Scheduling Delta-Critical Tasks in Mixed-Parallel Applications on a National Grid

Frédéric Suter 1
1 ALGORILLE - Algorithms for the Grid
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Mixed-parallel applications can take advantage of large-scale computing platforms but scheduling them efficiently on such platforms is challenging. When relying on classic list scheduling algorithms, the issue of independent and selfish task allocation determination may arise. Indeed the allocation of the most critical task may lead to poor allocations for subsequent tasks. In this paper we propose a new mixed-parallel scheduling heuristic that takes into account that several tasks may have almost the same level of criticality during the allocation process. We then perform a comparison of this heuristic with other algorithms in simulation over a wide range of application and on platform conditions. We find that our heuristic achieves better performance in terms of schedule length, speedup and degradation from best.
Type de document :
Communication dans un congrès
8th IEEE/ACM International Conference on Grid Computing - Grid 2007, Sep 2007, Austin, TX, United States. IEEE, pp.2-9, 2007, 8th IEEE/ACM International Conference on Grid Computing, 2007
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00165868
Contributeur : Frederic Suter <>
Soumis le : jeudi 18 octobre 2007 - 15:36:01
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : vendredi 9 avril 2010 - 00:11:25

Fichier

grid07.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00165868, version 1

Collections

Citation

Frédéric Suter. Scheduling Delta-Critical Tasks in Mixed-Parallel Applications on a National Grid. 8th IEEE/ACM International Conference on Grid Computing - Grid 2007, Sep 2007, Austin, TX, United States. IEEE, pp.2-9, 2007, 8th IEEE/ACM International Conference on Grid Computing, 2007. 〈inria-00165868〉

Partager

Métriques

Consultations de la notice

265

Téléchargements de fichiers

253