M. Heller, Triangulation algorithms for adaptive terrain modeling, Proc. 4th Internat. Sympos. Spatial Data Handling, pp.163-174, 1990.

T. Midtbø, Spatial Modelling by Delaunay Networks of Two and Three Dimensions, 1993.

P. J. Green and R. R. Sibson, Computing Dirichlet Tessellations in the Plane, The Computer Journal, vol.21, issue.2, pp.168-173, 1978.
DOI : 10.1093/comjnl/21.2.168

P. Ernst, I. Mücke, B. Saias, and . Zhu, Fast randomized point location without preprocessing in two-and three-dimensional Delaunay triangulations, Proc. 12th Annu. ACM Sympos, pp.274-283, 1996.

P. Bose and L. Devroye, Intersections with random geometric objects, Computational Geometry, vol.10, issue.3, pp.139-154, 1998.
DOI : 10.1016/S0925-7721(98)00004-2

URL : http://doi.org/10.1016/s0925-7721(98)00004-2

O. Devillers, Improved incremental randomized Delaunay triangulation, Proceedings of the fourteenth annual symposium on Computational geometry , SCG '98, pp.106-115, 1998.
DOI : 10.1145/276884.276896

URL : https://hal.archives-ouvertes.fr/hal-01179446

L. Devroye, C. Lemaire, and J. Moreau, Fast delaunay point location with search structures, Proc. 11th Canad. Conf. Comput. Geom, 1999.

C. Lemaire, Triangulation de Delaunay et arbres multidimensionnels, Thèse de doctorat en sciences, ´ Ecole des Mines de St, 1997.
URL : https://hal.archives-ouvertes.fr/tel-00850521

A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 1992.

L. P. Chew, Building Voronoi diagrams for convex polygons in linear expected time, Dept. Math. Comput. Sci, 1986.

A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing the voronoi diagram of a convex polygon, Discrete & Computational Geometry, vol.9, issue.6, pp.591-604, 1989.
DOI : 10.1007/BF02187749

H. Bruggesser and P. Mani, Shellable Decompositions of Cells and Spheres., MATHEMATICA SCANDINAVICA, vol.29, pp.197-205, 1971.
DOI : 10.7146/math.scand.a-11045

R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, Proceedings of the eighteenth annual ACM symposium on Theory of computing , STOC '86, pp.404-413, 1986.
DOI : 10.1145/12130.12172

O. Devillers, S. Meiser, and M. Teillaud, The space of spheres, a geometric tool to unify duality results on Voronoi diagrams, Proc. 4th Canad. Conf, pp.263-268, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01180157

D. Pedoe, Geometry, a comprehensive course, 1970.

H. Edelsbrunner, J. O-'rourke, and R. Seidel, Constructing arrangements of lines and hyperplanes with applications SIAM, J. Comput, vol.15, pp.341-363, 1986.

F. Aurenhammer, Power Diagrams: Properties, Algorithms and Applications, SIAM Journal on Computing, vol.16, issue.1, pp.78-96, 1987.
DOI : 10.1137/0216006

O. Devillers and F. Preparata, A Probabilistic Analysis of the Power of Arithmetic Filters, Discrete & Computational Geometry, vol.20, issue.4, pp.523-547, 1998.
DOI : 10.1007/PL00009400

URL : https://hal.archives-ouvertes.fr/inria-00073727

O. Devillers, P. Franco, and . Preparata, Further results on arithmetic filters for geometric predicates, Computational Geometry, vol.13, issue.2, pp.141-148, 1999.
DOI : 10.1016/S0925-7721(99)00011-5

URL : https://hal.archives-ouvertes.fr/inria-00073157

R. Seidel, The Nature and Meaning of Perturbations in Geometric Computing, Discrete & Computational Geometry, vol.19, issue.1, pp.1-17, 1998.
DOI : 10.1007/PL00009330

P. Alliez, O. Devillers, and J. Snoeyink, Removing degeneracies by perturbing the problem or the world, Research Report, vol.3316, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00338566

J. Snoeyink, Non redundant flip for point deletion in delaunay triangulation, 1998.

H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for regular triangulations, Algorithmica, vol.133, issue.3, pp.223-241, 1996.
DOI : 10.1007/BF01975867

H. Brönnimann, C. Burnikel, and S. Pion, Interval arithmetic yields efficient dynamic filters for computational geometry, Proc. 14th Annu. ACM Sympos, pp.165-174, 1998.