
HAL Id: inria-00167225
https://inria.hal.science/inria-00167225

Submitted on 16 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collection analysis for Horn clause programs
Dale Miller

To cite this version:
Dale Miller. Collection analysis for Horn clause programs. International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, Jul 2006, Venice, Italy. �inria-00167225�

https://inria.hal.science/inria-00167225
https://hal.archives-ouvertes.fr

in
ria

-0
01

67
22

5,
 v

er
si

on
 1

 -
 1

6
A

ug
 2

00
7

Collection Analysis for Horn Clause Programs
[Extended Abstract]

Dale Miller
INRIA & LIX, Ècole Polytechnique, Rue de Saclay

91128 Palaiseau, France
dale.miller [at] inria.fr

Abstract
We consider approximating data structures with collections of the
items that they contain. For examples, lists, binary trees,tuples, etc,
can be approximated by sets or multisets of the items within them.
Such approximations can be used to provide partial correctness
properties of logic programs. For example, one might wish to
specify than whenever the atomsort(t, s) is proved then the two
lists t and s contain the same multiset of items (that is,s is a
permutation oft). If sorting removes duplicates, then one would
like to infer that the sets of items underlyingt ands are the same.
Such results could be useful to have if they can be determined
statically and automatically. We present a scheme by which such
collection analysis can be structured and automated. Central to
this scheme is the use of linear logic as a computational logic
underlying the logic of Horn clauses.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Computational logic; I.2.3 [Deduction and Theorem Proving]:
Logic programming

General Terms Design, Theory, Verification

Keywords proof search, static analysis, Horn clauses, linear logic

1. Introduction
Static analysis of logic programs can provide useful information for
programmers and compilers. Typing systems, such as inλProlog
[23, 24], have proved valuable during the development of code:
type errors often represent program errors that are caught at com-
pile time when they are easier to find and fix than at runtime when
they are much harder to repair. Static type information alsopro-
vides valuable documentation of code since it provides a concise
approximation to what the code does.

In this paper we describe a method by which it is possible to
infer that certain relationships concerning collections underlying
structured data hold. We shall focus on relations that are also de-
cidable and can be done during compile time analysis of logicpro-
grams. We shall usemultisetsandsetsto approximatemore com-
plicated structures as lists and binary trees. Consider, for example,
a list sorting program that maintains duplicates of elements. Part

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

of the correctness of a sort program includes the fact that ifthe
atomic formulasort(t, s) is provable, thens is a permutation of
t that is in-order. The proof of such a property is likely to involve
inductive arguments requiring the invention of invariants: in other
words, this is not likely to be a property that can be inferredstati-
cally during compile time. On the other hand, if the listst ands are
approximated by multisets (that is, if we forget the order ofitems
in lists), then it might be possible to establish that if the atomic
formulasort(t, s) is provable, then the multiset associated tos is
equal to the multiset associated tot. If that is so, then it is imme-
diate that the listst ands are, in fact, permutations of one another
(in other words, no elements were dropped, duplicated, or created
during sorting). As we shall see, such properties based on using
multisets to approximate lists can often be done statically.

This paper considers exclusively the static analysis of first-order
Horn clauses but it does so by making substitution instancesof
such Horn clauses that carry them into linear logic. Proofs for the
resulting linear logic formulas are then attempted as part of static
analysis.

2. The undercurrents
There are various themes that underlie our approach to inferring
properties of Horn clause programs. We list them explicitlybelow.
The rest of the paper can be seen as a particular example of how
these themes can be developed.

2.1 If typing is important, why use only one?

Types and other static properties of programming languageshave
proved important on a number of levels. Typing can be useful for
programmers: they can offer important invariants and document for
code. Static analysis can also be used by compilers to uncover use-
ful structures that allow compilers to make choices that canimprove
execution. While compilers might make use of multiple static anal-
ysis regimes, programmers do not usually have convenient access
to multiple static analyzes for the code that they are composing.
Sometimes, a programming language provides no static analysis,
as is the case with Lisp and Prolog. Other programming languages
offer exactly one typing discipline, such as the polymorphic typ-
ing disciplines of Standard ML andλProlog (SML also statically
determines if a given function defined over concrete data struc-
tures cover all possible input values). It seems clear, however, that
such analysis of code, if it can be done quickly and incrementally,
might have significant benefits for programmers during the process
of writing code. For example, a programmer might find it valuable
to know that a recursive program that she has just written haslinear
or quadratic runtime complexity, or that a relation she justspecified
actually defines a function. The Ciao system preprocessor [14] pro-
vides for such functionality by allowing a programmer to write var-
ious properties about code that the preprocessor attempts to verify.

Having an open set of properties and analysis tools is an interesting
direction for the design of a programming language. The collection
analysis we discuss here could be just one such analysis tool.

2.2 Logic programs as untyped λ-expressions

If we do not commit to just one typing discipline, then it seems
sensible to use a completely untyped setting for encoding programs
and declarations. Given that untypedλ-terms provide for arbitrary
applications and arbitrary abstractions, such terms can provide an
appealing setting for the encoding of program expressions,type ex-
pressions, assertions, invariants, etc. Via the well developed theory
of λ-conversion, such abstractions can be instantiated with a vari-
ety of other objects. Abstractions can be used to encode quantifiers
within formulas as well as binding declarations surrounding entire
programs.

In logic programming, proofs can be viewed as computation
traces and such proof objects can also be encoded as untypedλ-
terms. Instantiations into proofs is also well understood since it is
closely related to the elimination of cut in sequent calculus or to
normalization in natural deduction proofs. The fact that proofs and
programs can be related simply in a setting where substitution into
both has well understood properties is certainly one of the strengths
of the proof theoretic foundations of logic programming (see, for
example, [22]).

2.3 What good are atomic formulas?

In proof theory, there is interesting problem of duality involving
atomic formulas. Theinitial rule and thecut rulegiven as

C − C
Initial

Γ1 − C, ∆1 Γ2, C − ∆2

Γ1, Γ2 − ∆1, ∆2

Cut

can be seen as being dual to each other [13]. In particular, the
initial rule states that an occurrence of a formula on the left is
stronger than the same occurrence on the right, whereas the cut
rule states the dual: an occurrence of a formula on the right is
strong enough to remove the same occurrence from the left. Inmost
well designed proof systems, all occurrence of the cut-rulecan be
eliminated (whether or notC is an atomic formula) whereas only
non-atomic initial rules (whereC is non-atomic) can be eliminated.
Atoms seem to spoil the elegant duality of the meta-theory ofthese
inference rules.

While the logic programming world is most comfortable with
the existence of atomic formulas, there have been a couple ofrecent
proof theoretic approaches that try to eliminate them entirely. For
example, in the work ondefinitionsandfixed pointsby Schroeder-
Heister [26], Girard [11], and McDowell & Miller [17], atomsare
defined to be other formulas. In this approach, the only primitive
judgment involving terms is that of equality. In that setting, if def-
initions arestratified(no recursion through negations) andnoethe-
rian (no infinite descent in recursion), then all instances of cutand
initial can be removed. The setting ofludicsof Girard [12] is a more
radical presentation of logic in which atomic formulas do not exist:
formulas can be probed to arbitrary depth to uncover “subformu-
las”.

Another approach to atoms is to considerall constants as being
variables. On one hand this is a trivial position: if there are no con-
stants (thus, no predicate constants) there are no atomic formulas
(which are defined as formulas with non-logical constants attheir
head). On the other hand, adopting a point-of-view that constants
can vary has some appeal. We describe this next.

2.4 Viewing constants and variables as one

The inference rule of∀-generalization states that ifB is provable
then∀x.B is provable (with appropriate provisos if the proof ofB
depends on hypotheses). If we are in a first-order logic, thenthe

free first-order variablex of B becomes bound in∀x.B by this
inference rule.

Observe the following two things about this rule. First, if we
are in an untyped setting, then we can, in principle, quantify over
any variable in any expression, even those that play the roleof
predicates or functions. Mixing such rich abstractions with logic
is well known to be inconsistent so when we propose such rich
abstractions in logic, we must accompany it with some discipline
(such as typing) that will yield consistency.

Second, we need to observe that differences between constants
and variables can be seen as one of “scope”, at least from a syntac-
tic, proof theoretic, and computational point of view. For example,
variables are intended as syntactic objects that can “vary”. During
the computation of, say, the relation of appending lists, universal
quantified variables surrounding Horn clauses change via substitu-
tion (via backchaining and unification) but the constructors for the
empty and non-empty lists as well as the symbol denoting the ap-
pend relation do not change and, hence, can be seen as constants.
But from a compiling and linking point-of-view, the append pred-
icate might be considered something that varies: if append is in a
module of Prolog that is separately compiled, the append symbol
might denote a particular object in the compiled code that islater
changed when the code is loaded and linked. In a similar fashion,
we shall allow ourselves to instantiate constants with expression
during static analysis.

Substituting for constants allows us to “split the atom”: that is,
by substituting for the predicatep in the atomp(t1, . . . , tn), we
replace that atom with a formula, which, in this paper, will be a
linear logic formula.

2.5 Linear logic underlies computational logic

Linear logic [10] is able to explain the proof theory of usualHorn
clause logic programming (and even richer logic programming
languages [15]). It is also able to provide means to reason about
resources, such as items in multisets and sets. Thus, linearlogic
will allow us to sit within one declarative framework to describe
both usual logic programming as well as “sub-atomic” reasoning
about the resources implicit in the arguments of predicates.

3. A primer for linear logic
Linear logic connectives can be divided into the following groups:
the multiplicatives..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... , ⊥, ⊗, 1; the additives⊕, 0, &, ⊤; the

exponentials!, ?; the implications−◦ (whereB −◦ C is defined
asB⊥ ..

..

...................
................
..
..
..
..
...
..
..
..
..
..
..
..
............................... C) and⇒ (whereB ⇒ C is defined as(! B)⊥ ..

..

...................
................
..
..
..
..
...
..
..
..
..
..
..
..
............................... C);

and the quantifiers∀ and∃ (higher-order quantification is allowed).
The equivalence of formulas in linear logic,B ◦−◦ C, is defined as
the formula(B −◦ C) & (C −◦ B).

First-order Horn clauses can be described as formulas of the
form

∀x1 . . .∀xm[A1 ∧ . . . ∧ An ⊃ A0] (n, m ≥ 0)

where∧ and ⊃ are intuitionistic or classical logic conjunction
and implication. There are at least two natural mappings of Horn
clauses into linear logic. The “multiplicative” mapping uses the⊗
and−◦ for the conjunction and implication: this encoding is used
in, say, the linear logic programming settings, such as Lolli [15],
where Horn clause programming can interact with the surrounding
linear aspects of the full programming language. Here, we are not
interested in linear logic programming per se but with usinglinear
logic to help establish invariants about Horn clauses when these
are interpreted in the usual, classical setting. As a result, we shall
encode Horn clauses into linear logic using the conjunction& and
implication⇒: that is, we take Horn clauses to be formulas of the

form

∀x1 . . .∀xm[A1 & . . . & An ⇒ A0]. (n, m ≥ 0)

The usual proof search behavior of first-order Horn clauses in
classical (and intuitionistic) logic is captured precisely when this
style of linear logic encoding is used.

4. A primer for proof theory
A sequent is a triple of the formΣ: Γ − ∆ wereΣ, the signature,
is a list of non-logical constants and eigenvariables paired with a
simple type, and where bothΓ and∆ are multisets ofΣ-formulas
(i.e., formulas all of whose non-logical symbols are inΣ). The rules
for linear logic are the standard ones [10], except here signatures
have been added to sequents. The rules for quantifier introduction
are the only rules that require the signature and they are reproduced
here:

Σ, y: τ ; B[y/x], Γ − ∆

Σ; ∃xτ .B, Γ − ∆
∃L

Σ ⊢ t: τ Σ; Γ − B[t/x], ∆

Σ; Γ − ∃xτ .B, ∆
∃R

Σ ⊢ t: τ Σ; B[t/x], Γ − ∆

Σ; ∀xτ .B, Γ − ∆
∀L

Σ, y : τ ; Γ − B[y/x], ∆

Σ; Γ − ∀xτ .B, ∆
∀R

The premiseΣ ⊢ t: τ is the judgment that the termt has the
(simple) typeτ given the typing declaration contained inΣ.

We now outline three ways to instantiate things within the
sequent calculus.

4.1 Substituting for types

Although we think of formulas and proofs as untyped expressions,
we shall use simple typing within sequents to control the kind of
formulas that are present. A signature is used to bind and declare
typing for (eigen)variables and non-logical constants within a se-
quent. Simple types are, formally speaking, also a simple class of
untypedλ-terms: the typeo is used to denote formulas (following
Church [7]). In a sequent calculus proof, simple type expressions
are global and admit no bindings. As a result, it is an easy matter to
show that if one takes a proof with a type constantσ and replaces
everywhereσ with some type, say,τ , one gets another valid proof.
We shall do this later when we replace a list by a multiset thatap-
proximates it: since we are using linear logic, we shall use formulas
to encode multisets and so we shall replace the type constantlist

with o.

4.2 Substituting for non-logical constants

Consider the sequent

Σ, p: τ ; ! D1, ! D2, ! Γ − p(t1, . . . , tm)

where the typeτ is a predicate type (that is, it is of the form
τ1 → · · · → τm → o) and wherep appears in, say,D1 andD2

and in no formula ofΓ. The linear logic exponential! is used here
to encode the fact that the formulasD1 andD2 are available for
arbitrary reuse within a proof (the usual case for program clauses).
Using the right introduction rules for implication and the universal
quantifier, it follows that the sequent

Σ; ! Γ − ∀p[D1 ⇒ D2 ⇒ p(t1, . . . , tm)]

is also provable. Since this is a universal quantifier, theremust be
proofs for all instances of this quantifier. Letθ be the substitution
[p 7→ λx1 . . . λxm.S], whereS is a term over the signatureΣ ∪
{x1, . . . , xm} of type o. A consequence of the proof theory of
linear logic is that there is a proof also of

Σ; ! Γ − D1θ ⇒ D2θ ⇒ S[t1/x1, . . . , tm/xm]

and of the sequent

Σ; ! D1θ, ! D2θ, ! Γ − S[t1/x1, . . . , tm/xm].

As this example illustrates, it is possible to instantiate apredicate
(herep) with an abstraction of a formula (here,λx1 . . . λxm. S).
Such instantiation carries a provable sequent to a provablesequent.

4.3 Substituting for assumptions

An instance of the cut-rule (mentioned earlier) is the following:

Σ; Γ1 − B Σ; B, Γ2 − C

Σ;Γ1, Γ2 − C

This inference rule (especially when associated with the cut-
elimination procedure) provides a way to merge (substitution) the
proof of a formula (here,B) with a use of that formula as an as-
sumption. For example, consider the following situation. Given the
example in the Section 4.2, assume that we can prove

Σ; ! Γ − ! D1θ and Σ; ! Γ − ! D2θ.

Using two instances of the cut rule and the proofs of these sequent,
it is possible to obtain a proof of the sequent

Σ; ! Γ − S[t1/x1, . . . , tm/xm]

(contraction on the left for!’ed formulas must be applied).
Thus, by a series of instantiations of proofs, it is possibleto

move from a proof of, say,

Σ, p: τ ; ! D1, ! D2, ! Γ − p(t1, . . . , tm)

to a proof of

Σ; ! Γ − S[t1/x1, . . . , tm/xm].

We shall see this style of reasoning about proofs several times be-
low. This allows us to “split an atom”p(t1, . . . , tm) into a for-
mula S[t1/x1, . . . , tm/xm] and to transform proofs of the atom
into proofs of that formula. In what follows, the formulaS will be
a linear logic formula that provides an encoding of some judgment
about the data structures encoded in the termst1, . . . , tm.

A few simple examples of using higher-order instantiationsof
logic programs in order to help reasoning about them appear in
[20].

5. Encoding multisets as formulas
We wish to encode multisets and sets and simple judgments about
them (such as inclusion and equality) as linear logic formulas. We
consider multisets first. Let tokenitem be a linear logic predicate
of one argument: the linear logic atomic formulaitemx will denote
the multiset containing just the one elementx occurring once.
There are two natural encoding of multisets into formulas using this
predicate. Theconjunctiveencoding uses1 for the empty multiset
and⊗ to combine two multisets. For example, the multiset{1, 2, 2}
is encoded by the linear logic formulaitem 1 ⊗ item 2 ⊗ item 2.
Proofs search using this style encoding places multiset on the left of
the sequent arrow. This approach is favored when an intuitionistic
subset of linear logic is used, such as in Lolli [15], LinearLF
[6], and MSR [5]. The dual encoding, thedisjunctiveencoding,
uses⊥ for the empty multiset and.....

..................................
..
..
..
..
....
..
..
..
..
..
..
................................ to combine two multisets.

Proofs search using this style encoding places multisets onthe
right of the sequent arrow. Multiple conclusion sequents are now
required. Systems such as LO [2] and Forum [19] use this style
of encoding. If negation is available, then the choice of which
encoding one chooses is mostly a matter of style. We pick the
disjunctive encoding for the rather shallow reason that theinclusion
judgment for multisets and sets is encoded as an implicationinstead
of a reverse implication, as we shall now see.

∀K.(append nil K K)
∀X.∀L.∀K.∀M.(append L K M) ⇒ (append (cons X L) K (cons X M))

∀X.(split X nil nil nil)
∀X.∀A.∀B.∀R.∀S.(leq A X)&(split X R S B) ⇒ (split X (cons A R) (cons A S) B)
∀X.∀A.∀B.∀R.∀S.(gr A X)&(split X R S B) ⇒ (split X (cons A R) S (cons A B))

(sort nil nil)
∀F.∀R.∀S.∀Sm.∀B.∀SS.∀BS.(split F R Sm B)&(sort Sm SS)&(sort B BS)&(append SS (cons F BS) S) ⇒ (sort (cons F R) S)

Figure 1. Some Horn clauses for specifying a sorting relation.

∀K.(⊥ ..
...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ K ◦−◦ K)

∀X.∀L.∀K.∀M.(L ..
...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ K ◦−◦ M) ⇒ (itemX

..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ L

..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ K ◦−◦ itemX

..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ M)

∀X.(⊥ ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. ⊥ ◦−◦ ⊥)

∀X.∀A.∀B.∀R.∀S.(S ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. B ◦−◦ R) ⇒ 1 ⇒ (itemA

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. S

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. B ◦−◦ itemA

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. R)

∀X.∀A.∀B.∀R.∀S.(S ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. B ◦−◦ R) ⇒ 1 ⇒ (S ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. itemA

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. B ◦−◦ itemA

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. R)

(⊥ ◦−◦ ⊥)
∀F.∀R.∀S.∀Sm.∀Bg.∀SS.∀BS.(Sm ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. B ◦−◦ R)&(Sm ◦−◦ SS)&(B ◦−◦ BS)&(SS ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. itemF

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. BS ◦−◦ S) ⇒ (itemF

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. R ◦−◦ S)

Figure 2. The result of instantiating various non-logical constantsin the above Horn clauses.

Let S andT be the two formulasitems1

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. itemsn and

item t1
..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. item tm, respectively (n, m ≥ 0). Notice that

⊢ S −◦ T if and only if ⊢ T −◦ S if and only if the two multisets
{s1, . . . , sn} and{t1, . . . , tm} are equal. Consider now, however,
the following two ways for encoding the multiset inclusionS ⊑ T .

• S ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. 0 −◦ T . This formula mixes multiplicative connectives

with the additive connective0: the latter allows items that are
not matched betweenS andT to be deleted.

• ∃q(S ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. q −◦ T). This formula mixes multiplicative connec-

tives with a higher-order quantifier. While we can consider the
instantiation forq to be the multiset difference ofS from T ,
there is no easy way in the logic to enforce that interpretation
of the quantifier.

As it turns out, these two approaches are equivalent in linear logic:
in particular,⊢ 0 ◦−◦ ∀p.p (linear logic absurdity) and

⊢ ∀S∀T [(S ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. 0 −◦ T) ◦−◦ ∃q(S ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. q −◦ T)].

Thus, below we can choose either one of these encodings for
multiset inclusion.

6. Multisets approximations
A multiset expressionis a formula in linear logic built from the
predicate symbolitem (denoting the singleton multiset), the linear
logic multiplicative disjunction....

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... (for multiset union), and the unit

⊥ for ..
..
...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... (used to denote the empty multiset). We shall also allow

a predicate variable (a variable of typeo) to be used to denote
a (necessarily open) multiset expression. An example of an open
multiset expression isitemf(X) ..

...
..................................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. ⊥ ..

...
..................................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. Y , whereY is a variable

of typeo, X is a first-order variable, andf is some first-order term
constructor.

Let S and T be two multiset expressions. The twomultiset
judgmentsthat we wish to capture are multiset inclusion, written as
S ⊑ T , and equality, written asS

m
= T . We shall use the syntactic

variableρ to range over these two judgments, which are formally
binary relations of typeo → o → o. A multiset statementis a
formula of the form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables̄x are either first-order or of type
o and formulasS0, T0, . . . , Sn, Tn are possibly open multiset ex-
pressions.

If S andT are closed multiset expressions, then we write|=m

S ⊑ T whenever the multiset (of closed first-order terms) denoted
by S is contained in the multiset denoted byT , and we write
|=m S

m
= T whenever the multisets denoted byS andT are equal.

Similarly, we write

|=m ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutionsθ such that|=m Siθ ρi Tiθ for all
i = 1, . . . , n, it is the case that|=m S0θ ρ0 T0θ.

The following Proposition is central to our use of linear logic to
establish multiset statements for Horn clause programs.

PROPOSITION1. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be multiset ex-
pressions all of whose free variables are in the list of variablesx̄.
For each judgments ρ t we writes ρ̂ t to denote∃q(s ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. q −◦ t) if

ρ is ⊑ andt ◦−◦ s if ρ is
m
=. If

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂
n

Tn ⇒ S0 ρ̂
0

T0]

is provable in linear logic, then

|=ms ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

This Proposition shows that linear logic can be used in a sound
way to infer valid multiset statement. On the other hand, thecon-
verse (completeness) does not hold: the statement

∀x∀y.(x ⊑ y) & (y ⊑ x) ⇒ (x
m
= y)

is valid but its translation into linear logic is not provable.
To illustrate how deduction in linear logic can be used to es-

tablish the validity of a multiset statement, consider the first-order
Horn clause program in Figure 1. The signature for this collection
of clauses can be given as follows:

nil : list

cons : int -> list -> list

append : list -> list -> list -> o

split : int -> list -> list -> list -> o

sort : list -> list -> o

leq : int -> int -> o

gr : int -> int -> o

The first two declarations provide constructors for empty and non-
empty lists, the next three are predicates whose Horn clausedefi-
nition is presented in Figure 1, and the last two are order relations
that are apparently defined elsewhere.

∀X.(split X nil nil nil)
∀X.∀B.∀R.∀S.(split X R S B) ⇒ (split X (cons X R) S B)

∀X.∀A.∀B.∀R.∀S.(lt A X)&(split X R S B) ⇒ (split X (cons A R) (cons A S) B)
∀X.∀A.∀B.∀R.∀S.(gr A X)&(split X R S B) ⇒ (split X (cons A R) S (cons A B))

Figure 3. A change in the specification of splitting lists to drop duplicates.

∀X.(?0 −◦ ?(itemX⊕ 0 ⊕ 0))
∀X.∀B.∀R.∀S.(? R−◦ ?(itemX⊕ S⊕ B)) ⇒ (?(itemX⊕ R) −◦ ?(itemX⊕ S⊕ B))

∀X.∀A.∀B.∀R.∀S.1&(? R−◦ ?(itemX⊕ S⊕ B)) ⇒ (?(itemA⊕ R) −◦ ?(itemX⊕ itemA⊕ S⊕ B))
∀X.∀A.∀B.∀R.∀S.1&(? R−◦ ?(itemX⊕ S⊕ B)) ⇒ (?(itemA⊕ R) −◦ ?(itemX⊕ S⊕ itemA⊕ B))

Figure 4. The result of substituting set approximations into thesplit program.

If we think of lists as collections of items, then we might want
to check that the sort program as written does not drop, duplicate,
or create any elements. That is, if the atom(sort s t) is provable
then the multiset of items in the list denoted bys is equal to the
multiset of items in the list denoted byt. If this property holds then
t ands are lists that are permutations of each other: of course, this
does not say that it is the correct permutation but this more simple
fact is one that, as we show, can be inferred automatically.

Computing this property of our example logic programming
follows the following three steps.

First, we provide an approximation of lists as being, in fact,
multiset: more precisely, asformulasdenoting multisets. The first
step, therefore, must be to substituteo for list in the signature
above. Now we can now interpret the constructors for lists using
the substitution

nil 7→ ⊥ cons 7→ λxλy. itemx ..
..
...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... y.

Under such a mapping, the list (cons 1 (cons 3 (cons 2 nil))) is
mapped to the multiset expressionitem1 ..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ item3 ..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ item2 ..

...
..................................
..
..
..
..
....
..
..
..
..
..
..
................................ ⊥.

Second, we associate with each predicate in Figure 1 a multiset
judgment that encodes an invariant concerning the multisets de-
noted by the predicate’s arguments. For example, if(append r s t)
or (split u t r s) is provable then the multiset union of the items
in r with those ins is equal to the multiset of items int, and if
(sort s t) is provable then the multisets of items in listss andt
are equal. This association of multiset judgments to atomicformu-
las can be achieved formally using the following substitutions for
constants:

append 7→ λxλyλz. (x ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. y) ◦−◦ z

split 7→ λuλxλyλz. (y ...
....................
................
..
..
..
..
...
..
..
..
..
..
...
................................ z) ◦−◦ x

sort 7→ λxλy. x ◦−◦ y

The predicatesleq and gr (for the least-than-or-equal-to and
greater-than relations) make no statement about collections of
items, so that they can be mapped to a trivial tautology via the
substitution

leq 7→ λxλy. 1 gr 7→ λxλy. 1

Figure 2 presents the result of applying these mappings to Figure 1.
Third, we must now attempt to prove each of the resulting

formulas. In the case of Figure 2, all the displayed formulasare
trivial theorems of linear logic.

Having taken these three steps, we now claim that we have
proved the intended collection judgments associate to eachof the
logic programming predicates above: in particular, we havenow
shown that our particular sort program computes a permutation.

7. Formalizing the method
The formal correctness of this three stage approach is easily justi-
fied given the substitution properties we presented in Section 4 for
the sequent calculus presentation of linear logic.

Let Γ denote a set of formulas that contains those in Figure 1.
Let θ denote the substitution described above for the typelist, for
the constructorsnil andcons, and for the predicates in Figure 1.
If Σ is the signature forΓ then splitΣ into the two signaturesΣ1

andΣ2 so thatΣ1 is the domain of the substitutionθ and letΣ3

be the signature of the range ofθ (in this case, it just contains the
constantitem). Thus,Γθ is the set of formula in Figure 2.

Assume now thatΣ1, Σ2; Γ − sort(t, s) is provable. Given the
discussion in Sections 4.1 and 4.2, we know that

Σ1, Σ3; Γθ − tθ ◦−◦ sθ

is provable. Since the formulas inΓθ are provable, we can use
substitution into proofs (Section 4.3) to conclude thatΣ1, Σ3; −

tθ ◦−◦ sθ. Given Proposition 1, we can conclude that|=m tθ
m
= sθ:

that is, thattθ andsθ encode the same multiset.
Consider the following model theoretic argument for establish-

ing similar properties of Horn clauses. LetM be the Herbrand
model that captures the invariants that we have in mind. In par-
ticular,M contains the atoms(append r s t) and(split u t r s)
if the items in the listr added to the items in lists are the same
as the items int. Furthermore,M contains all closed atoms of the
form (leq t s) and(gr t s), and closed atoms(sort s t) wheres
andt are lists that are permutations of one another. One can now
show thatM satisfies all the Horn clauses in Figure 1. As a con-
sequence of the soundness of first-order classical logic, any atom
provable from the clauses in Figure 1, must be true inM. By con-
struction ofM, this means that the desired invariant holds for all
atoms proved from the program.

The approach suggested here using linear logic and deduction
remains syntactic and proof theoretic: in particular, showing that
a model satisfies a Horn clause is replaced by a deduction within
linear logic.

8. Sets approximations
It is rather easy to encode sets and the equality and subset judg-
ments on sets into linear logic. In fact, the transition to set from
multiset is provided by the use of the linear logic exponential: since
we are using disjunctive encoding of collections (see the discussion
in Section 5), we use the? exponential (if we were using the con-
junctive encoding, we would use the! exponential).

The expression? item t can be seen as describing the presence
of an item for which the exact multiplicity does not matter: this
formula represents the capacity to be used any number of times.
Thus, the set{x1, . . . , nn} can be encoded as? itemx1

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
..............................

? itemxn. Using logical equivalences of linear logic, this formula is

also equivalent to the formula?(itemx1⊕· · ·⊕itemxn). This latter
encoding is the one that we shall use for building our encoding of
sets.

A set expressionis a formula in linear logic built from the
predicate symbolitem (denoting the the singleton set), the linear
logic additive disjunction⊕ (for set union), and the unit0 for ⊕
(used to denote the empty set). We shall also allow a predicate
variable (a variable of typeo) to be used to denote a (necessarily
open) set expression. An example of an open multiset expression
is item f(X) ⊕ 0 ⊕ Y , whereY is a variable of typeo, X is a
first-order variable, andf is some first-order term constructor.

Let S and T be two set expressions. The twoset judgments
that we wish to capture are set inclusion, written asS ⊆ T , and
equality, written asS

s
= T . We shall use the syntactic variable

ρ to range over these two judgments, which are formally binary
relations of typeo → o → o. A set statementis a formula of the
form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables̄x are either first-order or of typeo
and formulasT0, S0, . . . , Tn, Sn are possibly open set expressions.

If S andT are closed set expressions, then we write|=s S ⊆ T
whenever the set (of closed first-order terms) denoted byS is
contained in the set denoted byT , and we write|=s S

s
= T

whenever the sets denoted byS and T are equal. Similarly, we
write

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutionsθ such that|=s Siθ ρi Tiθ for all
i = 1, . . . , n, it is the case that|=s S0θ ρ0 T0θ.

The following Proposition is central to our use of linear logic to
establish set statements for Horn clause programs.

PROPOSITION2. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expres-
sions all of whose free variables are in the list of variablesx̄. For
each judgments ρ t we writes ρ̂ t to denote? s−◦? t if ρ is⊆ and
(? s −◦ ? t) & (? t −◦ ? s) if ρ is

s
=. If

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂
n

Tn ⇒ S0 ρ̂
0

T0]

is provable in linear logic, then

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

Lists can be approximated by sets by using the following sub-
stitution:

nil 7→ 0 cons 7→ λxλy. itemx ⊕ y.

Under such a mapping, the list (cons 1 (cons 2 (cons 2 nil))) is
mapped to the set expressionitem1 ⊕ item2 ⊕ item2 ⊕ 0. This
expression is equivalent (◦−◦) to the set expressionitem1⊕ item2.

For a simple example of using set approximates, consider mod-
ifying the sorting program provided before so that duplicates are
not kept in the sorted list. Do this modification by replacingthe
previous definition for splitting a list with the clauses in Figure 3.
That figure contains a new definition of splitting that contains three
clauses for deciding whether or not the “pivot” for the splitting X is
equal to, less than (using thelt predicate), or greater than the first
member of the list being split. Using the following substitutions for
predicates

append 7→ λxλyλz. ?(x ⊕ y) ◦−◦ ? z
split 7→ λuλxλyλz. ? x −◦ ?(itemu ⊕ y ⊕ z)
sort 7→ λxλy. ? x ◦−◦ ? y

(as well as the trivial substitution forlt andge), we can show that
sort relates two lists only if those lists are approximated by the same
set.

Γ; Ai − A1 ⊕ · · · ⊕ An

⊕ R

Γ; A1 − C . . . Γ; An − C

Γ; A1 ⊕ · · · ⊕ An − C
⊕ L

Γ; B1 ⊕ · · · ⊕ Bm − C

Γ; A − C
BC

Here,n, m ≥ 0 and in the BC (backchaining) inference rule, the
formula?(A1⊕· · ·⊕An)−◦?(B1⊕· · ·⊕Bm) must be a member
of Γ andA ∈ {A1, . . . , An}.

Figure 5. Specialized proof rules for proving set statements.

In the case of determining the validity of a set statement, the
use of linear logic here appears to be rather weak when compared
to the large body of results for solving set-based constraint systems
[1, 25].

9. Automation of deduction
We describe how automation of proof for the linear logic transla-
tions of set and multiset statements given in Propositions 1and 2
can be performed.

In order to understand how to automatically prove the required
formulas, we first provide a normal form theorem for the fragment
of linear logic for which we are interested. The key result oflinear
logic surrounding the search for cut-free proofs is given bythe
completeness offocused proofs[3]. Focused proofs are a normal
form that significantly generalizes standard completenessresults in
logic programming, including the completeness of SLD-resolution
and uniform proofs as well as various forms of bottom-up and top-
down reasoning.

We first analyze the nature of proof search for the linear logic
translation of set statements. Note that when considering provabil-
ity of set statements, there is no loss of generality if the only set
judgment it contains is the subset judgment since set equality can
be expressed as two inclusions. We now prove that the proof system
in Figure 5 is sound and complete for proving set statements.

PROPOSITION3. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expres-
sions all of whose free variables are in the list of variablesx̄. The
formula

∀x̄[(? S1 −◦ ? T1) & . . . & (? Sn −◦ ? Tn) ⇒ (? S0 −◦ ? T0)]

is provable in linear logic if and only if the sequent

(? S1 −◦ ? T1), . . . , (? Sn −◦ ? Tn); S0 − T0

is provable using the proof system in Figure 5.

Proof The soundness part of this proposition (“if”) is easy to
show. For completeness (“only if”), we use the completenessof
focused proofs in [3]. In order to use this result of focused proofs,
we need to give a polarity to all atomic formulas. We do this by
assigning all atomic formulas (those of the formitem(·) and those
symbols in x̄ of type o) negative polarity. Second, we need to
translation the two sided sequentΓ; S − T to Γ⊥; T ⇑ S⊥ when
S is not atomic (that is, its top-level logical connective is⊕) and
to Γ⊥, T ; S⊥ ⇑ · whenS is a atom. Completeness then follows
directly from the structure of focused proofs.

Notice that the resulting proofs are essentially bottom-up: one
reasons from formulas on the left of the sequent arrow to formulas
on the right.

We can now conclude that it is decidable to determine whether
or not the linear logic translation of a set statement is provable.
Notice that in a proof built using the inference rules in Figure 5, if

Γ; A1

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. An − A1, . . . , An

..

..

...................
................
..
..
..
..
...
..
..
..
..
..
..
..
............................... L

Γ; S − T1, T2, ∆

Γ; S − T1

..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... T2, ∆

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. R

Γ; S − A1, . . . , An, ∆

Γ; S − B1, . . . , Bm, ∆
BC

Here,n, m ≥ 0 and in the BC (backchaining) inference rule, it
must be the case that the formula

(A1

..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... · · · ..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... An) −◦ (B1

..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... · · · ..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... Bm)

is a member ofΓ.

Figure 6. Specialized proof rules for proving multiset statements.

the endsequent isΓ; S − T then all sequents in the proof have the
form Γ; S′ − T , for someS′. Thus, the search for a proof either
succeeds (proof search ends by placing⊕ R on top), or fails to find
a proof, or it cycles, a case we can always detect since there is only
a finite number of atomic formulas that can beS′.

The proof system in Figure 6 can be used to characterize the
structure of proofs of the linear logic encoding of multisetstate-
ments. Let

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂
n

Tn ⇒ S0 ρ̂
0

T0]

be the translation of a multiset statement into linear logic. Provabil-
ity of this formula can be reduced to attempting to proveS0 ρ̂

0
T0

from assumptions of the form

(A1

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. An) −◦ (B1

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. · · · ..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. Bm),

whereA1, . . . , An, B1, . . . , Bm are atomic formulas. Such formu-
las can be calledmultiset rewriting clausessince backchaining on
such clauses amounts to rewriting the right-hand-side multiset of a
sequent (see rule BC in Figure 6). Such rewriting clauses arepar-
ticularly simple since they do not involve quantification.

PROPOSITION4. Let S0 and T0 be multiset expressions all of
whose free variables are in the list of variablesx̄ and letΓ be a
set of multiset rewriting rules. The formulaS0 −◦ T0 is a linear
logic consequence ofΓ if and only if the sequentΓ; S0 − T0 is
provable using the inference rules in Figure 6.

Proof The soundness part of this proposition (“if”) is easy to
show. Completeness (“only if”) is proved elsewhere, for example,
in [18, Proposition 2]. It is also an easy consequence of the the
completeness of focused proofs in [3]: fix the polarity to allatomic
formulas to be positive.

Notice that the proofs using the rules in Figure 6 are straight line
proofs (no branching) and that they are top-down (or goal-directed).
Given these observation, it follows that determining ifS0 −◦ T0 is
provable from a set of multiset rewriting clauses is decidable, since
this problem is contained within the reachability problem of Petri
Nets [9]. Proving a multiset inclusion judgment∃q(S0

..

...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. q −◦ T0)

involves first instantiating this higher-order quantifier.In principle,
this instantiation can be delayed until attempting to applythe sole
instance of the....

...................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. L rule (Figure 6).

10. List approximations
We now consider using lists as approximations. Since lists have
more structure than sets and multisets, it is more involved to encode
and reason with them. We only illustrate their use and do not follow
a full formal treatment for them.

Since the order of elements in a list is important, the encoding
of lists into linear logic must involve a connective that is not

commutative. (Notice that both.....
..................................
..
..
..
..
...
..
...
..
..
..
..
................................ and⊕ are commutative.) Linear

implication provides a good candidate for encoding the order used
in lists. For example, consider proof search with the formula

itema ◦− (p ◦− (itemb ◦− (p ◦− ⊥)))

on the right. (This formula is equivalent toitema ..
...
..................................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. (p⊥⊗(itemb ..

...
..................................
..
..
..
..
...
..
..
..
..
..
..
...
..............................

p⊥)).) Such a formula can be seen as describing a process that is
willing to output the itema then go into input mode waiting for
the atomic formulap to appear. If that formula appears, then item
b is output and again it goes into input waiting mode looking for
p. If another occurrence ofp appears, this process becomes the
inactive process. Clearly,a is output prior to whenb is output: this
ordering is faithfully captured by proof search in linear logic. Such
an encoding of asynchronous process calculi into linear logic has
been explored in a number of papers: see, for example, [16, 21].

The example above suggests that lists and list equality can be
captured directly in linear logic using the following encoding:

nil 7→ λl.⊥ cons 7→ λxλRλl. itemx ◦− (l ◦− (R l))

The encoding of the list, say(cons a (cons b nil)), is given by
theλ-abstraction

λl.itema ◦− (l ◦− (itemb ◦− (l ◦− ⊥))).

The following proposition can be proved by induction on the
length of the listt.

PROPOSITION5. Let s and t be two lists (built usingnil and
cons) and letS andT be the translation of those lists into expres-
sions of typeo → o via the substitution above. Then∀l.(Sl) ◦−◦
(T l) is provable in linear logic if and only ifs and t are the same
list.

This presentation of lists can be “degraded” to multisets simply
by applying the translation of a list to the formula⊥. For example,
applying the translation of(cons a (cons b nil)) to ⊥ yields the
formulas

itema ◦− (⊥ ◦− (itemb ◦− (⊥ ◦− ⊥)))

which is linear logically equivalent toitema ..
...
..................
................
..
..
..
..
...
..
..
..
..
..
..
...
.............................. itemb.

Given this presentation of lists, there appears to be no simple
combinator for, say, list concatenation and, as a result, there is no
direct way to express the judgments of prefix, suffix, sublist, etc.
Thus, beyond equality of lists (by virtual of Proposition 5)there
are few natural judgments that can be stated for list. More can be
done, however, by considering difference lists.

11. Difference list approximations
Since our framework includesλ-abstractions, it is natural to repre-
sent difference lists as a particular kind of list abstraction over a list.
For example, inλProlog a difference list is naturally represented as
aλ-term of the form

λL.cons x1 (cons x2 (. . . (cons xn L) . . .)).

Such abstracted lists are appealing since the simple operation of
composition encodes the concatenation of two lists. Given concate-
nation, it is then easy to encode the judgments of prefix and suffix.
To see other example of computing on difference lists described in
fashion, see [4].

Lists can be encoded using the difference list notion with the
following mapping into linear logic formulas.

nil 7→ λLλl. L l
cons 7→ λxλRλLλl. itemx ◦− (l ◦− (R L l))

The encoding of the list, say(cons a (cons b nil)), is given by
theλ-abstraction

λLλl.itema ◦− (l ◦− (itemb ◦− (l ◦− L l))).

(traverse emp null)
∀N.∀R.∀S. (traverse R S) ⇒ (traverse (bt N emp R) (cons N S))

∀N.∀M.∀R.∀S.∀L1.∀L2. (traverse (bt M L1 (bt N L2 R)) S) ⇒ (traverse (bt N (bt M L1 L2) R) S)

Figure 7. Traversing a binary tree to produce a list.

∀W.∀w.Ww ◦−◦ Ww
∀N.∀R.∀S.∀W.∀w.itemN ◦− (w ◦− R W w) ◦−◦ (itemN ◦− (w ◦− S W w)) ◦− ∀W.∀w.R W w ◦−◦ S W w

∀N.∀M.∀L1.∀L2.∀R.∀S.∀W.∀w.
L1(λk.itemM ◦− (k ◦− L2(λl.itemN ◦− (l ◦− R W l))k))w ◦−◦ S W w ◦−

∀W.∀w.L1(λk.itemM ◦− (k ◦− L2(λl.itemN ◦− (l ◦− R W l))k))w ◦−◦ S W w

Figure 8. Linear logic formulas arising from a difference list approximation.

In Figure 7, a predicate for traversing a binary tree is given.
Binary trees are encoded using the typebtree and are constructed
using the constructorsemp, for the empty tree, andbt of type
int → btree → btree → btree, for building non-empty
trees. A useful invariant of this program is that the list of items
approximating the binary tree structure in the first argument of
traverse is equal to the list of items in the second argument.
Linear logic formulas for computing that approximation canbe
generated using the following approximating substitution.

btree 7→ o

emp 7→ λLλl. L l
bt 7→ λxλRλSλLλl.(R (λl.itemx ◦− (l ◦− (S L l))) l))

The result of applying that substitution (as well as the one above for
nil andcons) is displayed in Figure 8. While these formulas ap-
pear rather complex, they are all, rather simple theorems ofhigher-
order linear logic: these theorems are essentially trivialsince the
λ-conversions used to build the formulas from the data structures
has done all the essential work in organizing the items into alist.
Establishing these formulas proves that the order and multiplicity
of elements in the binary tree and in the list in a provable traverse
computation are the same.

12. Future work
Various extensions of the basic scheme described here are natural to
consider. In particular, it should be easy to consider approximating
data structures that contain items of differing types: eachof these
types could be mapped into differentitemα(·) predicates, one for
each typeα.

It should also be simple to construct approximating mappings
given thepolymorphic typing of a given constructor’s type. For
example, if we are given the following declaration for binary tree
(written here inλProlog syntax),

kind btree type -> type.

type emp btree A.

type bt A -> btree A -> btree A -> btree A.

it should be possible to automatically construct the mapping

btree 7→ λx.o
emp 7→ ⊥
bt 7→ λxλyλz.itemA(x) ..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... x ..

..

...................................
..
..
..
..
...
..
..
..
..
..
..
..
............................... y

that can, for example, approximate a binary tree with the multiset
of the labels for internal nodes.

Abstract interpretation [8] can associate to a program an ap-
proximation to its semantics. Such approximations can helpto de-
termine various kinds of properties of programs. It will be inter-
esting to see how well the particular notions of collection analysis
can be related to abstract interpretation. More challenging would

be to see to what extent the general methodology described here –
the substitution into proofs (computation traces) and use of linear
logic – can be related to the very general methodology of abstract
interpretation.

Acknowledgments
I am grateful to the anonymous reviewers for their helpful com-
ments on an earlier draft of this paper. This work was funded in
part by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project. This paper reflects only
the author’s views and the Community is not liable for any usethat
may be made of the information contained therein.

References
[1] A. Aiken. Set constraints: results, applications, and future directions.

In PPCP94: Principles and Practice of Constraint Programming,
number 874 in LNCS, pages 171 – 179, 1994.

[2] J. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3-4):445–473,
1991.

[3] J.-M. Andreoli. Logic programming with focusing proofsin linear
logic. J. of Logic and Computation, 2(3):297–347, 1992.

[4] P. Brisset and O. Ridoux. Naïve reverse can be linear. InEighth
International Logic Programming Conference, Paris, France, June
1991. MIT Press.

[5] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell,and
A. Scedrov. A meta-notation for protocol analysis. In R. Gorrieri,
editor,Proceedings of the 12th IEEE Computer Security Foundations
Workshop — CSFW’99, pages 55–69, Mordano, Italy, 28–30 June
1999. IEEE Computer Society Press.

[6] I. Cervesato and F. Pfenning. A linear logic framework. In
Proceedings, Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 264–275, New Brunswick, New Jersey,
July 1996. IEEE Computer Society Press.

[7] A. Church. A formulation of the simple theory of types.J.of Symbolic
Logic, 5:56–68, 1940.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. InPOPL, pages 238–252, 1977.

[9] J. Esparza and M. Nielsen. Decidability issues for petrinets - a
survey.Bulletin of the EATCS, 52:244–262, 1994.

[10] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102,
1987.

[11] J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to
the mailing list linear@cs.stanford.edu, February 1992.

[12] J.-Y. Girard. Locus solum.Mathematical Structures in Computer
Science, 11(3):301–506, June 2001.

[13] J.-Y. Girard, P. Taylor, and Y. Lafont.Proofs and Types. Cambridge
University Press, 1989.

[14] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the ciao system preprocessor). Sci.
Comput. Program., 58(1-2):115–140, 2005.

[15] J. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic.Information and Computation, 110(2):327–
365, 1994.

[16] N. Kobayashi and A. Yonezawa. Asynchronous communication
model based on linear logic.Formal Aspects of Computing, 3:279–
294, 1994.

[17] R. McDowell and D. Miller. Cut-elimination for a logic with
definitions and induction.Theoretical Computer Science, 232:91–
119, 2000.

[18] D. Miller. The π-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors,3rd Workshop on
Extensions to Logic Programming, number 660 in LNCS, pages
242–265, Bologna, Italy, 1993. Springer-Verlag.

[19] D. Miller. Forum: A multiple-conclusion specificationlanguage.
Theoretical Computer Science, 165(1):201–232, Sept. 1996.

[20] D. Miller. Higher-order quantification and proof search. In
H. Kirchner and C. Ringeissen, editors,Proceedings of AMAST
2002, number 2422 in LNCS, pages 60–74, 2002.

[21] D. Miller. Encryption as an abstract data-type: An extended abstract.
In I. Cervesato, editor,Proceedings of FCS’03: Foundations of
Computer Security, pages 3–14, 2003.

[22] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming.Annals of Pure and Applied
Logic, 51:125–157, 1991.

[23] G. Nadathur and D. Miller. An Overview ofλProlog. InFifth
International Logic Programming Conference, pages 810–827,
Seattle, August 1988. MIT Press.

[24] G. Nadathur and F. Pfenning. The type system of a higher-order
logic programming language. In F. Pfenning, editor,Types in Logic
Programming, pages 245–283. MIT Press, 1992.

[25] L. Pacholski and A. Podelski. Set constraints: A pearl in research on
constraints. InPrinciples and Practice of Constraint Programming -
CP97, number 1330 in LNCS, pages 549–562. Springer, 1997.

[26] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science,
pages 222–232. IEEE Computer Society Press, IEEE, June 1993.

