HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Randomization Yields Simple $O(n \log^{\star} n)$ Algorithms for Difficult $\Omega(n)$ Problems

Olivier Devillers 1
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We use here the results on the influence graph to adapt them for particular cases where additional information is available. In some cases, it is possible to improve the expected randomized complexity of algorithms from O(n log n) to O(n log* n). This technique applies in the following applications: triangulation of a simple polygon, skeleton of a simple polygon, Delaunay triangulation of points knowing the EMST (euclidean minimum spanning tree).
Document type :
Journal articles
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/inria-00167206
Contributor : Olivier Devillers Connect in order to contact the contributor
Submitted on : Thursday, August 16, 2007 - 3:00:01 PM
Last modification on : Friday, February 4, 2022 - 3:24:46 AM
Long-term archiving on: : Friday, April 9, 2010 - 12:49:05 AM

File

hal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Olivier Devillers. Randomization Yields Simple $O(n \log^{\star} n)$ Algorithms for Difficult $\Omega(n)$ Problems. International Journal of Computational Geometry and Applications, World Scientific Publishing, 1992, 2 (1), pp.97-111. ⟨10.1142/S021819599200007X⟩. ⟨inria-00167206⟩

Share

Metrics

Record views

137

Files downloads

349