D. Alexander, G. Barker, and S. Arridge, Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data, Magnetic Resonance in Medicine, vol.46, issue.2, pp.331-340, 2002.
DOI : 10.1002/mrm.10209

D. C. Alexander, Maximum Entropy Spherical Deconvolution for Diffusion MRI, Image Processing in Medical Imaging, pp.76-87, 2005.
DOI : 10.1007/11505730_7

A. Anderson, Measurement of fiber orientation distributions using high angular resolution diffusion imaging, Magnetic Resonance in Medicine, vol.77, issue.5, pp.1194-1206, 2005.
DOI : 10.1002/mrm.20667

G. Andrews, R. Askey, and R. Roy, Special Functions, 1999.

A. Anwander, M. Tittgemeyer, D. Y. Von-cramon, A. D. Friederici, and T. R. Knosche, Connectivity-Based Parcellation of Broca's Area, Cerebral Cortex, vol.17, issue.4, pp.816-825, 2007.
DOI : 10.1093/cercor/bhk034

P. Basser and C. Pierpaoli, Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI, Journal of Magnetic Resonance, Series B, vol.111, issue.3, pp.209-219, 1996.
DOI : 10.1006/jmrb.1996.0086

P. T. Callaghan, Principles of nuclear magnetic resonance microscopy, 1993.

J. Campbell, K. Siddiqi, V. Rymar, A. Sadikot, and B. Pike, Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques, NeuroImage, vol.27, issue.4, pp.725-736, 2005.
DOI : 10.1016/j.neuroimage.2005.05.014

T. Chan and L. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 2001.
DOI : 10.1109/83.902291

D. Cremers, M. Rousson, and R. Deriche, A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, International Journal of Computer Vision, vol.18, issue.9, pp.195-215, 2007.
DOI : 10.1007/s11263-006-8711-1

A. Dervieux and F. Thomasset, A finite element method for the simulation of a Rayleigh-Taylor instability, Lecture Notes in Mathematics, vol.216, pp.145-159, 1979.
DOI : 10.1016/0021-9991(79)90086-X

A. Dervieux and F. Thomasset, Multifluid incompressible flows by a finite element method, Lecture Notes in Physics, vol.11, pp.158-163, 1981.
DOI : 10.1007/3-540-10694-4_22

M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, A linear and regularized odf estimation algorithm to recover multiple fibers in q-ball imaging, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070253

M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications, Magnetic Resonance in Medicine, vol.50, issue.2, pp.395-410, 2006.
DOI : 10.1002/mrm.20948

M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, Regularized, fast, and robust analytical Q-ball imaging, Magnetic Resonance in Medicine, vol.17, issue.3, 2007.
DOI : 10.1002/mrm.21277

C. Feddern, J. Weickert, and B. Burgeth, Level-set methods for tensor-valued images, Proceedings of the Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp.65-72, 2003.

L. Frank, Characterization of anisotropy in high angular resolution diffusion-weighted MRI, Magnetic Resonance in Medicine, vol.15, issue.6, pp.1083-1099, 2002.
DOI : 10.1002/mrm.10156

P. Hansen, The l-curve and its use in the numerical treatment of inverse problems, Computational Inverse Problems in Electrocardiology, pp.119-142, 2001.

C. Hess, P. Mukherjee, E. Han, D. Xu, and D. Vigneron, Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis, Magnetic Resonance in Medicine, vol.54, issue.1, pp.104-117, 2006.
DOI : 10.1002/mrm.20931

K. M. Jansons and D. C. Alexander, Persistent angular structure: new insights from diffusion magnetic resonance imaging data, Inverse Problems, vol.19, issue.5, pp.1031-1046, 2003.
DOI : 10.1088/0266-5611/19/5/303

L. Jonasson, Segmentation of diffusion weighted MRI using the level set framework, 2006.

L. Jonasson, X. Bresson, P. Hagmann, O. Cuisenaire, R. Meuli et al., White matter fiber tract segmentation in DT-MRI using geometric flows, Medical Image Analysis, vol.9, issue.3, pp.223-236, 2005.
DOI : 10.1016/j.media.2004.07.004

L. Jonasson, P. Hagmann, X. Bresson, J. Thiran, and V. J. Wedeen, Representing Diffusion MRI in 5D for Segmentation of White Matter Tracts with a Level Set Method, Infortation Processing in Medical Imaging, volume Lecture Notes in Computer Science, pp.311-320, 2005.
DOI : 10.1007/11505730_26

C. Lenglet, M. Rousson, and R. Deriche, DTI segmentation by statistical surface evolution, IEEE Transactions on Medical Imaging, vol.25, issue.6, pp.685-700, 2006.
DOI : 10.1109/TMI.2006.873299

URL : https://hal.archives-ouvertes.fr/inria-00070183

T. Mcgraw, B. Vemuri, R. Yezierski, and T. Mareci, Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures, European Conference on Computer Vision (ECCV), pp.463-475, 2006.
DOI : 10.1007/11744078_36

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Ozarslan and T. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging, Magnetic Resonance in Medicine, vol.48, issue.5, pp.955-965, 2003.
DOI : 10.1002/mrm.10596

E. Ozarslan, T. Shepherd, B. Vemuri, S. Blackband, and T. Mareci, Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT), NeuroImage, vol.31, issue.3, pp.311086-1103, 2006.
DOI : 10.1016/j.neuroimage.2006.01.024

N. Paragios and R. Deriche, Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision, Journal of Visual Communication and Image Representation, vol.13, issue.1-2, pp.249-268, 2002.
DOI : 10.1006/jvci.2001.0475

C. Poupon, F. Poupon, L. Allirol, and J. Mangin, A database dedicated to anatomofunctional study of human brain connectivity, Twelfth Annual Meeting of the Organization for Human Brain Mapping (HBM), 2006.

M. Rousson, Cue Integration and Front Evolution in Image Segmentation, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00327560

M. Rousson, C. Lenglet, and R. Deriche, Level Set and Region Based Surface Propagation for Diffusion Tensor MRI Segmentation, Computer Vision Approaches to Medical Image Analysis (CVAMIA) and Mathematical Methods in Biomedical Image Analysis (MMBIA) Workshop, 2004.
DOI : 10.1007/978-3-540-27816-0_11

J. Tournier, F. Calamante, D. Gadian, and A. Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution, NeuroImage, vol.23, issue.3, pp.1176-1185, 2004.
DOI : 10.1016/j.neuroimage.2004.07.037

D. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, vol.23, issue.6, pp.1358-1372, 2004.
DOI : 10.1002/mrm.20279

D. Tuch, T. Reese, M. Wiegell, N. Makris, J. Belliveau et al., High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magnetic Resonance in Medicine, vol.147, issue.4, pp.577-582, 2002.
DOI : 10.1002/mrm.10268

L. Vese and T. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, vol.50, issue.3, pp.271-293, 2002.
DOI : 10.1023/A:1020874308076

Z. Wang and B. C. Vemuri, Tensor Field Segmentation Using Region Based Active Contour Model, European Conference on Computer Vision (ECCV), volume Lecture Notes in Computer Science, pp.304-315, 2004.
DOI : 10.1007/978-3-540-24673-2_25

Z. Wang and B. C. Vemuri, DTI segmentation using an information theoretic tensor dissimilarity measure, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.1267-1277, 2005.
DOI : 10.1109/TMI.2005.854516

V. Wedeen, T. G. Reese, D. Tuch, M. Weigel, J. Dou et al., Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri, Proceedings of the International Society for the Magnetic Resonance in Medecine: 8th Scientific Meeting and Exhibition, number 82, 2000.

M. R. Wiegell, D. S. Tuch, H. B. Larsson, and V. J. Wedeena, Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging, NeuroImage, vol.19, issue.2, pp.391-401, 2003.
DOI : 10.1016/S1053-8119(03)00044-2

H. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.
DOI : 10.1006/jcph.1996.0167

L. Zhukov, K. Museth, D. Breen, R. Whitakert, and A. H. Barr, Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data, Journal of Electronic Imaging, vol.12, issue.1, pp.125-133, 2003.
DOI : 10.1117/1.1527628

. Unité-de-recherche-inria-sophia and . Antipolis, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex (France) Unité de recherche INRIA Futurs : Parc Club Orsay Université -ZAC des Vignes 4, 2004.

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt, Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399