0 is obtained.
Given the probability space (Ω,F , P), the mixed states random variable

X induces the probability space (R, B, µX). The main idea is to consider the
measure space (R, B, m) instead of the standard Borel measure space (R, B, λ).
The main point is that when the probability space (R, B, µX), is referred with
respect to the measure space (R, B, m), using the Radon-Nikodym theorem,
[13], a generalized probability density function may be defined, that permits to
handle simultaneously discrete and continuous valued random variables.

The version of the Radon-Nikodym theorem used here is, [13]: let ν be a
finite measure on the measurable space (R, B), and ζ be a σ-finite measure
for the same measurable space (R, B), then, if ν << ζ, i. e. ν is absolutely
continuous with respect to ζ, then, there exists a non-negative measurable ζ-ae
function g : R → R, such that for all B ∈ B, it is ν(B) =

∫

B
g dζ. Note that

the function g is unique ζ-ae.
Also, if ν(B) =

∫

B
g dζ is true for all B ∈ B, then, [13], if f : R → R is

any non-negative ν-ae measurable function, or f ∈ L1(R, B, ν), then:
∫

f dν =
∫

f g dζ.
Call A the countable set of all the ξl’s, i. e. A = {ξl : l ∈ N}, and call1ξl
(x) the point mass probability at ξl.
Next, apply the Radon-Nikodym theorem to the induced measure µX , which

is absolutely continuous with respect to the previously introduced measure m.
Let’s check that the Radon-Nikodym derivative is:

dµm
X

dm
≡ pm

X(x) = ρ
∑

l

πl 1ξl
(x) + (1 − ρ) 1∗A(x) pa

X(x). (3)

To prove this result let’s calculate, see equation (2):
∫

B

pm
X dm =

∫

B

pm
X dmd +

∫

B

pm
X dλ. (4)

RR n° 6255



10 Cernuschi-Fŕıas

For the first integral:
∫

B

pm
X dmd =

∫

B

(ρ
∑

l

πl 1ξl
(x) + (1 − ρ) 1∗A(x) pa

X(x)) md(dx).

For the first term,
∫

B

∑

l πl 1ξl
(x) md(dx) =

∫ 1B(x)
∑

l πl 1ξl
(x) md(dx) =

∑

j 1B(ξj)
∑

l πl 1ξl
(ξj) =

∑

j πj 1B(ξj), since 1ξl
(ξj) = 1 if ξl = ξj , and1ξl

(ξj) = 0 if ξl 6= ξj . As for the second term:

∫

B

1∗A(x) pa
X(x) md(dx) =

∫ 1B(x) 1∗A(x) pa
X(x) md(dx)

=
∑

l

1B(ξl) 1∗A(ξl) pa
X(ξl) = 0,

since 1∗A(ξl) = 0, for all l ∈ N. Hence,
∫

B
pm

X dmd = ρ
∑

l πl 1B(ξl).
For the second integral in equation (4):

∫

B

pm
X dλ =

∫

B

(ρ
∑

l

πl 1ξl
(x) + (1 − ρ) 1∗A(x) pa

X(x)) dx

= ρ
∑

l

πl

∫

B

1ξl
(x) dx + (1 − ρ)

∫

B

1∗A(x) pa
X(x) dx,

applying Tonelli. But λ(ξl) = 0, for l = 1, 2, · · · , since a single point has
Lebesgue measure zero, hence the first term is zero. As for the second term,
since λ(A) = 0, because A is a countable collection of points, then:

∫

B

1∗A(x) pa
X(x) dx =

∫

B

pa
X(x) dx,

so that
∫

B
pm

X dλ = (1−ρ)
∫

B
pa

X(x) dx. Collecting all these results one obtains:
∫

B
pm

X dm = ρ
∑

l πl1B(ξl) + (1 − ρ)
∫

B
pa

X(x) dx = µm
X(B), for all B ∈ B,

which is the desired result, see equation (1).

2.5 Label-real mixed states random variables

The label-real mixed states random variables are defined as to consider proba-
bility mass concentrated either in symbolic labels, as well as values in Rn when
these values belong to at most a countable subset of Rn. If this is the case, all
those values will belong to the set L. Let L = {ℓ1, ℓ2, · · · } be a countable set
of symbolic labels and eventually at most a countable number of values in Rn.
Define the mixed states space as M = L ∪ Rn, with n ≥ 1. Define M as the
collections of subsets of M, such that M = 2L ∪ B(Rn), where 2L, is the power
set of L, i. e. the collection of all the subsets of L, and B(Rn) is the Borel
σ-algebra for Rn, i. e. the minimal σ-algebra generated by, say, the open sets ofRn. Redefine λ as the Lebesgue measure for (Rn, B(Rn)), i. e. the measure that
assigns to a hyper-cube in Rn its volume, given by the product of the length of
the sides of the hyper-cube, so that λ(dx) = dx.

If M ⊆ M, define ∁(M), the complement of M as the set ∁(M) = M \ M , i.
e. the elements in M not in M . Note that any set M ∈ M, can be decomposed
as M = D ∪ B, with D ∈ 2L and B ∈ B(Rn). Such decomposition is unique if
∅ = 2L ∩ B(Rn), i. e. the set L consists only of symbolic labels.

INRIA



Mixed States MRF’s 11

Clearly M is a σ-algebra since: i) ∅ ∈ M, ii) if M ∈ M, then there exists
D ∈ 2L and B ∈ B(Rn), with ∅ = D∩B and ∅ = B∩L, such that M = D∪B,
so that ∁(B) = (L \ D) ∪ (Rn \ B), and then ∁(M) ∈ M, iii) if {Mi}i∈N is a
countable sequence of sets Mi ∈ M, i = 1, 2, · · · , then there exist Di ∈ 2L,
and Bi ∈ B(Rn), i = 1, 2, · · · , such that Mi = Di ∪ Bi, i = 1, 2, · · · , but since
∪i∈NDi ∈ 2L and ∪i∈NBi ∈ B(Rn), then M ∈ M.

Hence, a measurable space (M,M) was constructed. Following [5], given the
probability space (Ω,F , P), define the function X : Ω → M as a mixed states
random variable if X−1(M) ∈ F , for all M ∈ M, i. e. the inverse image under
X of any set in the σ-algebra M is in the σ-algebra F .

The main idea now, is to construct an induced measure µm
X

for the random
variable X in the measurable space (M,M). Since now symbolic labels are
present, which may not have any algebraic structure, a distribution function
can not be defined to characterize the random variable. Hence, a possibility
is to proceed directly to define the measure µm

X
(M), for each M ∈ M, as, see

equation (1):

µm
X

(M) = ρ
∑

l

πl 1M (ℓl) + (1 − ρ)

∫

M\L pa
X

(x) dx

= ρ µd
X

(M) + (1 − ρ) µa
X

(M),

(5)

where µd
X

(M) =
∑

l πl 1M (ℓl) and µa
X

(M) =
∫

M\L pa
X

(x) dx, with 0 ≤ ρ ≤ 1,

0 ≤ πl ≤ 1, l = 1, 2, · · · ,
∑

l πl = 1, and pa
X

(x), the probability density with
respect to Lebesgue measure of some real multidimensional standard random
variable. Note that µm

X
(M) = 1, so that (M,M, µm

X
) is a probability space.

Also, note that
∫

M\L pa
X

(x) dx ≡
∫

M\L pa
X

dλ, is a standard Lebesgue integral

in (Rn, B(Rn)), since the integral is evaluated in the set M \ L ⊆ Rn, with
M \ L ∈ B(Rn).

Clearly if ρ > 0 then µm
X

is not absolutely continuous with respect to the
Lebesgue measure. Following the same procedure as before, redefine the refer-
ence measure m for the measurable space (M,M) as, see equation (2):

m(M) =
∑

l

1M (ℓl) +

∫

M\L dx = md(M) + λ̃(M), (6)

for each M ∈ M, where now md is the discrete measure md(M) =
∑

l 1M (ℓl)

and where λ̃(M) =
∫

M\L dx. Note that λ̃(M) is not the Lebesgue measure of

M , since M /∈ B(Rn) in general, but is close in the sense that λ̃(M) = λ(M)
if M ∈ B(Rn), because, since λ̃(M) = λ(M \ L), and M ⊆ Rn has at most
a countable number of elements in L which have Lebesgue measure zero, then
λ(M \ L) = λ(M), so that λ̃(M) = λ(M).

Also,
∫

M
f dλ̃ =

∫

M\L f dλ, for all non-negative measurable f , and then for

all f ∈ L1(M,M, λ̃). To show this result, start first, as usual, with characteristic
functions. Hence, let f = 1M , with M ∈ M. Then,

∫ 1M dλ̃ = λ̃(M) =
∫

M\L dλ =
∫Rn\L 1M dλ. Next, [6], [10], [13], proceed to simple functions,

and then to non-negative functions using the monotone convergence theorem
on both sides of the equality. Finally, the result for f non-negative, or for
f ∈ L1(M,M, λ̃), is obtained as

∫

f dλ̃ =
∫Rn\L f dλ. Hence for non-negative
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12 Cernuschi-Fŕıas

measurable f , or for f ∈ L1(M,M, λ̃), and arbitrary M ∈ M:
∫ 1M f dλ̃ =

∫Rn\L 1M f dλ, so that
∫

M
f dλ̃ =

∫

M\L f dλ.

As before, let’s proceed to show that µm
X

is absolutely continuous with respect
to m, i. e. µm

X
<< m. If m(M) = 0, then

∫

M\L dx = 0 and
∑

l 1M (ℓl) = 0.

Hence, 1M (ℓl) = 0, for l = 1, 2, · · · , so that ℓl /∈ M , for l = 1, 2, · · · , hence
∅ = M ∩ L, and then M \ L = M , and M ∈ B(Rn). Then

∫

M\L dx =
∫

M
dx =

λ(M) = 0. Hence M is Borel measurable, and has Lebesgue measure zero, so
that

∫

M\L pa
X

(x) dx =
∫

M
pa
X

(x) dx = 0. Also, since ℓl /∈ M , for l = 1, 2, · · · ,

then
∑

l πl 1M (ℓl) = 0, so that µm
X

(M) = 0.
Hence, since m is a σ-finite measure, and µm

X
is a finite measure, as a matter

of fact a probability measure, consider, as it was previously done, the Radon-
Nikodym formalism, [13]. As in the previous section, let’s check that the Radon-
Nikodym derivative is, see equation (3):

dµm
X

dm
≡ pm

X(x) = ρ
∑

l

πl 1ℓl
(x) + (1 − ρ) 1∗L(x) pa

X(w(x)), (7)

where the function w : M→ Rn is such that w(x) = x if x /∈ L, while w(x) = xR

if x ∈ L, where xR ∈ Rn is a fixed value in the domain of the function pa
X

. Note
that which value is chosen for xR is of no importance, as long as is a valid value
for pa

X
, because of the factor 1∗L(x) = 0 if x ∈ L, resulting that the value of the

second term in equation (7) is not altered by the choice xR.
To prove the result given by equation (7) let’s calculate, see equation (6):

∫

M

pm
X

dm =

∫

M

pm
X

dmd +

∫

M

pm
X

dλ̃. (8)

For the first integral:

∫

M

pm
X dmd =

∫

M

(

ρ
∑

l

πl 1ℓl
(x) + (1 − ρ) 1∗L(x) pa

X(w(x))

)

md(dx).

For the first term:
∫

M

∑

l

πl 1ℓl
(x) md(dx) =

∫ 1M (x)
∑

l

πl 1ℓl
(x) md(dx)

=
∑

j

1M (ℓj)
∑

l

πl 1ℓl
(ℓj) =

∑

j

πj 1M (ℓj),

since 1ℓl
(ℓj) = 1 if ℓl = ℓj, and 1ℓl

(ℓj) = 0 if ℓl 6= ℓj. As for the second term:
∫

M

1∗L(x) pa
X(w(x)) md(dx) =

∫ 1M (x) 1∗L(x) pa
X(w(x)) md(dx)

=
∑

l

1M (ℓl) 1∗L(ℓl) pa
X(xR) = 0,

since 1∗L(ℓl) = 0, for all l ∈ L. Hence,
∫

M
pm
X

dmd = ρ
∑

l πl 1M (ℓl).
For the second integral in equation (8):

∫

M

pm
X dλ̃ =

∫

M\L pm
X dλ

=

∫

M\L(ρ ∑l

πl 1ℓl
(x) + (1 − ρ) 1∗L(x) pa

X
(w(x))) dx

INRIA



Mixed States MRF’s 13

= ρ
∑

l

πl

∫

M\L 1ℓl
(x) dx + (1 − ρ)

∫

M\L 1∗L(x) pa
X(w(x)) dx,

applying Tonelli. The first term is zero since for each l = 1, 2, · · · , it is 1ℓl
(x) =

0, for x ∈ M \ L. As for the second term, since 1∗L(x) = 1, for x ∈ M \ L, and
since w(x) = x for x ∈ M \ L, then:

∫

M\L 1∗L(x) pa
X(w(x)) dx =

∫

M\L pa
X(x) dx,

so that
∫

M
pm
X

dλ̃ = (1 − ρ)
∫

M\L pa
X

(x) dx. Collecting all these results one

obtains:
∫

M
pm
X

dm = ρ
∑

l πl1M (ℓl) + (1− ρ)
∫

M\L pa
X

(x) dx = µm
X

(B), for all

B ∈ B(Rn), which is the desired result, see equation (5).

3 Real Mixed States Markov Random Fields

3.1 Some definitions

Let (RN , B(Rn)) be the measurable space where the space is RN , and B(Rn)
is the σ-algebra generated say, by the open sets in RN . Let A be a finite set.
Define #(A) as the number of elements in A. Consider now the following spaces
Di, where for each i, each space Di might be a discrete space, or R, or Rni

or Cni , for some ni ≥ 1, or the union of a discrete space and Cni or Rni , i.
e. a mixed states variable. Here, each Di will be considered as the union of
a single discrete value, where probability mass will be concentrated, and Rni ,
with eventually a different dimension ni for each i. Let N be a finite positive
integer and define D = D1 × D2 × · · · × DN . Let f denote a function from D
to R. The function f is a function with N arguments (called also ”sites”) for
which the i-th argument takes values xi ∈ Di.

Let r ∈ D be a fixed vector such that f(r) = 0. Call that vector a reference
vector, or ”ground” vector. Each ri ∈ Di will be called the ”ground” value of
the i-th argument. Equivalently, let’s say that the i-th component of a vector
x ∈ D is ”grounded” if xi = ri.

Let S be the set S = {1, 2, · · · , N}. For a given A ⊆ S define xA as a vector
built as the concatenation of the vectors xi for i ∈ A. The superscript c when
applied to a set, denotes the set complementing operation. In this section set
complementing is considered with respect to the set S.

Define xc
i as a vector built as the concatenation of all the xj for j 6= i, i.e.

the vector xc
i does not contain xi. Note that xc

i = x{i}c .
For a given A ⊆ S define gA(x) as a vector of the same dimension as x such

that the i-th component is [gA(x)]i = xi if i ∈ A while [gA(x)]i = ri if i /∈ A.
That is, the values corresponding to sub-indexes in A are preserved while those
corresponding to sub-indexes not in A are ”grounded”. Call the function gA(x)
the ”grounding” function.

3.2 The Hammersley-Clifford Theorem

Theorem 3.1 ([1]) Let f be a function from D to any arbitrary group. In par-
ticular, that group may be taken as Rn, for some n ≥ 1. Call S = {1, 2, · · · , N}.
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14 Cernuschi-Fŕıas

Given r ∈ D such that f(r) = 0, then there is a decomposition:

f(x) =
∑

A⊆S

fA(xA) (9)

satisfying:
A) Each fA(xA) is a function that only depends on the arguments whose sub-
indexes belong to the set A, ordered lexicographically, both, the sub-indexes in A
and the arguments in f , so that there is a one to one correspondence between
the elements of A and the arguments of f . That is, any change in the value of
an argument not in A does not alter the value of fA(xA).
B) If for at least some i ∈ A it is xi = ri, then fA(xA) = 0
C) For the given r, the decomposition given in equation (9) is unique.

Note that as for the function f from D to G, it is only required that G has a
group structure, i. e. the existence of a binary operation with group structure.

Theorem 3.2 (Hammersley-Clifford theorem, [1], [14]) Let p(x) be a
generalized probability density with respect to some measure m, such that p(x) 6=
0, ∀x ∈ D. Fix r ∈ D, then, there exists a unique collection of functions
QA(xA) which take the zero value if any of its arguments is grounded, such
that:

log
p(x)

p(r)
=
∑

A⊆S

QA(xA) , (10)

and:

log
p(xi|x

c
i )

p(ri|xc
i )

=
∑

{i}⊆A⊆S

QA(xA) . (11)

4 A Decomposition Theorem

4.1 Preliminaries

In this section real mixed states Markov Random Fields will be considered.
Following Chapter VI, [13], define the product measurable space (D,M), where
D is the cartesian product D = D1×D2 · · ·DN , and M is the product σ-algebra
generated by M1×M2×· · ·×MN . Consider the probability space (D,M, m),
where the measure m is given by

m =

N
∏

i=1

mi, (12)

for rectangles, where each measure mi is of the form mi = 1ri
+ λi, where

ri ∈ Rni , and where λi is the Lebesgue measure for the measurable space
(Rni , B(Rni ). Note that m(D) = 1. Formalizing the product space is a rather
long issue. As said in [13], p. 379: ”The subject exhibits several technicalities,
which can be an annoyance or a source of fascination: depending upon one’s
point of view”. Though this author belongs to the second group, the reader is
referred to Chapter VI, [13], to raise the point on the construction of the prod-
uct space. It can be checked that there are no surprises and that equivalent

INRIA



Mixed States MRF’s 15

results are obtained for the real mixed states random fields introduced here. In
particular both Tonelli’s and Fubini’s theorems are valid. Define as usual, the
marginal densities and the conditional densities.

Define a real mixed states random field, as a collection of random variables X
described by a joint generalized probability density function pm

X
(x) with respect

to the measure m =
∏N

i=1 mi. Note that the the function pm
X

(x) is a function
from D → R that integrates to 1 with respect to the measure m. Following
[14], define a real mixed states Markov random field, denoted as ms-MRF, a real
mixed states random field such that pm

X
(x) 6= 0, for all x ∈ D.

In what follows drop the sub-index denoting the random variable X in pm
X

(x)
and denote it as pm(x) , whenever there is no confusion in notation.

Let pm(xi | x
c
i ) be a collection, for i = 1, 2, · · · , N , of conditional probabil-

ity density functions corresponding to random variables taking mixed values, i.e.
pdf’s with respect to the measures mi(dxi) = d(xi +uri

(xi)), where uri
(xi) is a

step function at xi = ri, as previously defined. Random variables whose pdf’s
are taken with respect to these measures mi, will be called real mixed states
random variables and the corresponding densities will be called ms-pdf’s (mixed
states probability density functions). Whenever a ms-pdf is integrated, it will
be done using a Lebesgue-Stieljes integral with respect to the corresponding
measure d(xi + uri

(xi)) as previously discussed.
Recall: 1ri

(xi) =

{

1 if xi = ri,

0 if xi 6= ri,
(13)

and: 1∗
ri

(xi) = 1 − 1ri
(xi) . (14)

Define:
ρi (xc

i ) = P(xi = ri | x
c
i ), (15)

and:
ρ∗i (xc

i ) = 1 − ρi (xc
i ) . (16)

In this section let’s determine the joint probability density function for which
the conditional ms-pdf’s with respect to the measures mi take the form:

pm(xi | x
c
i ) = ρi (xc

i ) 1ri
(xi) + ρ∗i (xc

i ) 1∗
ri

(xi) pa (xi | x
c
i ) ,

∀i = 1, 2 · · · , N.
(17)

These conditional pdf’s can not be taken arbitrarily, except when they are all
independent, because they have to satisfy the Hammersley-Clifford theorem in
the form of theorem 3.2 in the previous section. When the xi’s are all inde-
pendent, the conditional ms-pdf’s may be taken arbitrarily. For this case the
ms-pdf is simply the product of all the conditional ms-pdf’s. Additionally, the
ρi (xc

i ) ’s with 0 ≤ ρi (xc
i ) ≤ 1, and the functions pa (xi | x

c
i ) = pa(xi), may

all be taken functionally independent from one another, in that case.
When the conditional ms-pdf’s effectively depend on the neighbors, there

appear additional constraints that these functions must satisfy because of the
Hammersley-Clifford theorem.
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16 Cernuschi-Fŕıas

4.2 The theorem

Let’s say that pa(x) is a MRF by itself if it has the form given by equations
(10), (11) satisfying theorem 3.2, so that the Markov Random Field is given by
pa(x) , which corresponds to the pdf of some continuous distribution function
with respect to Lebesgue measure. That is, if pa(x) is considered alone, as a
pdf with respect to Lebesgue measure, then pa(x) is a MRF.

Theorem 4.1 If pa(x) is by itself a Markov random field with respect to the
Lebesgue measure for (RN , B(Rn)), then, the potentials of the Gibbs represen-
tation, [14], of the joint ms-pdf, decompose in a discrete related part and a
continuous related part, from which all the conditions and constraints required
by the Hammersley-Clifford theorem are obtained.

Proof. From equation (17):

log pm(xi | x
c
i ) = 1ri

(xi) log ρi (xc
i ) + 1∗

ri
(xi) log ρ∗i (xc

i )

+ 1∗
ri

(xi) log pa (xi | x
c
i )

= 1ri
(xi) log ρi (xc

i ) + 1∗ri
(xi) log ρ∗i (xc

i )

+ 1∗
ri

(xi) log
pa (xi | x

c
i )

pa(ri | xc
i )

+ 1∗
ri

(xi) log pa(ri | x
c
i )

= 1ri
(xi) log ρi (xc

i ) + 1∗
ri

(xi) log ρ∗i (xc
i )

+ log
pa (xi | x

c
i )

pa(ri | xc
i )

+ 1∗ri
(xi) log pa(ri | x

c
i )

(18)

The last equality is true since log
pa(xi | x

c
i )

pa(ri | xc
i )

is zero for xi = ri, and 1∗
ri

(xi) =

1 for xi 6= ri.
Also, since pa(x) is a MRF by itself:

log
pa(x)

pa(r)
≡ V a(x) ≡ Qa(x) =

∑

A⊆S

Qa
A(xA) , (19)

where to conform with the usual terminology, [14], V a(x) is called the energy
of the MRF, and {Qa

A(xA)}A⊆S is the collection of the potentials of the MRF,
and:

log
pa (xi | x

c
i )

pa(ri | xc
i )

=
∑

{i}⊆A⊆S

Qa
A(xA) . (20)

Hence:

log pm(xi | x
c
i ) = 1ri

(xi) log ρi (xc
i ) +

+ 1∗ri
(xi) log ( ρ∗i (xc

i ) pa(ri | x
c
i ) ) +

∑

{i}⊆A⊆S

Qa
A(xA) . (21)

For xi = ri use (18) and (19) to obtain:

log pm(ri | x
c
i ) = log ρi (xc

i ) , (22)

so that:

log
pm(xi | x

c
i )

pm(ri | xc
i )

= 1∗ri
(xi) log

[

ρ∗i (xc
i )

ρi (xc
i )

pa(ri | x
c
i )

]

+ log
pa (xi | x

c
i )

pa(ri | xc
i )

.

(23)
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Apply theorem 3.2 to pm(x) to obtain:

log
pm(x)

pm(r)
≡ V m(x) ≡ Qm(x) =

∑

A⊆S

Qm
A (xA) , (24)

where, as before, V m(x) is the energy of the mixed states MRF, and the col-
lection {Qm

A (xA)}A⊆S is the collection of potentials of the mixed states MRF,
and:

log
pm(xi | x

c
i )

pm(ri | xc
i )

=
∑

{i}⊆A⊆S

Qm
A (xA) . (25)

Applying (20) and (25) in (23) it results:

∑

{i}⊆A⊆S

Qm
A (xA) = 1∗ri

(xi) log

[

ρ∗i (xc
i )

ρi (xc
i )

pa(ri | x
c
i )

]

+
∑

{i}⊆A⊆S

Qa
A(xA) .

(26)
Call:

αi = log

[

ρ∗i (r
c
i )

ρi(rc
i )

pa(ri | r
c
i )

]

, (27)

and define

gi(x
c
i ) = log

[

ρ∗i (xc
i )

ρi (xc
i )

pa(ri | x
c
i )

]

− αi, (28)

so that:
gi(r

c
i ) = 0. (29)

Observe that for each i, each function gi(x
c
i ) may eventually depend on all

the variables except the variable xi. Because of the N equations (29), apply
theorem 3.1 to each of the N functions in (28) for i = 1, 2, · · · , N , to obtain:

gi(x
c
i ) =

∑

A⊆S\{i}

G
(i)
A (xc

i ) , for i = 1, 2, · · · , N. (30)

Hence:
∑

{i}⊆A⊆S

Qm
A (xA) = 1∗

ri
(xi) αi + 1∗

ri
(xi)

∑

A⊆S\{i}

G
(i)
A (xc

i )

+
∑

{i}⊆A⊆S

Qa
A(xA) , for i = 1, 2, · · · , N.

(31)

4.2.1 First order cliques

The first order cliques correspond to:

A = {i}, for i = 1, 2, · · · , N. (32)

Instead of x use the grounding function g{i}(x), so that xc
i = rc

i , in each of the
N equations given in (31), to obtain:

Qm
{i}(xi) = αi 1∗ri

(xi) + Qa
{i}(xi), (33)

Hence, all the first order cliques for the mixed states distribution were obtained.
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18 Cernuschi-Fŕıas

4.2.2 Second order cliques

The second order cliques correspond to:

A = {i, j}, for 1 ≤ i < j ≤ N. (34)

Subtract from (31) all the first order cliques obtained in (33). Next, instead of
x use the grounding function g{i,j}(x), with i < j, to obtain:

Qm
{i,j}(xi,xj) = 1∗ri

(xi) G
(i)
{j}(xj) + Qa

{i,j}(xi,xj)

= 1∗
rj

(xj) G
(j)
{i}(xi) + Qa

{j,i}(xj ,xi).
(35)

Hence:1∗
ri

(xi) G
(i)
{j}(xj) = 1∗

rj
(xj) G

(j)
{i}(xi), ∀j 6= i, 1 ≤ i < j ≤ N. (36)

Fix a value x†
i for xi such that x†

i 6= ri, then 1∗
ri

(x†
i ) = 1. Call βi,j = G

(j)
{i}(x

†
i ),

then:
G

(i)
{j}(xj) = βi,j 1∗rj

(xj) . (37)

Proceed analogously with xj to obtain: G
(j)
{i}(xi) = βj,i 1∗ri

(xi) . Hence, from

(36): 1∗ri
(xi) 1∗rj

(xj) βi,j = 1∗rj
(xj) 1∗ri

(xi) βj,i, (38)

so that:
βi,j = βj,i. (39)

Then, from (35) the second order cliques may be obtained as:

Qm
{i,j}(xi,xj) = βi,j 1∗ri

(xi) 1∗rj
(xj) + Qa

{i,j}(xi,xj) (40)

Hence, all the second order cliques for the mixed states distribution were ob-
tained.

4.2.3 Third and higher order cliques

Proceed analogously for the higher order cliques. For clarity consider the third
order cliques. The third order cliques correspond to sets of the form:

A = {i, j, k}, for 1 ≤ i < j < k ≤ N. (41)

Substract all the first and second order cliques from (31) using (33) and (40).
Next, instead of x use the grounding function g{i,j,k}(x), with i < j < k, in the
i-th, j-th, and k-th equations to obtain:

Qm
{i,j,k}(xi,xj ,xk) = 1∗ri

(xi) G
(i)
{j,k}(xj ,xk) + Qa

{i,j,k}(xi,xj ,xk)

= 1∗
rj

(xj) G
(j)
{i,k}(xi,xk) + Qa

{j,i,k}(xj ,xi,xk)

= 1∗rk
(xk) G

(k)
{i,j}(xi,xj) + Qa

{k,i,j}(xk,xi,xj).

(42)

Hence:1∗
ri

(xi) G
(i)
{j,k}(xj ,xk) = 1∗

rj
(xj) G

(j)
{i,k}(xi,xk) = 1∗

rk
(xk) G

(k)
{i,j}(xi,xj),

∀i, j, k such that 1 ≤ i < j < k ≤ N.
(43)
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Mixed States MRF’s 19

Next, proceed as before fixing values different from the ”ground” values for xi,
xj and xk to obtain:

G
(i)
{j,k}(xj ,xk) = χi,j,k 1∗rj

(xj) 1∗
rk

(xk) . (44)

and:1∗
ri

(xi) 1∗
rj

(xj) 1∗
rk

(xk) χi,j,k = 1∗
rj

(xj) 1∗
ri

(xi) 1∗
rk

(xk) χj,i,k = · · · , (45)

so that:
χi,j,k = χperm(i,j,k), (46)

where perm(i, j, k) denotes an arbitrary permutation of the subindexes i, j, and
k. Then, from (42) the third order cliques may be obtained as:

Qm
{i,j,k}(xi,xj) = χi,j,k 1∗

ri
(xi) 1∗

rj
(xj) 1∗

rk
(xk) + Qa

{i,j,k}(xi,xj ,xk)

(47)
Hence, all the third order cliques for the mixed states distribution were obtained.
Proceed analogously to obtain all the higher order cliques.

4.2.4 Joint distribution

From the previous results the joint distribution may be obtained from the first,
second and higher order cliques as obtained from (33), (40), (47) and its exten-
sions, as:

log
pm(x)

pm(r)
=
∑

k

[

αi 1∗ri
(xi) + Qa

{i}(xi)
]

+
∑

<i,j>

[

βi,j 1∗
ri

(xi) 1∗
rj

(xj) + Qa
{i,j}(xi,xj)

]

+
∑

<i,j,k>

[

χi,j,k 1∗ri
(xi) 1∗rj

(xj) 1∗rk
(xk) + Qa

{i,j,k}(xi,xj ,xk)
]

+ · · · ,
(48)

where
∑

<i,j>

≡
∑

{i,j}∈2S

=
∑

i

∑

j

1≤i<j≤N

=

N−1
∑

i=1

N
∑

j=i+1

,

and
∑

<i,j,k>

≡
∑

{i,j,k}∈2S

=
∑

i

∑

j

∑

k

1≤i<j<k≤N

=

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1

.

Define:

V d(x) ≡ Qd(x) =
∑

i

αi 1∗ri
(xi) +

∑

<i,j>

βi,j 1∗
ri

(xi) 1∗
rj

(xj)

+
∑

<i,j,k>

χi,j,k 1∗
ri

(xi) 1∗
rj

(xj) 1∗
rk

(xk) + · · · .
(49)
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Hence, from (19), (49), and (48) it results:

log
pm(x)

pm(r)
≡ V m(x) = V d(x) + V a(x). (50)

To further stress the presence of the parameters, call φd a vector containing
all the parameters of V d(x), see equation (49). Similarly call φa the vector
containing all the parameters of V a(x). Then, (50) takes the form:

log
pm(x)

pm(r)
≡ V m(x; φd, φa) = V d(x; φd) + V a(x; φa). (51)

Define the partition functions:

Za(φa) =

∫

eV a(x;φa) m(dx), (52)

Zd(φd) =

∫

eV d(x;φd) m(dx), (53)

and:

Zm(φd, φa) =

∫

eV m(x;φd,φa) m(dx) =

∫

eV a(x;φa)+V d(x;φd) m(dx) (54)

Define the generalized probability density function pd(x; φd) as:

pd(x; φd) =
eV d(x)

Zd(φd)
, (55)

so that:

Zd(φd) =
1

pd(r; φd)
. (56)

Similarly, from (19):

Za(φa) =
1

pa(r; φa)
. (57)

Also, from (51) and (54):

Zm(φd, φa) =
1

pm(r; φa)
. (58)

Collecting all these results in equation (51), it results:

pm(x) =
pd(x; φd) pa(x; φa)

Z(φd, φa)
, (59)

where:

Z(φd, φa) =
Zm(φd, φa)

Zd(φd) Za(φa)
=

∫

pd(x; φd) pa(x; φa) m(dx), (60)

is the normalization constant, depending only on the parameters, for the product
This product should not be misinterpreted as any independence condition.
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From (28), (27), (30), (37), (44) and its extensions:

log

[

ρ∗i (xc
i )

ρi (xc
i )

pa(ri | x
c
i )

]

= αi +
∑

j

j 6=i

βi,j 1∗
rj

(xj) +

+
∑

j,k

j 6=i, k 6=i, j<k

χi,j,k 1∗rj
(xj) 1∗rk

(xk) + · · · ≡ hi(x
c
i ).

(61)

Hence:

ρi (xc
i ) =

1

1 +
ehi(x

c
i )

pa(ri | xc
i )

.
(62)

4.3 The converse

Conversely: if a MRF has the form given by equations (59) and (60), satisfying
theorem 3.2, where pa(x; φa) is the pdf of an arbitrary absolutely continuous
distribution function with respect to Lebesgue measure, that is pa(x; φa) is
a MRF by itself, i. e. satisfying equations (19), (20) and theorem 3.2, and,
pd(x; φd) is an arbitrary discrete random field given by equations (55), (49),
and (56), then, the conditional ms-pdf’s have the form given by (17) with the
ρi (xc

i ) ’s given by (62), where the hi(x
c
i )’s are obtained from (61) using (49).

Proof. Assume the joint generalized probability density function with respect
to the measure m given by equation (12) is given by:

pm
X(x) =

eV
m(x)

Zm
=

eV
a(x) + V d(x)

Zm
=

=
1

Zm
exp





∑

A⊆S

Qa
A(xA) +

∑

i

αi 1∗ri
(xi) +

∑

<i,j>

βi,j 1∗
ri

(xi) 1∗
rj

(xj)

+
∑

<i,j,k>

χi,j,k 1∗
ri

(xi) 1∗
rj

(xj) 1∗
rk

(xk) + . . .



 .

(63)
Note that pm

X
(x) 6= 0, for all x ∈ D.

Let l ∈ S, since pm
X

(x) ≡ pm
Xl,X

c
l
(xl,x

c
l ), then:

log
pm
Xl | Xc

l
(xl | x

c
l )

pm
Xl | Xc

l

(rl | xc
l )

= log
pm
Xl,X

c
l
(xl,x

c
l )

pm
Xl,X

c
l
(rl,xc

l )
=

=
∑

{l}⊆A⊆S

Qa
A(xA) + 1∗rl

(xl)
(

αl +

+
∑

j

j 6=l

βl,j 1∗rj
(xj) +

∑

j,k

j 6=l, k 6=l, j<k

χl,j,k 1∗rj
(xj) 1∗rk

(xk) + . . .
)

=

= 1∗
rl

(xl) hl(x
c
l ) +

∑

{l}⊆A⊆S

Qa
A(xA) ,

(64)
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since Qa
A(xA) = 0, for xl = rl if l ∈ A, and where equation (61) was used.

Hence:

pm
Xl | Xc

l
(xl | x

c
l ) = pm

Xl | Xc
l
(rl | x

c
l ) e

∑

{l}⊆A⊆S Qa
A(xA) e1∗rl

(xl) hl(x
c
l )

= pm
Xl | Xc

l
(rl | x

c
l ) e

∑

{l}⊆A⊆S Qa
A(xA)

(1rl
(xl) + 1∗rl

(xl) ehl(x
c
l )
)

= pm
Xl | Xc

l
(rl | x

c
l )
(1rl

(xl) + 1∗
rl

(xl) ehl(x
c
l ) e

∑

{l}⊆A⊆S Qa
A(xA)

)

,

(65)
because

∑

{l}⊆A⊆S Qa
A(xA) = 0, if xl = rl. Substituting equation (20) in (65)

it results:

pm
Xl | Xc

l
(xl | x

c
l ) = pm

Xl | Xc
l
(rl | x

c
l )
(1rl

(xl) +

+ 1∗rl
(xl)

ehl(x
c
l )

pa
Xl | Xc

l

(rl | xc
l )

pa
Xl | Xc

l
(xl | x

c
l )
)

.
(66)

Since
∫

pm
Xl | Xc

l
(xl | x

c
l ) dml = 1, and

∫

pm
Xl | Xc

l
(xl | x

c
l ) dml =

∫

pm
Xl | Xc

l
(xl | x

c
l ) dmd

l +

∫

pm
Xl | Xc

l
(xl | x

c
l ) dxl

= pm
Xl | Xc

l
(rl | x

c
l ) +

∫

pm
Xl | Xc

l
(xl | x

c
l ) dxl,

(67)
then:

1 = pm
Xl | Xc

l
(rl | x

c
l ) +

∫

pm
Xl | Xc

l
(xl | x

c
l ) dxl. (68)

From equation (66):

∫ pm
Xl | Xc

l
(xl | x

c
l )

pm
Xl | Xc

l

(rl | xc
l )

dxl =

=

∫ 1rl
(xl) dxl +

∫ pa
Xl | Xc

l
(xl | x

c
l )

pa
Xl | Xc

l

(rl | xc
l )

1∗rl
(xl) ehl(x

c
l ) dxl

=

∫ 1rl
(xl) dxl + ehl(x

c
l )
∫ 1∗rl

(xl)
pa
Xl | Xc

l
(xl | x

c
l )

pa
Xl | Xc

l

(rl | xc
l )

dxl.

(69)

The first integral is zero since the integration set is a single point having
Lebesgue measure zero, while the second integral is a standard Lebesgue in-
tegral over the whole space except for a point of Lebesgue measure zero, so
that:
∫

pm
Xl | Xc

l
(xl | x

c
l ) dxl = pm

Xl | Xc
l
(rl | x

c
l ) ehl(x

c
l )
∫ pa

Xl | Xc
l
(xl | x

c
l )

pa
Xl | Xc

l

(rl | xc
l )

dxl.

(70)
But:

∫

pa
Xl | Xc

l
(xl | x

c
l ) dxl = 1, (71)

so that, from equations (68), (70), and (71):

1 = pm
Xl | Xc

l
(rl | x

c
l )
(

1 +
ehl(x

c
l )

pa
Xl | Xc

l

(rl | xc
l )

)

. (72)
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Call ρl(x
c
l ) ≡ pm

Xl | Xc
l
(rl | x

c
l ), and ρ∗l (x

c
l ) = 1 − ρl(x

c
l ). Then, from equation

(72):

ρl(x
c
l ) = pm

Xl | Xc
l
(rl | x

c
l ) =

1

1 + ehl(x
c
l )

pa
Xl | Xc

l
(rl | xc

l
)

.
(73)

Using equation (73) in (66) one obtains:

pm
Xl | Xc

l
(xl | x

c
l ) = ρl(x

c
l ) 1rl

(xl) + (1 − ρl(x
c
l )) 1∗rl

(xl) pa
Xl | Xc

l
(xl | x

c
l )

= ρl(x
c
l ) 1rl

(xl) + ρ∗l (x
c
l ) 1∗rl

(xl) pa
Xl | Xc

l
(xl | x

c
l ) ,

(74)
which is the desired result.

5 Conclusions and Further Work

A theoretical formulation of the mixed states random variable was presented,
as well as a theoretical analysis for mixed states Markov Random Fields with
probability mass concentrated in a real value. From the results obtained here,
mainly equation (63) which gives the joint ms-pdf with respect to the measure
m, and equations (73) and (74) which give the conditional ms-pdf’s with respect
to the measures mi, previous results given in [2], [7], [8], [11], [12], [17], [18],
[19], [20], [21], [25], are immediately obtained.

Equation (63) permits to use the power of the Gibbs formulation using poten-
tials to design the MRF, as an alternative to the use of conditional distributions
as was done in [2], [7], [8], [11], [12], [17], [18], [19], [20], [21], [25].

Results presented here will be extended in two directions.
In a sequel, the extension of the results given here to Markov Random Fields

of Mixed States variables which are mixtures of a denumerable set of probability
mass concentrated in either label values and/or multidimensional real values,
and a standard absolutely continuous distributed multidimensional real random
variable will be given.

The second direction corresponds to the analysis of Mixed States Markov
Random Fields whose potentials present interaction between the ”discrete” and
the ”absolutely continuous” distributed components of the mixtures for the
potentials of the Gibbs formulation, which are presently under study.
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[16] M. Loève. Probability Theory, 4th edition, Vols. I and II. New York,
Springer-Verlag, 1977-1978.

INRIA



Mixed States MRF’s 25

[17] G. Piriou, P. Bouthemy, N. Peyrard, J.-F. Yao. Probabilistic models of
image motion for recognition of dynamic content in video. In Int. Work-
shop on Computer Vision and Image Analysis, IWCVIA’03, Las Palmas
de Gran Canaria, Spain, December 2003.

[18] G. Piriou, P. Bouthemy, J.-F. Yao. Extraction of semantic dynamic con-
tent from videos with probabilistic motion models. In Proc. Eur. Conf.
Computer Vision, ECCV’04, Prague, Czech Republic, May 2004.

[19] G. Piriou, P. Bouthemy, J.-F. Yao. Learned probabilistic image motion
models for event detection in videos. In Proc. Int. Con. Pattern Recogni-
tion, ICPR’04, Cambridge, UK, August 2004.

[20] G. Piriou, P. Bouthemy, J.-F. Yao. Motion content recognition in video
database with mixed-state probabilistic causal models. In Int. Workshop
on Content-Based Multimedia Indexing, CBMI’2005, Riga, June 2005.

[21] G. Piriou, P. Bouthemy, J.-F. Yao. Recognition of dynamic video contents
with global probabilistic models of visual motion. IEEE Trans. on Image
Processing, Vol. 15, No. 11, pp. 3417–3430, 2006.

[22] R. Radke, S. Andra, O. Al-Kofahi, B. Roysam. Image change detection:
a systematic survey. IEEE Trans. on Image Processing, vol. 14, No. 3, pp.
294-307, March 2005.
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