N

N
N

HAL

open science

Collection analysis for Horn clause programs
Dale Miller

» To cite this version:

Dale Miller. Collection analysis for Horn clause programs. International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming, Jul 2006, Venice, Italy. inria-00167225

HAL 1d: inria-00167225
https://inria.hal.science/inria-00167225
Submitted on 16 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00167225
https://hal.archives-ouvertes.fr

Inria-00167225, version 1 - 16 Aug 2007

Collection Analysisfor Horn Clause Programs
[Extended Abstract]

Dale Miller

INRIA & LIX, Ecole Polytechnique, Rue de Saclay
91128 Palaiseau, France

dale.miller [at] inria.fr

Abstract

We consider approximating data structures with colleciohthe
items that they contain. For examples, lists, binary treegses, etc,
can be approximated by sets or multisets of the items witiemt
Such approximations can be used to provide partial coresstn
properties of logic programs. For example, one might wish to
specify than whenever the atosart(¢, s) is proved then the two
lists t and s contain the same multiset of items (that isjs a
permutation oft). If sorting removes duplicates, then one would
like to infer that the sets of items underlying@nds are the same.
Such results could be useful to have if they can be determined
statically and automatically. We present a scheme by whici s
collection analysis can be structured and automated. &letatr
this scheme is the use of linear logic as a computationaklogi
underlying the logic of Horn clauses.

Categories and Subject Descriptors F.4.1 Mathematical Logit
Computational logic; 1.2.3 eduction and Theorem Provihg
Logic programming

General Terms Design, Theory, Verification

Keywords proof search, static analysis, Horn clauses, linear logic

1. Introduction

Static analysis of logic programs can provide useful infation for
programmers and compilers. Typing systems, such ad’ilog
(23, B41, have proved valuable during the development ofecod
type errors often represent program errors that are catgioina
pile time when they are easier to find and fix than at runtimerwhe
they are much harder to repair. Static type information als®»
vides valuable documentation of code since it provides &isen
approximation to what the code does.

In this paper we describe a method by which it is possible to
infer that certain relationships concerning collectiomslerlying
structured data hold. We shall focus on relations that ave dé-
cidable and can be done during compile time analysis of Ipgie
grams. We shall usmultisetsand setsto approximatemore com-
plicated structures as lists and binary trees. ConsidegxXample,

a list sorting program that maintains duplicates of eleseRart

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10-12, 2006, Venice, Italy.
Copyright(© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

of the correctness of a sort program includes the fact thtteif
atomic formulasort(t, s) is provable, thers is a permutation of
t that is in-order. The proof of such a property is likely todixe
inductive arguments requiring the invention of invariatimsother
words, this is not likely to be a property that can be inferstati-
cally during compile time. On the other hand, if the lisends are
approximated by multisets (that is, if we forget the ordeiterins
in lists), then it might be possible to establish that if thenaic
formula sort(t, s) is provable, then the multiset associated tie
equal to the multiset associatedttdf that is so, then it is imme-
diate that the list$ ands are, in fact, permutations of one another
(in other words, no elements were dropped, duplicated, eated
during sorting). As we shall see, such properties based g us
multisets to approximate lists can often be done statically

This paper considers exclusively the static analysis dféirder
Horn clauses but it does so by making substitution instanfes
such Horn clauses that carry them into linear logic. ProofgHe
resulting linear logic formulas are then attempted as plastatic
analysis.

2. Theundercurrents

There are various themes that underlie our approach torimfer
properties of Horn clause programs. We list them expliditjow.

The rest of the paper can be seen as a particular example of how
these themes can be developed.

21

Types and other static properties of programming languhges
proved important on a number of levels. Typing can be useful f
programmers: they can offer important invariants and damnitrfor
code. Static analysis can also be used by compilers to unosee
ful structures that allow compilers to make choices thaticgmove
execution. While compilers might make use of multiple statial-
ysis regimes, programmers do not usually have conveniemssac
to multiple static analyzes for the code that they are cotingos
Sometimes, a programming language provides no static sinaly
as is the case with Lisp and Prolog. Other programming lagemia
offer exactly one typing discipline, such as the polymocptyip-
ing disciplines of Standard ML andProlog (SML also statically
determines if a given function defined over concrete datacstr
tures cover all possible input values). It seems clear, keryé¢hat
such analysis of code, if it can be done quickly and increalbnt
might have significant benefits for programmers during tlegss
of writing code. For example, a programmer might find it valea
to know that a recursive program that she has just writtetimear
or quadratic runtime complexity, or that a relation she fucified
actually defines a function. The Ciao system preprocepsgdpib-
vides for such functionality by allowing a programmer totenar-
ious properties about code that the preprocessor attempesify.

If typing isimportant, why use only one?

Having an open set of properties and analysis tools is areistiag
direction for the design of a programming language. Theectihn
analysis we discuss here could be just one such analysis tool

2.2 Logic programs as untyped \-expressions

If we do not commit to just one typing discipline, then it seem
sensible to use a completely untyped setting for encodiograms
and declarations. Given that untyp&derms provide for arbitrary
applications and arbitrary abstractions, such terms cavige an
appealing setting for the encoding of program expresstgps, ex-
pressions, assertions, invariants, etc. Via the well dpesl theory
of A-conversion, such abstractions can be instantiated witria v
ety of other objects. Abstractions can be used to encodditjaen
within formulas as well as binding declarations surrougdantire
programs.

In logic programming, proofs can be viewed as computation
traces and such proof objects can also be encoded as untyped
terms. Instantiations into proofs is also well understoodesit is
closely related to the elimination of cut in sequent calsubu to
normalization in natural deduction proofs. The fact thatyfs and
programs can be related simply in a setting where substitutito
both has well understood properties is certainly one oftileagths
of the proof theoretic foundations of logic programminge(str
example,]).

2.3 What good are atomic formulas?

In proof theory, there is interesting problem of duality aiwing
atomic formulas. Thénitial rule and thecut rulegiven as

Fl '—C,Al FQ,C'-AQ
CFC Fl,FQFAl,AQ

can be seen as being dual to each ot@ [13]. In particular, th
initial rule states that an occurrence of a formula on the ikef
stronger than the same occurrence on the right, whereasuthe c
rule states the dual: an occurrence of a formula on the right i
strong enough to remove the same occurrence from the leftogt
well designed proof systems, all occurrence of the cutcale be
eliminated (whether or naf’ is an atomic formula) whereas only
non-atomic initial rules (wher€' is non-atomic) can be eliminated.
Atoms seem to spoil the elegant duality of the meta-theothede
inference rules.

While the logic programming world is most comfortable with
the existence of atomic formulas, there have been a coupézent
proof theoretic approaches that try to eliminate them elytiiFor
example,_in the work odefinitionsandfixed pointsy Schroeder-
Heister], Girard@l], and McDowell & Miller|[17], atomare
defined to be other formulas. In this approach, the only i
judgment involving terms is that of equality. In that sedtiif def-
initions arestratified(no recursion through negations) amoethe-
rian (no infinite descent in recursion), then all instances ofaxat
initial can be removed. The settinglaflicsof Girard] isamore
radical presentation of logic in which atomic formulas do exist:
formulas can be probed to arbitrary depth to uncover “subior
las”.

Another approach to atoms is to considérconstants as being
variables. On one hand this is a trivial position: if there ao con-
stants (thus, no predicate constants) there are no atommuifas
(which are defined as formulas with non-logical constantheit
head). On the other hand, adopting a point-of-view that teans
can vary has some appeal. We describe this next.

Initial Cut

2.4 Viewing constantsand variables as one

The inference rule of/-generalization states that# is provable
thenVz. B is provable (with appropriate provisos if the proofBf
depends on hypotheses). If we are in a first-order logic, then

free first-order variabler of B becomes bound iz.B by this
inference rule.

Observe the following two things about this rule. First, iéw
are in an untyped setting, then we can, in principle, quamter
any variable in any expression, even those that play the able
predicates or functions. Mixing such rich abstractionshvlitgic
is well known to be inconsistent so when we propose such rich
abstractions in logic, we must accompany it with some dis@p
(such as typing) that will yield consistency.

Second, we need to observe that differences between ctsistan
and variables can be seen as one of “scope”, at least frontacsyn
tic, proof theoretic, and computational point of view. Faample,
variables are intended as syntactic objects that can “va@yting
the computation of, say, the relation of appending listsyersal
quantified variables surrounding Horn clauses change Vistisu-
tion (via backchaining and unification) but the construstiar the
empty and non-empty lists as well as the symbol denoting phe a
pend relation do not change and, hence, can be seen as t¢enstan
But from a compiling and linking point-of-view, the appenceg-
icate might be considered something that varies: if appsrnid &
module of Prolog that is separately compiled, the appencbeym
might denote a particular object in the compiled code thédter
changed when the code is loaded and linked. In a similardashi
we shall allow ourselves to instantiate constants with esgion
during static analysis.

Substituting for constants allows us to “split the atom’attfs,
by substituting for the predicate in the atomp(¢1,...,t,), we
replace that atom with a formula, which, in this paper, wil &
linear logic formula.

2.5 Linear logic underliescomputational logic

Linear logic] is able to explain the proof theory of ustirn
clause logic programming (and even richer logic prograngmin
IanguagesﬂS]). It is also able to provide means to reasontab
resources, such as items in multisets and sets. Thus, liogiar
will allow us to sit within one declarative framework to debe
both usual logic programming as well as “sub-atomic” re@spn
about the resources implicit in the arguments of predicates

3. A primer for linear logic

Linear logic connectives can be divided into the followinmgups:
the multiplicatives®, 1, ®, 1; the additives®, 0, &, T; the
exponentiald, 7; the implications— (where B —o C'is defined
asB* 3 C) and= (whereB = C is defined ag! B)* » O);
and the quantifierg and3 (higher-order quantification is allowed).
The equivalence of formulas in linear logiB,o— C, is defined as
the formula(B — C) & (C — B).

First-order Horn clauses can be described as formulas of the
form

V1. Vem[A1 AL A Ay D Ag] (n,m >0)

where A and D are intuitionistic or classical logic conjunction
and implication. There are at least two natural mappings ahH
clauses into linear logic. The “multiplicative” mappingessthe®
and —o for the conjunction and implication: this encoding is used
in, say, the linear logic programming settings, such asi l[.@]
where Horn clause programming can interact with the sudimgn
linear aspects of the full programming language. Here, \wenat
interested in linear logic programming per se but with udingar
logic to help establish invariants about Horn clauses wiese
are interpreted in the usual, classical setting. As a resaltshall
encode Horn clauses into linear logic using the conjuncticend
implication=-: that is, we take Horn clauses to be formulas of the

form
Var... Ve,[A1 & ... & A, = Aol (n,m >0)

The usual proof search behavior of first-order Horn clauses i
classical (and intuitionistic) logic is captured pregyselhen this
style of linear logic encoding is used.

4, A primer for proof theory

A sequent is a triple of the forR: ' — A were, the signature,
is a list of non-logical constants and eigenvariables paivgh a

simple type, and where bofhand A are multisets of:-formulas

(i.e., formulas all of whose non-logical symbols ar&in The rules
for linear logic are the standard 0n[10], except hereasigas
have been added to sequents. The rules for quantifier irttiodu
are the only rules that require the signature and they aredaped
here:

Y, y:7; Bly/z], T~ A
Y37 .B.T — A

Ykt 50w Blt/z], A

ST BAa 0

Ykt 3 B[t/z],T ~ A Y,y:7;0w Bly/z], A
¥ Vam.B,T'w A ;' Vam.B, A
The premiseX F t¢:7 is the judgment that the term has the
(simple) typer given the typing declaration contained3h
We now outline three ways to instantiate things within the
sequent calculus.

VL VR

4.1 Substitutingfor types

Although we think of formulas and proofs as untyped expssi
we shall use simple typing within sequents to control thed o
formulas that are present. A signature is used to bind anlhmec
typing for (eigen)variables and non-logical constantshimita se-
quent. Simple types are, formally speaking, also a simglescof
untyped)-terms: the type is used to denote formulas (following
Church [T]). In a sequent calculus proof, simple type exgices
are global and admit no bindings. As a result, it is an easyantt
show that if one takes a proof with a type constaragnd replaces
everywherer with some type, say;, one gets another valid proof.
We shall do this later when we replace a list by a multiset épat
proximates it: since we are using linear logic, we shall esmfilas
to encode multisets and so we shall replace the type coristant
with o.

4.2 Substitutingfor non-logical constants
Consider the sequent

Y, p:7m; 1 D1, Do\ T = p(ta, ..., tm)

where the typer is a predicate type (that is, it is of the form
1 — - — T, — 0) and wherep appears in, sayD; and D-
and in no formula of". The linear logic exponentidlis used here
to encode the fact that the formul@¥ and D, are available for
arbitrary reuse within a proof (the usual case for prograamses).
Using the right introduction rules for implication and theiversal
quantifier, it follows that the sequent

is also provable. Since this is a universal quantifier, tmevst be
proofs for all instances of this quantifier. Létbe the substitution
[p — Az1...Azn.S], wheresS is a term over the signatute U
{z1,...,zm} Of type o. A consequence of the proof theory of
linear logic is that there is a proof also of

Z;!F — D10 = Dgai S[t1/l’1,“4,tm/l’m]

and of the sequent
Z;!Dlé,!Dgé,!F — S[tl/xl,. .. ,tm/xm].

As this example illustrates, it is possible to instantiafgedicate
(herep) with an abstraction of a formula (hergz: ... Az.,. S).
Such instantiation carries a provable sequent to a progaojeent.

4.3 Substituting for assumptions
An instance of the cut-rule (mentioned earlier) is the folloy:
“I'i~B BTy C
Z; Fl, Fz — C

This inference rule (especially when associated with the cu
elimination procedure) provides a way to merge (substitjtthe
proof of a formula (hereB) with a use of that formula as an as-
sumption. For example, consider the following situatioive@ the
example in the Sectigh 4.2, assume that we can prove

YD 1D and X;!T v ! Dy,

Using two instances of the cut rule and the proofs of theseeseq
it is possible to obtain a proof of the sequent

E;!F — S[tl/wl,...,tm/l’m]

(contraction on the left fofed formulas must be applied).
Thus, by a series of instantiations of proofs, it is posstble
move from a proof of, say,

Y, p:7m; ! D1, Do, ' T v p(ta, ...
to a proof of

stm)

Z,'F — S[tl/xl,lu,tm/xm].

We shall see this style of reasoning about proofs severaistine-
low. This allows us to “split an atomp(¢1,...,t») into a for-
mula S[ti1/x1,...,tm/xm] and to transform proofs of the atom
into proofs of that formula. In what follows, the formutawill be
a linear logic formula that provides an encoding of some jnelgt
about the data structures encoded in the téfims . , ..

A few simple examples of using higher-order instantiatiohs
logic programs in order to help reasoning about them appear i

(Bq].

5. Encoding multisets as for mulas

We wish to encode multisets and sets and simple judgmentg abo
them (such as inclusion and equality) as linear logic foemuiWe
consider multisets first. Let tokeitem be a linear logic predicate
of one argument: the linear logic atomic formitlem« will denote

the multiset containing just the one elementoccurring once.
There are two natural encoding of multisets into formulasgithis
predicate. Theonjunctiveencoding used for the empty multiset
and® to combine two multisets. For example, the multiget2, 2}

is encoded by the linear logic formuiem 1 ® item 2 ® item 2.
Proofs search using this style encoding places multisdt®feft of

the sequent arrow. This approach is favored when an intistic
subset of linear logic is used, such as in L0|E|[15], LinelarL
[E], and MSR [15]. The dual encoding, thiisjunctiveencoding,
uses_L for the empty multiset and® to combine two multisets.
Proofs search using this style encoding places multisetthen
right of the sequent arrow. Multiple conclusion sequenés raow
required. Systems such as Lﬁ) [2] and FOI’lE [19] use this style
of encoding. If negation is available, then the choice of aluhi
encoding one chooses is mostly a matter of style. We pick the
disjunctive encoding for the rather shallow reason thairtbleision
judgment for multisets and sets is encoded as an implicatgiead

of a reverse implication, as we shall now see.

VK.(append nil K K)
VX.VL.VK.VM.(append L K M) = (append (cons X L) K (cons X M))
VX.(split Xnilnil nil)
VX.VA.VB.VR.VS.(leq A X)&(split X R S B) = (split X (cons AR) (cons A S) B)
VX.VA.VB.VR.VS.(gr A X)&(split XRSB) = (split X (cons AR) S (cons A B))
(sort nil nil)
VF.VR.VS.VSm.VB.VSS.VBS.(split F R Sm B)&(sort Sm SS)&(sort B BS)& (append SS (cons F BS) S) = (sort (cons FR) S)

Figurel. Some Horn clauses for specifying a sorting relation.

VK.(L K o—oK)
VX.VL.VK.VM.(L K oo M) = (itemX B L B K o—o itemX B M)
VX.(L % Lool)
VX.VA.VB.VR.VS.(S ®Bo—oR) = 1 = (itemA B S ® B o—o itemA BR)
VX.VA.VB.VR.VS.(S 2Bo—oR) = 1 = (S BitemA BB o—oitemA BR)
(Lool)
VF.VR.VS.VSm.VBg.VSS.VBS.(Sm % B oo R)&(Sm 0—o S5)& (B o— BS)&(SS % itemF B BS o—o S) = (itemF B R o—o S)

Figure 2. The result of instantiating various non-logical constantshe above Horn clauses.

Let S andT be the two formulagems; % --- ® items,, and If S andT are closed multiset expressions, then we witg
itemt; ® --- % itemt,,, respectively ¢, m > 0). Notice that S C T whenever the multiset (of closed first-order terms) denoted
F S —oTifand only if T —o S if and only if the two multisets by S is contained in the multiset denoted [y, and we write
{s1,...,8n} @and{ts,...,t,n} are equal. Consider now, however, =, S Z T whenever the multisets denoted ByandT are equal.
the following two ways for encoding the multiset inclusiSric 7. Similarly, we write

e S B 0 —o T. This formula mixes multiplicative connectives o VE[S1 p1 T1 & - -+ & Sy pn T = So po To)
with the additive connectivé: the latter allows items that are . -
not matched betweesi andT to be deleted. |f for all closed substitution$ such that=., S0 p; T;6 for all
]) o i =1,...,n,itis the case that,, Sob po ToH.
* Jq(S B ¢ — T). This formula mixes multiplicative connec- The following Proposition is central to our use of linearitom

tives with a higher-order quantifier. While we can consid&r t establish multiset statements for Horn clause programs.
instantiation forq to be the multiset difference & from T,

there is no easy way in the logic to enforce that interpretati PROPOSITIONL. Let So, To, ..., Sn, Tn (n > 0) be multiset ex-
of the quantifier. pressions all of whose free variables are in the list of valés z.
For each judgment p ¢ we writes 5 t to denotedg(s B g — t) if

As it turns out, these two approaches are equivalent indiloggc: . e .om
bp g pisCandto-osif pis=.If

in particular,- 0 o— Vp.p (linear logic absurdity) and

F VSYT[(S B0 -0 T) o—0 3q(S B g — T)]. Ve[S py Ti&e ... & Sn p, T = So fo To

Thus, below we can choose either one of these encodings for'S provable in linear logic, then

multiset inclusion. Ems VZ[S1 pr Th & -+ - & Sp pn Tro = So po To)

. . . This Proposition shows that linear logic can be used in adoun
6. Multisets approximations way to infer valid multiset statement. On the other hand,cive-

A multiset expressiofis a formula in linear logic built from the verse (completeness) does not hold: the statement

predicate symboitem (denoting the singleton multiset), the linear

m
logic multiplicative disjunctiors (for multiset union), and the unit VaVy.(xEy) & (yEx) = (v =y)
L for % (used to denote the empty multiset). We shall also allow s valid but its translation into linear logic is not provabl
a predicate variable (a variable of typg to be used to denote To illustrate how deduction in linear logic can be used to es-

a (necessarily open) multiset expression. An example ofp@mo taplish the validity of a multiset statement, consider thet-order
multiset expression iem f(X) % L 8 Y, whereY is a variable Horn clause program in Figuf§ 1. The signature for this ctitie
of typeo, X is a first-order variable, anflis some first-order term of clauses can be given as follows:
constructor. . .

Let S and T be two multiset expressions. The twoultiset nil ¢ list
judgmentghat we wish to capture are multiset inclusion, writtenas c¢ons @ int -> list -> list

S C T, and equality, written a§ = 7. We shall use the syntactic ~ 2PPend : list —> list —> list -> o

variablep to range over these two judgments, which are formally SPLit : f.lt _llft _lh“ -> list => o
binary relations of typ@ — o — o. A multiset statement a : : .1st_> . 1s'f> o
formula of the form eq : int int o

gr : int -> int -> o

Va[S1p1 T & & S pn Tn = o po T The first two declarations provide constructors for empiy mon-
where the quantified variables are either first-order or of type empty lists, the next three are predicates whose Horn cldefe
o and formulasSy, To, . . ., S», T, are possibly open multiset ex- nition is presented in Figu@ 1, and the last two are ordaitioels
pressions. that are apparently defined elsewhere.

VX.(split Xnilnil nil)

VX.VB.VR.VS.(split XRSB) =
VX.VA.VB.VR.VS.(1t A X)&(split XR SB) = (split X (cons AR

(split X (cons XR) SB)
(cons A S) B)

)
VX.VA.VB.VR.VS.(gr A X)&(split XR SB) = (split X (cons AR) S (cons A B))

Figure3. A change in the specification of splitting lists to drop daptes.

VX.(?70 -7

VX.VB.VR.VS.(?R — ?(itemX @ S G B
VX.VA.VB.VR.VS.1&(?R —o 7(itemX & S © B)
VX.VA.VB.VR.VS.1&(?R —o ?(itemX @ S® B)

—_—— T~

item
) =
= (?(itemA @ R) —o ?(itemX @ itemA & S @ B))
= (7(itemA ®R) —o ?(itemX @ S @ itemA @ B))

X®0&0)
(?(itemX & R) —o ?(itemX & S & B))

Figure4. The result of substituting set approximations into gp&it program.

If we think of lists as collections of items, then we might wan
to check that the sort program as written does not drop, clafglj
or create any elements. That is, if the atésort s t) is provable
then the multiset of items in the list denoted bys equal to the
multiset of items in the list denoted byIf this property holds then
t ands are lists that are permutations of each other: of coursg, thi
does not say that it is the correct permutation but this mionpls
fact is one that, as we show, can be inferred automatically.

Computing this property of our example logic programming
follows the following three steps.

First, we provide an approximation of lists as being, in fact
multiset: more precisely, @ermulasdenoting multisets. The first
step, therefore, must be to substitutdor 1ist in the signature
above. Now we can now interpret the constructors for listagus
the substitution

nil— L cons — Az Ay. itemz B y.

Under such a mapping, the listdns 1 (cons 3 (cons 2 nil))) is
mapped to the multiset expressipam1 ® item3 R item2 % L.
Second, we associate with each predicate in Fiﬂure 1 a etultis
judgment that encodes an invariant concerning the mugtidet
noted by the predicate’s arguments. For exampl@gpend r s t)
or (split u t r s) is provable then the multiset union of the items
in r with those ins is equal to the multiset of items i) and if
(sort s t) is provable then the multisets of items in list&ind¢
are equal. This association of multiset judgments to atdariou-
las can be achieved formally using the following substitsi for
constants:

append — AZAYyAz. (z By) ooz
split — Audzdydz. (y Bz) oox
sort — Ar)y.r ooy

The predicatesleq and gr (for the least-than-or-equal-to and
greater-than relations) make no statement about collestinf
items, so that they can be mapped to a trivial tautology vé& th
substitution
leg— AzAy. 1 gr — Aziy. 1
Figureﬂz presents the result of applying these mappingsgmrdﬂ.
Third, we must now attempt to prove each of the resulting

formulas. In the case of Figute 2, all the displayed formuales
trivial theorems of linear logic.

7. Formalizing the method

The formal correctness of this three stage approach isygasti-
fied given the substitution properties we presented in Segtifor
the sequent calculus presentation of linear logic.

LetI" denote a set of formulas that contains those in Fiﬂjre 1.
Let § denote the substitution described above for the iy, for
the constructorail andcons, and for the predicates in Fig 1.
If 33 is the signature fof" then splitY: into the two signatureX;
and X, so thatY; is the domain of the substitutiohand letX;
be the signature of the range ®&{in this case, it just contains the
constantiterm). Thus,I'0 is the set of formula in Figmﬂ 2.

Assume now thab;. ¥o; T’ = sort(t, s) is provable. Given the
discussion in Sectio ‘ .1 ahd|4.2, we know that

31,23;10 v t0 o—o s0

is provable. Since the formulas_ii¢ are provable, we can use
substitution into proofs (Sectioﬂ.B) to conclude that X3;
tf o—o s6. Given Propositionﬁll, we can conclude that, t0 = s0:
that is, thatd andsf encode the same multiset.

Consider the following model theoretic argument for estdisl
ing similar properties of Horn clauses. Latl be the Herbrand
model that captures the invariants that we have in mind. h pa
ticular, M contains the atom&ppend r s t) and(split uw ¢ r s)
if the items in the list- added to the items in list are the same
as the items irt. Furthermore M contains all closed atoms of the
form (leq ¢ s) and(gr ¢ s), and closed atom&ort s t) wheres
andt are lists that are permutations of one another. One can now
show thatM satisfies all the Horn clauses in FigLﬂe 1. As a con-
sequence of the soundness of first-order classical logicatom
provable from the clauses in Figyre 1, must be truainBy con-
struction of M, this means that the desired invariant holds for all
atoms proved from the program.

The approach suggested here using linear logic and deductio
remains syntactic and proof theoretic: in particular, shguthat
a model satisfies a Horn clause is replaced by a deductionnwith
linear logic.

8. Setsapproximations

It is rather easy to encode sets and the equality and sulget ju
ments on sets into linear logic. In fact, the transition tofsem
multiset is provided by the use of the linear logic exporengince
we are using disjunctive encoding of collections (see theutision
in Section|p), we use theexponential (if we were using the con-
junctive encoding, we would use thexponential).

The expressior? itemt can be seen as describing the presence

Having taken these three steps, we now claim that we have of an item for which the exact multiplicity does not matterist

proved the intended collection judgments associate to ehte
logic programming predicates above: in particular, we haoe
shown that our particular sort program computes a pernoumtati

formula represents the capacity to be used any number obtime
Thus, the se{z,...,n,} can be encoded &temz; B --- %
?itemz,,. Using logical equivalences of linear logic, this formwga i

also equivalent to the formulitemz, @- - - @itema,,). This latter
encoding is the one that we shall use for building our enapdin
sets.

A set expressions a formula in linear logic built from the
predicate symboltemn (denoting the the singleton set), the linear
logic additive disjunctiorn® (for set union), and the uni for &
(used to denote the empty set). We shall also allow a predicat
variable (a variable of type) to be used to denote a (necessarily
open) set expression. An example of an open multiset eXpress
is item f(X) ® 0 ® Y, whereY is a variable of type, X is a
first-order variable, and is some first-order term constructor.

Let S andT be two set expressions. The twet judgments
that we wish to capture are set inclusion, writtenSas. 7', and
equality, written asS = 7. We shall use the syntactic variable
p to range over these two judgments, which are formally binary
relations of typeo — o — o. A set statemeris a formula of the
form

vf[51plT1&&SnpnTn$SOPOTO]

where the quantified variablesare either first-order or of type
and formuladly, So, . . ., Tn, Sy are possibly open set expressions.

If S'andT are closed set expressions, then we weiteS C T
whenever the set (of closed first-order terms) denotedSbig
contained in the set denoted Hy, and we write)=s S = T
whenever the sets denoted ByandT are equal. Similarly, we
write

':sVi'[SlplTl&---&SnpnTn$SOpoTo]

if for all closed substitution® such that=. S;0 p; T;6 for all
i =1,...,n,itis the case thadt, So6 po Tob.

The following Proposition is central to our use of linearitop
establish set statements for Horn clause programs.

PROPOSITION2. Let Sp, To, ..., Sh, Tn (n > 0) be set expres-
sions all of whose free variables are in the list of variahies-or
each judgment p t we writes p t to denote? s —o 7t if pis C and
(75 o07t) & (7t —0 ?5) if pis=. If

Vi[Sl /31 T1&&SnﬁnTn$SO /30 TO]
is provable in linear logic, then
EVE[S1 o1 Ti & -+ & Sn pn Tno = So po To]

Lists can be approximated by sets by using the following sub-
stitution:

nil—0 cons — Az \y. itemz @ y.

Under such a mapping, the listdns 1 (cons 2 (cons 2 nil))) is
mapped to the set expressiitem 1 & item2 ¢ item2 & 0. This
expression is equivalent{o) to the set expressiatem1 & item2.

For a simple example of using set approximates, consider mod
ifying the sorting program provided before so that dupksaare
not kept in the sorted list. Do this modification by replac
previous definition for splitting a list with the clauses i'rgl:‘rrgg
That figure contains a new definition of splitting that consathree
clauses for deciding whether or not the “pivot” for the 2piig X is
equal to, less than (using the predicate), or greater than the first
member of the list being split. Using the following subdiitas for
predicates

append — AzAyAz. 7(x By)oo?z
split — AudzAydz. 7z —o ?(itemu d y @ z)
sort — AzAy. Tx ooy

(as well as the trivial substitution fart andge), we can show that
sort relates two lists only if those lists are approximatgthie same
set.

R
F;AZ'FAl@"'@AnEB
A~ C F;An'_OGBL
Aaae - --eA, - C
F;Bl@vvv@BmFCBC

A C
Here,n,m > 0 and in the BC (backchaining) inference rule, the
formula?(A1 @®---® A,) —o?(B1®- - - Byn) must be a member
of"'andA € {A;,..., A}

Figure5. Specialized proof rules for proving set statements.

In the case of determining the validity of a set statemer, th
use of linear logic here appears to be rather weak when ceaupar
to the large body of results for solving set-based condtsgistems

(i, 3.

9. Automation of deduction

We describe how automation of proof for the linear logic slan
tions of set and multiset statements given in Proposilﬁ)aa
can be performed.

In order to understand how to automatically prove the reglir
formulas, we first provide a normal form theorem for the fragin
of linear logic for which we are interested. The key resulliméar
logic surrounding the search for cut-free proofs is givently
completeness dcused proof$ﬂ]. Focused proofs are a normal
form that significantly generalizes standard completeresdts in
logic programming, including the completeness of SLD-hetson
and uniform proofs as well as various forms of bottom-up amd t
down reasoning.

We first analyze the nature of proof search for the linearclogi
translation of set statements. Note that when consideriogapil-
ity of set statements, there is no loss of generality if thly get
judgment it contains is the subset judgment since set dywn
be expressed as two inclusions. We now prove that the pretéisy
in Figure|b is sound and complete for proving set statements.

PrRoOPOSITION3. Let So, To, ..., S, Tn (n > 0) be set expres-
sions all of whose free variables are in the list of variabhiesSThe
formula

VZ[(?751 o ?T) & ... & (7 Sn - 7Ty) = (7 S0 — 7To)]
is provable in linear logic if and only if the sequent
(751 —07T1),...,(?Sn 0 7T%); S0 v To
is provable using the proof system in Figﬂe 5.

Proof The soundness part of this proposition (“if”) is easy to
show. For completeness (“only if”), we use the completerass
focused proofs in|]3]. In order to use this result of focuseabfs,
we need to give a polarity to all atomic formulas. We do this by
assigning all atomic formulas (those of the foitem (-) and those
symbols inz of type o) negative polarity. Second, we need to
translation the two sided sequdntS + T'toT'Y; T 4 S when
S is not atomic (that is, its top-level logical connectived$ and
toT+,T; 58+ 1 - whenS is a atom. Completeness then follows
directly from the structure of focused proofs. |
Notice that the resulting proofs are essentially bottomare
reasons from formulas on the left of the sequent arrow to e
on the right.
We can now conclude that it is decidable to determine whether
or not the linear logic translation of a set statement is qit®.
Notice that in a proof built using the inference rules in l-ﬁgﬁ, if

BL

F;Al 78~~~33AnFA1,...
;8w 11, Ts, A
F;SFTl QS’TQ,A

I8 v Ay, .o, An, A
[;8+v By,...,Bm, A

Here,n,m > 0 and in the BC (backchaining) inference rule, it
must be the case that the formula

(Ai 8- -8A,)—o(B1®---
is a member of".

7An

3R

BC

% B,)

Figure 6. Specialized proof rules for proving multiset statements.

the endsequent 5; S — T then all sequents in the proof have the
formT'; S’ — T, for someS’. Thus, the search for a proof either
succeeds (proof search ends by placi® on top), or fails to find
a proof, or it cycles, a case we can always detect since themy
a finite number of atomic formulas that can e

The proof system in Figurf]
structure of proofs of the linear logic encoding of multisedte-
ments. Let

Vf[slﬁ1T1&.u&SnﬁnTn$SOﬁ0To]

be the translation of a multiset statement into linear logrovabil-
ity of this formula can be reduced to attempting to pré¥ep, o
from assumptions of the form

(A1 B---BA,)—o (BL B--- 8 B,),

whereAs, ..., An, B, ..., B, are atomic formulas. Such formu-
las can be callechultiset rewriting clausesince backchaining on
such clauses amounts to rewriting the right-hand-sideisetlbf a
sequent (see rule BC in Figurg 6). Such rewriting clausepare
ticularly simple since they do not involve quantification.

PROPOSITION4. Let Sy and Ty be multiset expressions all of
whose free variables are in the list of variablgsand letT" be a
set of multiset rewriting rules. The formulsy —o Tp is a linear
logic consequence df if and only if the sequenit; Sy + Tp is
provable using the inference rules in FigL[lle 6.

Proof The soundness part of this proposition (“if”) is easy to
show. Completeness (“only if”) is proved elsewhere, forragke,
in [@ Proposition 2]. It is also an easy consequence of tiee t
completeness of focused proofsﬂ1 [3]: fix the polarity tosatimic
formulas to be positive. [|
Notice that the proofs using the rules in Figl]re 6 are sttdigh
proofs (no branching) and that they are top-down (or goedeted).
Given these observation, it follows that determiningif —o Tj is
provable from a set of multiset rewriting clauses is dedielatince
this problem is contained within the reachability problefrPetri
Nets ﬂ)]. Proving a multiset inclusion judgmefg(So 2 g — To)
involves first instantiating this higher-order quantifierprinciple,
this instantiation can be delayed until attempting to appé/sole
instance of thes L rule (Figure[p).

10. List approximations

We now consider using lists as approximations. Since liaigeh
more structure than sets and multisets, it is more involueshtode
and reason with them. We only illustrate their use and doaitav
a full formal treatment for them.

Since the order of elements in a list is important, the emgpdi
of lists into linear logic must involve a connective that istn

6 can be used to characterize the

commutative. (Notice that botlt and® are commutative.) Linear
implication provides a good candidate for encoding the ouded
in lists. For example, consider proof search with the foanul

itema o— (p o— (itemb o— (p o— 1)))

on the right. (This formula is equivalentitema % (p* ®(itemb %
p*)).) Such a formula can be seen as describing a process that is
willing to output the itema then go into input mode waiting for
the atomic formula to appear. If that formula appears, then item
b is output and again it goes into input waiting mode looking fo
p. If another occurrence gf appears, this process becomes the
inactive process. Clearly, is output prior to wherm is output: this
ordering is faithfully captured by proof search in lineagitm Such
an encoding of asynchronous process calculi into linedc Ibgs
been explored in a number of papers: see, for exa 6,21
The example above suggests that lists and list equality ean b
captured directly in linear logic using the following enaugt

nil — AL cons — AzZARML itemz o— (I o— (R1))

The encoding of the list, sajcons a (cons b nil)), is given by
the A-abstraction

Al.itema o— (I o— (itemb o— (I o— 1))).

The following proposition can be proved by induction on the
length of the list.

PROPOSITIONS. Let s and ¢ be two lists (built usingnil and
cons) and letS and T be the translation of those lists into expres-
sions of type — o via the substitution above. Thafi.(S1) o—o
(T'7) is provable in linear logic if and only i andt are the same
list.

This presentation of lists can be “degraded” to multisatgdy
by applying the translation of a list to the formula For example,
applying the translation dfcons a (cons bnil)) to L yields the
formulas

itema o— (L o— (itemb o— (L o— 1)))

which is linear logically equivalent ttema % itemb.

Given this presentation of lists, there appears to be nolsimp
combinator for, say, list concatenation and, as a reswdtetis no
direct way to express the judgments of prefix, suffix, subbst.
Thus, beyond equality of lists (by virtual of Propositiﬂn there
are few natural judgments that can be stated for list. Morelbsa
done, however, by considering difference lists.

11. Differencelist approximations

Since our framework includels-abstractions, it is natural to repre-
sent difference lists as a particular kind of list abst@ttiver a list.
For example, imProlog a difference list is naturally represented as
a \-term of the form

AL.cons z1 (cons 2 (... (cons z,, L)...)).

Such abstracted lists are appealing since the simple operat
composition encodes the concatenation of two lists. Giescate-
nation, it is then easy to encode the judgments of prefix affiksu
To see other example of computing on difference lists deedrin
fashion, see[[4].

Lists can be encoded using the difference list notion with th
following mapping into linear logic formulas.

nil — ALA. L1
cons — ATARALAI. itemz o— (I o— (R L 1))

The encoding of the list, safcons a (cons b nil)), is given by
the A-abstraction

ALALitema o— (I o (itemb o— (I o= L 1))).

(traverse emp null)
VN.VR.VS. (traverse R S) = (traverse (bt NempR) (cons N S))
VN.VM.VR.VS.VL1.VL2. (traverse (bt ML1 (bt NL2R))S) = (traverse (bt N (bt ML1L2)R) S)

Figure 7. Traversing a binary tree to produce a list.

YWNw.Ww oo Wuw
VN.VYRVYSVYWNw.itemN o— (w o— RW w) o—o (itemN o— (w o— S W w)) o— VWNVw.RW woo S W w
VNNM.YL1.YNLy VRNSYWNw.
Li(Ak.itemM o— (k o— La(MN.itemN o— (l o— RW 1))k))wooSW w o—
VYWNw.Li(Ak.itemM o— (k o— La(Al.itemN o— (lo— RW I))k))woo S W w

Figure8. Linear logic formulas arising from a difference list appiraation.

In FigureW, a predicate for traversing a binary tree is given
Binary trees are encoded using the typeee and are constructed
using the constructorsmp, for the empty tree, andt of type
int — btree — btree — btree, for building non-empty
trees. A useful invariant of this program is that the list s
approximating the binary tree structure in the first argunan
traverse iS equal to the list of items in the second argument.
Linear logic formulas for computing that approximation da@
generated using the following approximating substitution

btree — o
emp — ALM. L1
bt — AZARASALAL(R (ALitemz o— (1 o— (S L 1))) 1))

The result of applying that substitution (as well as the dmava for
nil andcons) is displayed in FigurElS. While these formulas ap-
pear rather complex, they are all, rather simple theorerhgybier-
order linear logic: these theorems are essentially trisiate the
A-conversions used to build the formulas from the data sirest
has done all the essential work in organizing the items inista
Establishing these formulas proves that the order and pfialty

of elements in the binary tree and in the list in a provabledrse
computation are the same.

12. Futurework

Various extensions of the basic scheme described heretaraita
consider. In particular, it should be easy to consider apprating
data structures that contain items of differing types: ezfcthese
types could be mapped into differeitém, (-) predicates, one for
each typev.

It should also be simple to construct approximating mapping
given thepolymorphictyping of a given constructor’s type. For
example, if we are given the following declaration for binaree
(written here in\Prolog syntax),

kind btree type -> type.
type emp btree A.
type bt A -> btree A -> btree A -> btree A.

it should be possible to automatically construct the magpin

btree — Azx.0
emp — L
bt — AzAyAz.itema(z) Bz By

that can, for example, approximate a binary tree with thetisetl
of the labels for internal nodes.

Abstract interpretation[[S] can associate to a program an ap
proximation to its semantics. Such approximations can teetpe-
termine various kinds of properties of programs. It will Inger-
esting to see how well the particular notions of collectioalgsis
can be related to abstract interpretation. More challengiould

be to see to what extent the general methodology described-he
the substitution into proofs (computation traces) and ddmear
logic — can be related to the very general methodology ofratist
interpretation.

Acknowledgments

| am grateful to the anonymous reviewers for their helpfuheo
ments on an earlier draft of this paper. This work was funded i
part by the Information Society Technologies programmehef t
European Commission, Future and Emerging Technologiesrund
the IST-2005-015905 MOBIUS project. This paper reflectsyonl
the author’s views and the Community is not liable for any thee
may be made of the information contained therein.

References

[1] A. Aiken. Set constraints: results, applications, antife directions.
In PPCP94: Principles and Practice of Constraint Programming
number 874 in LNCS, pages 171 — 179, 1994.

[2] J. Andreoli and R. Pareschi. Linear objects: Logicalgasses with
built-in inheritance. New Generation Computin®(3-4):445-473,
1991.

[3] J.-M. Andreoli. Logic programming with focusing proois linear
logic. J. of Logic and Computatiqr2(3):297-347, 1992.

[4] P. Brisset and O. Ridoux. N reverse can be linear. Eighth
International Logic Programming ConferencParis, France, June
1991. MIT Press.

I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchetnd

A. Scedrov. A meta-notation for protocol analysis. In R. (Gwor,
editor, Proceedings of the 12th IEEE Computer Security Foundations
Workshop — CSFW'9%ages 55-69, Mordano, Italy, 28-30 June
1999. IEEE Computer Society Press.

I. Cervesato and F. Pfenning. A linear logic frameworkn |
Proceedings, Eleventh Annual IEEE Symposium on Logic in
Computer Sciengepages 264—-275, New Brunswick, New Jersey,
July 1996. IEEE Computer Society Press.

A. Church. A formulation of the simple theory of typekof Symbolic
Logic, 5:56—68, 1940.

[8] P. Cousot and R. Cousot. Abstract interpretation: A edifi
lattice model for static analysis of programs by constorctor
approximation of fixpoints. I#?OPL, pages 238-252, 1977.

5

—

[6

—_

(7]

[9] J. Esparza and M. Nielsen. Decidability issues for pe#ts - a
survey.Bulletin of the EATC32:244-262, 1994.

[10] J.-V. Girard. Linear logic.Theoretical Computer Sciencg0:1-102,
1987.

[11] J.-Y. Girard. A fixpoint theorem in linear logic. An enh@iosting to
the mailing list linear@cs.stanford.edu, February 1992.

[12] J.-Y. Girard. Locus solumMathematical Structures in Computer
Science11(3):301-506, June 2001.

[13] J.-Y. Girard, P. Taylor, and Y. LafonProofs and TypesCambridge
University Press, 1989.

[14] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopezei.
Integrated program debugging, verification, and optindzatising
abstract interpretation (and the ciao system preprocesssci.
Comput. Program.58(1-2):115-140, 2005.

[15] J. Hodas and D. Miller. Logic programming in a fragmeiit o
intuitionistic linear logic.Information and Computatiqri10(2):327—
365, 1994.

[16] N. Kobayashi and A. Yonezawa. Asynchronous commuitioat
model based on linear logidcormal Aspects of Computing:279—
294, 1994.

[17] R. McDowell and D. Miller. Cut-elimination for a logic ith
definitions and induction.Theoretical Computer Scienc232:91—
119, 2000.

[18] D. Miller. The w-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editoi3d Workshop on
Extensions to Logic Programmingumber 660 in LNCS, pages
242-265, Bologna, ltaly, 1993. Springer-Verlag.

[19] D. Miller. Forum: A multiple-conclusion specificatiolanguage.
Theoretical Computer Scienc&65(1):201-232, Sept. 1996.

[20] D. Miller. Higher-order quantification and proof selrc In
H. Kirchner and C. Ringeissen, editoRroceedings of AMAST
2002 number 2422 in LNCS, pages 6074, 2002.

[21] D. Miller. Encryption as an abstract data-type: An exted abstract.
In I. Cervesato, editorProceedings of FCS'03: Foundations of
Computer Securitypages 3—14, 2003.

[22] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. fdnin proofs
as a foundation for logic programminénnals of Pure and Applied
Logic, 51:125-157, 1991.

[23] G. Nadathur and D. Miller. An Overview okProlog. InFifth
International Logic Programming Conferencpages 810-827,
Seattle, August 1988. MIT Press.

[24] G. Nadathur and F. Pfenning. The type system of a highder
logic programming language. In F. Pfenning, ediypes in Logic
Programming pages 245-283. MIT Press, 1992.

[25] L. Pacholski and A. Podelski. Set constraints: A peardsearch on
constraints. IrPrinciples and Practice of Constraint Programming -
CP97 number 1330 in LNCS, pages 549-562. Springer, 1997.

[26] P. Schroeder-Heister. Rules of definitional reflection M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science
pages 222-232. IEEE Computer Society Press, IEEE, June 1993

