First hitting time of Double Integral Processes to curved boundaries

Jonathan Touboul 1 Olivier Faugeras 1
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : The problem of finding the first hitting time of a Double Integral Process (DIP) such as the Integrated Wiener Proces (IWP) has been a central and difficult endeavor in stochastic calculus and has applications in many fields of physics (first exit time of a particle in a noisy force field) or in biology and neuroscience (spike time of an integrate-and-fire neuron with exponentially decaying synaptic current). The only results available so far were an approximation of the stationnary mean crossing time and the distribution of the first hitting time of the IWP to a constant boundary. In this paper, we generalize those results and find an analytical formula for the first hitting time of the IWP to piecewise cubic boundaries. We use this formula to approximate the law of the first hitting time of a general DIP to a smooth curved boundary, and we provide an estimation of the convergence of this method. This approximation formula is the first analytical description of the hitting time of a DIP to a curved boundary, and allows us to infer properties of this random variable and provides a way for computing accurately its law. The accuracy of the approximation is computed in the general case for the IWP and the calculation of crossing probability can be carried out through a Monte-Carlo method.
Type de document :
[Research Report] RR-6264, INRIA. 2008, pp.37
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Jonathan Touboul <>
Soumis le : lundi 28 janvier 2008 - 19:38:23
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 16:42:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00166335, version 3



Jonathan Touboul, Olivier Faugeras. First hitting time of Double Integral Processes to curved boundaries. [Research Report] RR-6264, INRIA. 2008, pp.37. 〈inria-00166335v3〉



Consultations de la notice


Téléchargements de fichiers