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Computing the Union of 3-Colored Triangles

Jean-Daniel.Boissonnats∗ Olivier Devillers†

Franco P. Preparata†

Abstract

Given is a set S of n points, each colored with one of k ≥ 3 colours.
We say that a triangle defined by three points of S is 3-colored if its
vertices have distinct colours. We prove in this paper that the problem of
constructing the boundary of the union T (S) of all such 3-colored triangles
can be done in optimal O(n log n) time.
Keywords:Convex hull, Legged robot, Motion planning, Stability

1 Introduction

Given is a set S of n points, each colored with one of k ≥ 3 colours. We say that
a triangle defined by three points of S is 3-colored if its vertices have distinct
colours. We consider in this paper the problem of constructing the boundary of
the union T (S) of all such 3-colored triangles.

This problem is motivated by the analysis of the stability of a legged robot [1].
Let k be the number of legs of the robot. We associate to each leg a colour and
assume that each leg can reach a finite number of foothold points, colored ac-
cordingly. For a given configuration there exists a stable assignment of the legs
to the footholds if and only if the center of mass lies inside the union of all
3-colored triangles.

The problem is a subtle generalization of the classic convex-hull problem.
Indeed, T (S) is exactly the convex hull CH(S) if, for example, all the points of
S have distinct colours (k = n). In spite of the more complicated structure of
the underlying geometry, we present an optimal O(n log n)-time algorithm for
this problem.
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The distinct colours are referred to by means of the integers 1, 2, . . . , k. In
the sequel, we denote Si the subset of S of points with colour i and Γi =

CH
(

⋃

j 6=i Sj

)

, the convex hull of the points of S whose colours are distinct

from color i.

2 Geometric Preliminaries

2.1 Some geometric properties of T (S)

Properties 1-5 are self-evident, and are therefore stated without proof.

Property 1 Every line segment joining two points with distinct colours (2-
colored segment) is an edge of a 3-colored triangle and so it belongs to T (S).

Property 2 T (S) is connected.

Property 3 The convex vertices of T (S) are original points of S (vertices of
triangles) and its concave vertices are intersections points between pairs of 2-
colored segments (edges of triangles).

Property 4 If p ∈ Si is a convex vertex of T (S), the two edges of T (S) incident
to p are contained in the supporting lines to Γi issuing from p.

Notice that the points where the supporting lines issuing from p intersect Γi are
not of colour i, so the line segments joining p to these points are 2-colored and
thus contained in T (S). Moreover, any other 2-colored line segment between p

and a point inside Γi is contained in the wedge defined by the two supporting
lines to Γi.

Property 5 The vertices of the convex hull CH(S) of S form a subset of the
convex vertices of T (S). They appear in the same order along the boundary of
T (S) as along that of CH(S).

Property 6 Along the boundary of T (S) there is at most one concave vertex
between two consecutive convex vertices.

Proof: Let p and q be two consecutive convex vertices. If p and q have distinct
colours, the line segment pq is included in T (S) and there are no concave vertices
between p and q.

Suppose now that p and q have the same colour. Let r be the first concave
vertex encountered when marching along the boundary of T (S) from p to q (see
Figure 1). If r is not adjacent to q then r belongs also to a 2-colored segment
uv whose endpoint u is chosen to belong to the half plane limited by the line
defined by p and r and not containing q. Clearly u 6= p and v 6= q. If either of
the two line segments pv or qu were contained in T (S), then r would not be a
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Figure 1: It is impossible to have two consecutive concave vertices.

vertex of T (S). But because u and v have distinct colours, at least one of these
two line segments is 2-colored and belongs to T (S). This contradicts Property
1 and proves the property. 3

The following property is an immediate consequence of Property 6.

Property 7 The number of edges of T (S) is at most 2n− k.

This bound is tight and can be achieved if all n points are vertices of CH(S)
and the boundary consists of k monochromatic sequences of vertices.

2.2 Extremal 2-colored segments

A 2-colored segment l is said to be extremal and anchored at p if:

(i) it is incident to p;

(ii) the line containing l leaves only points with the same colour as p – if any
– in one of the half-planes it defines.

It is immediate that an extremal segment anchored at p ∈ Sj belongs to
a supporting line from p to Γj . It follows that p ∈ Sj has anchored extremal
segments if and only if p is external to Γj and that if p has an anchored extremal
segment, it has two such segments, called left and right (with respect to an
observer standing at p and facing Γj) and respectively denoted L(p) and R(p).

It follows from Properties 1 and 2 that the boundary of T (S) is also the
boundary of the unbounded cell of the arrangement of the extremal 2-colored
line segments anchored at points of S.
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Let S′ be the set of vertices of CH(S). We denote B(S′) the boundary of
the unbounded cell of the arrangement of the extremal 2-colored line segments
of S anchored at points of S′.

Property 8 B(S′) is a simple polygon with at most 2n − k edges. Its vertices
appear in a cyclic order consistent with the order along the boundary of CH(S).

Proof: We first prove that B(S′) is connected. Indeed, if p and q are two
successive points of S′ in clockwise order, then L(p) ∩ R(q) 6= ∅ (if p and q are
of different colours L(p) = R(q) = pq).

Next we observe that the convex vertices of B(S′) are points of S′ and
its concave vertices are intersection points between pairs of extremal 2-colored
segments. The proof of Property 6 and thus of Property 7 apply to B(S′)
without change. This achieves the proof. 3

We conclude with the following important property.

Property 9 The polar order of the color-i convex vertices of T (S) with respect
to any point of S of colour j 6= i is consistent with their order along the boundary
of T (S).

Proof: The property trivially holds for the convex vertices of T (S) belonging
to CH(S). Therefore, let us consider a subsequence C = (p1, . . . , pr) of convex
vertices of T (S) occurring between two convex vertices p and q consecutive
along CH(S). All vertices of C have the same colour, say i, coincident with
the common colour of p and q (otherwise such vertices would be linked to p

and q by 2-colored segments and would not be convex). Consider two other
points, say u1 and u2, of respective colours j1 6= i and j2 6= i, and assume for a
contradiction that ps precedes pt, 1 ≤ s 6= t ≤ r with respect to u1 and ps follows
pt with respect to u2 (in polar order). This implies that u1 and u2 belongs to
distinct halfplanes defined by the line containing pspt, so that ps and pt cannot
be convex vertices of T (S). 3

3 Algorithm

We observe that p is a convex vertex of T (S) only if p has anchored extremal
segments. Thus, the set S∗ ⊆ S of points with anchored extremal segments is a
superset of the set of convex vertices C(S) of T (S) and the latter is a superset
of the set S′ of vertices of CH(S).

S′ ⊆ C(S) ⊆ S∗

Our algorithm will identify a subset of S∗, which is itself a superset of C(S),
and subsequently filter it to obtain C(S).

To gain efficiency, the algorithm computes, in Step 1 a data structure that
organizes the set of colours. Then it computes in Step 2, the extremal segments
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of each p ∈ S′; next, in Steps 3 and 4, the algorithm obtains the points of S∗−S′

lying outside B(S′), and determines their anchored extremal segments. Finally,
Step 5 will obtain C(S) and construct the boundary of T (S).

We now describe in detail the five steps of the algorithm.
Step 1 : Building the data structure The data structure is a bal-

anced binary tree T that organizes the set of colours. Each leaf of the tree is
associated with a distinct colour and each internal node is associated with the
union of the colours of its descendant nodes.

A point p of S is assigned to all the nodes associated with its colour. As a
consequence, each point is assigned to exactly one node in each level of the tree
and thus appears in at most ⌈log2 k⌉ nodes of the tree. The “left (resp. right)
subtree of T ” means the “left (resp. right) subtree of the root of T ”. In the
sequel S(V ) will denote the set of points assigned to node V of T .

This data structure has some similarity with the segment tree: here the
binary tree serves the purpose of splitting the set of colours into some canonical
subsets corresponding to nodes of the tree.

The main fact we will use is that the set of points
⋃

j 6=i Sj is partitioned into
O(log k) sets, associated with the sibling nodes of the nodes pertaining to the
colour i. (These nodes form a path from the root to a leaf of T .)

For each node of the tree, we compute the convex hull of the set of points
assigned to that node (for short, the “hull of the node”). For the leaf as-
sociated to colour i, CH(Si) is computed using any classical algorithm in
time O(ni log ni) [2]. This is done for all i ∈ {1, . . . , k}, which takes time
∑k

i=1 O(ni log ni) = O(n log n).
The hull of an internal node is obtained by merging the hulls of its children,

which can be done in time proportional to the sum of the sizes of the hulls of
the children. The internal nodes of T are thus computed in O(n) time per level
of the tree. Since k ≤ n, we conclude that Step 1 takes O(n log n) time.

Step 2 : Computing B(S′) For each p ∈ S′ ∩ Sj , j = 1, . . . k, we
wish to compute its two supporting lines to Γj . Since the points of ∪i6=jSi are
partitioned into O(log k) sets, we compute the pair of supporting lines from p to
the convex hulls of each such set, and determine the supporting lines (i.e., the
extremal segments) by a simple tournament among these O(log k) competing
pairs.

The |S′|O(log k) competing pairs of supporting lines are collectively com-
puted as follows. For each pair of sibling nodes in T , say V and W , we de-
termine for each q ∈ S′ ∩ S(V ) the supporting lines to CH(S(W )) (and vice
versa) by a forward march along the boundaries of CH(S(V )) and CH(S(W )).
We claim that as we march forward, say clockwise, along the boundary of
CH(S(V )), visiting S′ ∩ S(V ), the corresponding clockwise march along the
boundary of CH(S(W )) never steps backward. This is simply due to the fact
that CH(S(W )) ⊂ CH(S) and that we only consider points of S(V ) which also
belongs to CH(S) (see Figure 2). Thus the determination of the supporting
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lines from each q ∈ S′∩S(V ) to CH(S(W )) takes time proportional to the sum
of the number of vertices of the two hulls.

Scanning the pairs of sibling nodes takes O(n) time per level, thus O(n log k)
time in total. Selecting the actual pair of extremal lines of a vertex p of CH(S)
among the O(log k) competing pairs associated to the distinct occurrences of p

in T can be done in O(log k) time.

CH(S(W ))

points of S(V )

CH(S)

Figure 2: The scan cannot go backward.

In that way we identify the extremal segments (L(p), R(p)) of each p ∈ S′.
Because any two consecutive vertices of CH(S) are consecutive convex vertices
of B(S′) with at most one concave vertex between them (Property 8), a simple
march along CH(S) achieves the construction of B(S′) in O(n) time. Thus
Step 2 uses O(n log k) time.

Step 3 : Obtaining a superset of C(S) Due to Property 9, the order
along a subsequence of convex vertices of T (S) of a given colour is consistent
with the polar order of these vertices with respect to a point of S of a different
colour. Therefore, we choose a point r⋆ originally assigned to the right subtree
of T as a reference point for all the points (colored differently from the reference
point) assigned to the left subtree of T .

In order to sort the points according to the polar order around r⋆, we proceed
as follows. For each leaf L of the left subtree, we sort the points assigned to L

around r⋆, and by a simple scan we identify the vertices of B(S′) and the points
lying outside B(S′) : these points are potential vertices of T (S). This can be
done in total time O(n log n).

This computation is done symmetrically for the right subtree of T . So we
get for each Sj an ordered set of potential vertices of colour j. As mentioned
earlier, these lists contain all the vertices of T (S) but, in general, also some
additional points that will be filtered out in Steps 4 and 5. We let S′′ denote
the set of potential vertices obtained by this step.
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By recursively merging the lists of sibling nodes we get, for each internal
node (except the root), an ordered list of potential vertices. This is done in
O(n) time per level of the tree. Thus Step 3 takes O(n log n) time in total.

Step 4 : Computing the extremal segments of the potential vertices

We now compute the extremal segments anchored at all the points in S′′.
This is done in a way analogous to the working of Step 2. The main difference
between Steps 2 and 4 is that set S′′ rather than S′ is being considered.

Specifically, consider two sibling nodes V and W of T . Let p and q be
two consecutive points of S(V ) ∩ S′. If p and q have distinct colours, pq is an
extremal segment anchored at both p and q.

Otherwise, the points of S(V )∩S′′ occurring between p and q, say p1, p2, . . . , pr,
have all the same colour as the common colour of p and q. The four supporting
lines from p and q to CH(S(W )) have been already computed in Step 2. We now
scan the sequence p1, . . . , pr and compute the supporting lines of these points.
Differently from Step 2, since the points of S(V )∩S′′ are not necessarily on the
boundary of a convex polygon, the march along CH(S(W )) is not guaranteed
to be always forward. The situation is illustrated in Figure 4, where the point
of support u3 occurs between points of support u1 and u2; however, since p1,
p2, and p3 are in the correct polar order, p2 belongs to the wedge defined by the
two supporting lines L(p3) and R(p3) of p3, and can be discarded from the set
of potential vertices of T (S).

sibling hull

p1

p3

p2

q

reference point

u1

u3

u2

R(p3) L(p3)

Figure 3: The scan can go backward.

As a consequence, at each step of the scan, either we proceed forward and
process a new point or we delete one point from set S′′. Since |S′′| < n, it
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follows that the scan takes time proportional to |S(V )∩S′′| (a similar argument
is used in the analysis of the well-known Graham scan for computing convex
hulls) [3, 2]. Thus Step 4 costs O(n) time per level which is O(n log k) in total.

Step 5 : Constructing T (S) At this stage, we know for each p ∈ S′∪S′′

the pair (L(p), R(p)) of extremal anchored segments. We also know, for each
subset of S′ ∪ S′′, pertaining respectively to the left or right subtree of T , a
cyclic order, say clockwise, around a chosen reference point.

v w

x

L(v)

R(v)

reference point

R(w)

L(w)

Figure 4: For the illustration of step 5.

Let p and q be two consecutive vertices of CH(S). If p and q have distinct
colours, segment pq is extremal and anchored at both p and q. Otherwise, the
ordered set of potential vertices between p and q, p1, p2, . . . , pr, have all the
same colour. We now consider the construction of the portion of the boundary
of T (S) contained between p and q. The technique, again akin to the Graham
scan, scans p1, . . . pr clockwise. Let C be a doubly-connected list of points
initialized with p1, . . . , pr. At the end, C will represent the sequence of vertices
of T (S) occurring between p and q.

Let v be the current point of C under consideration and w its successor in
the list. At the beginning, v = p1 and w = p2. It is to be noticed that both w

and L(v) necessarily lie in the half-plane to the left of the line containing v and
the reference point r⋆, oriented from v to r⋆.

If w belongs to the right half plane limited by L(v) directed away from v,
then w cannot be a vertex of T (S) and is deleted from C. Otherwise, if R(w)
intersects L(v) at some point x, we insert x immediately after v in C and advance
to w ; else, R(w) must intersect the constructed polygonal chain between p and
v. We delete v from C and regress, so that the point now preceding w becomes
the current point.

The scan halts when the whole chain p1, . . . , pr has been scanned, i.e., when
v = q. By repeating this procedure for each pair of consecutive vertices of
CH(S), we obtain T (S).

At each step of the scan, either we advance and process a new point or we
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regress but, in that case, we delete one point from C. As the total size of all
lists is O(n), Step 5 takes O(n) time in total.

4 Analysis

The correctness of the algorithm is readily proved by observing that all the
convex vertices of T (S) have been computed as well as their extremal segments.

We deduce from the analysis of the different steps of the algorithm that T (S)
can be computed in O(n log n) time.

We prove the optimality of the time bound by transforming “ordered convex
hull” to the present problem. Given a set of points with S = {p1, p2, . . . , pn},
n ≥ 3, we give colour 1 to p1, colour 2 to p2, and colour 3 to all other points.
We compute T (S) for S so colored, and obtain a simple polygon, star-shaped
with respect to p1 and p2, so that its convex hull is computed trivially in time
O(n). Since the transformation takes O(n) time, the Ω(n log n) lower bound for
computing T (S) is immediate.

For simplicity of presentation, the implementation discussed above assumes
that for each node V of T we actually store the corresponding convex hull, and
that for each point of S′ ∪ S′′ we store the O(log k) competing pairs of sup-
porting lines. This implementation would correspond to a storage requirement
O(n log k). In reality, storage can be reduced to O(n) by maintaining the sets
S(V ) and their convex hulls only for the leaves of T and by processing pairs
of sibling nodes, level by level of T , when required, without maintaining the
structures pertaining to the heretofore processed levels of T .

More precisely, in Step 1, we now only store convex hulls of the leaves and
compute S′. The construction of the convex hulls of the internal nodes (which
was done once for all in Step 1) is now performed on the fly during Step 2
and again during Step 4. Similarly the computation of the competing pairs of
supporting lines (which was done once for all in Step 3) is now performed on
the fly during Step 4 at the same time as the construction of the convex hulls.

We can then summarize the preceding results as follows.

Theorem 1 The union of 3-colored triangles of a set of n points colored with
k ≥ 3 colours can be computed in optimal Θ(n logn) time using Θ(n) space.

5 Conclusion

We have proved that the union of the 3-colored triangles of a set of n points
colored with k colours is a simple polygon with at most 2n − k edges that can
be computed in optimal time Θ(n log n) using Θ(n) space.

Several further extensions remain to be considered. In particular, what is
the complexity of the union of (d + 1)-colored simplices in d space and the time
required to construct their union?
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New point

T (S)

New T (S)

Figure 5: The insertion of a new point.

The dynamic version of the problem would also be of great practical interest :
when the robot moves the footholds change. Unfortunately, as shown in Figure
5 the changes induced by the insertion of the deletion of a point can be as large
as Ω(n) and not local. We let as an open question whether there exist a dynamic
algorithm sensitive to the size of the change.
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