
HAL Id: inria-00168429
https://hal.inria.fr/inria-00168429

Submitted on 28 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The mpFq library and implementing curve-based key
exchanges

Pierrick Gaudry, Emmanuel Thomé

To cite this version:
Pierrick Gaudry, Emmanuel Thomé. The mpFq library and implementing curve-based key exchanges.
SPEED: Software Performance Enhancement for Encryption and Decryption, ECRYPT Network of
Excellence in Cryptology, Jun 2007, Amsterdam, Netherlands. pp.49-64. �inria-00168429�

https://hal.inria.fr/inria-00168429
https://hal.archives-ouvertes.fr

The mpFq library and implementing curve-based key

exchanges

P. Gaudry and E. Thomé

June 8, 2007

Abstract

We present a library for finite field arithmetic. The originality of this library

lies in the fact that specialized code is automatically produced for the selected finite

fields. The opportunity of compile-time optimizations yields substantial performance

improvements compared to libraries which initialize the finite field at runtime. This

library is used to present benchmarks on some curve-based public key cryptosystems.

1 Introduction

Cryptosystems based on the discrete logarithm problem in (Jacobians of) curves are com-
petitive in many contexts. The main advantage compared to systems based on the fac-
torization problem or on the discrete logarithm problem in finite fields is that the best
known algorithm for attacking has exponential time instead of subexponential. In practice
it means that for obtaining a given security, the sizes of the parameters are smaller.

The speed of an implementation of a curve-based cryptosystem is mostly given by the
speed of the underlying finite field arithmetic. Once the particularities of the finite field
implementation are known, one can search in the literature the most suitable choice for
the coordinate systems and for the addition chain. This also depends on the amount of
memory available, and if resistance to side-channel attacks is required.

In this paper we describe a new (still in development) finite field library called mpFq

that we have used to write curve-based cryptosystems. The main objective of this library
is speed. Portability, readability, ease of maintenance, ease of use are also wanted, but
we accept no feature in the design of the library that would prevent us to apply certain
optimizations.

Setting as a goal the implementation of fast curve-based cryptosystems forces a partic-
ularity of the underlying finite field operations: The finite field is known at compile-time.
This enables a considerable amount of optimizations. The design of the mpFq library is
suited to this problem: provide optimized code that takes advantage of all the information
that is known at compile-time.

In Section 2 we give an overview of the existing software, and list the requirements for
the mpFq library. In Section 3 we explain with more detail the design of mpFq and why
certain choices were made. In Section 4 we give some timings. Finally in Section 5 we
describe a few BATs that have been implemented with the help of mpFq. We conclude with
some plans for the future.

2 Why yet another finite field library?

2.1 Existing finite field libraries

Obviously, there are several already existing software libraries that can be used to perform
computations in finite fields. We briefly review here some of them.

The NTL library [17] by V. Shoup provides arithmetic modulo finite fields, and also
goes well beyond that. NTL is written in a small subset of C++, and based on selectable
multiprecision arithmetic packages (including the Gnu MP library [12]). NTL has good
performance in general and very good performance for small prime fields, using IEEE
floating point arithmetic for the reduction step.

The ZEN library [7] by F. Chabaud and R. Lercier is a C library for finite field arith-
metic. ZEN handles arbitrary finite field (extension of extensions for instance). Although
ZEN is written in ANSI C, it should really be regarded as an object-oriented implemen-
tation in the same spirit as X11: Almost every user-land identifier from the high-level
interface is a macro that calls a function obtained by dereferencing a pointer in the last
passed argument (the field). The high-level interface is well-documented. However, for best
performance, if the finite field one is working in is known in advance when writing the code,
it is possible to call directly the lower-level functions, thereby saving an indirect function
call. ZEN has several lower-level layers, including specialized arithmetic for one-word-long
modulus. This only goes to a limited extent, however, since the lower-level interface of
ZEN is not documented.

The Miracl library by M. Scott [16] provides an optimized feature set for cryptograph-
ical operations. It relies on a finite field layer whose performance appears to be good.
Miracl goes well beyond finite field operations, since algorithms such as elliptic curve point
counting or algorithms for computing pairings are included.

We also mention the Givaro library by J.-G. Dumas et al. [9]. It is written in C++
templates, and claims to perform well for one-word-long modulus.

Besides the libraries cited above, which strive for providing arithmetic for all finite fields,
there are also software libraries which focus on particular finite fields. The NuMongo library
by R. Avanzi [3] handles specially selected prime fields, with the modulus having a special
form. As far as we know, it contains only 32-bit code and is not publicly available.

2.2 The opportunity of compile-time optimizations

As mentioned in the introduction, the primary goal that started the development of mpFq

was the implementation of fast curve-based cryptosystems. For such an application, the
finite field is known in advance. Since speed is desired, one wants to take advantage of
this knowledge when building the library. While the performance improvement might seem
limited if one has in mind fields modulo 1024-bit primes, this kind of optimization makes
a vast difference for small fields.

The contexts with an opportunity for compile-time optimization also includes long-
running computations on one or several selected finite fields. In particular, cryptanalysis
attempts such as the breaking of the Certicom ECC Challenges [6, 13] fall in this category.
In the precise example of [13], specially crafted code was written in order to have fast finite
field operations. Other settings in which specific code was written include [10, 4].

Several kinds of optimizations are made possible by the knowledge of the finite field
at compile time. These include the following list of methods. All these optimizations can
easily be performed at compile time, but it is not so easy to do the same at runtime, and
in many cases it is impossible.

• Code inlining. At runtime, this is not clear which code to inline, because it might
depend on the field.

• Branch elimination. If the values determining the control flow are constant at com-
pile time, then the branches can be avoided. This reduces the cost of loops and
conditionals.

• Loop unrolling. Nowadays compilers do it automatically, but the unrolling is more
efficient if the length of the loop is a constant.

• Choice of the best algorithm for a given task. This can be done also at runtime (ZEN
does so), but is more comfortable at compile time (and comes with zero runtime
overhead).

Of the finite field libraries mentioned above, only those focusing on a handful of spe-
cialized finite fields (like NuMongo) have the opportunity to take full advantage of the
optimizations above. By design, none of the other libraries which provide arithmetic for
general finite fields are in position to exploit these optimizations.

It is always conceivable to overload some particular library with a new class for the
particular field we are interested in, but no simple mechanism is provided to help the
developer in this task.

2.3 Wanted features of mpFq

From our experience emerges a need for a software library for finite fields which differs
from the existing material. Briefly put, the two main differences are:

• mpFq has to handle very efficiently finite fields that are known at compile time.

• mpFq’s specialized code for the selected finite fields should be written automatically,
rather than crafted by hand.

mpFq sets some goals. The utmost concern is speed, obviously. mpFq is not contented
with merely working code, since this is not good enough for our claimed purposes. While the
automatic process of generating specialized code should take sensible choices, we require
that these choices may be overridden easily, or that radically different implementation
choices may be taken by the user in a way that is reasonably compatible with the rest
of the library. Indeed, there is quite often no single answer to the question “which is
the fastest implementation of Fq ?” for a given value of q. Depending on the intended
application, the different finite field operations are not necessarily used equally frequently;
in situations where optimizing an operation penalizes another one at the same time, the
relevant optimization choices therefore depend on the application.

Since the underlying finite field might be in several cases a parameter of an algorithm,
mpFq has to provide a consistent application programming interface (API) in order to allow
code reuse.

In the last few years, the processors that are available in average workstations have
become multi-core. This means that for most applications, having a multi-threaded imple-
mentation is a good way to gain efficiency. For this reason, we require that the mpFq code
be reentrant, so that they are usable within a multi-threaded application.

The dependencies of mpFq are free software, mpFq itself being free software licensed
under the terms of the Gnu Lesser General Public License (LGPL)1.

3 The design of mpFq

3.1 Choice of the programming languages

The programming languages used by mpFq are perl, C, and assembly. The automatic
generation of specialized code for a selectable finite field is done by perl. From the de-
scription of the finite field, the perl code creates a C source file and header, which provides
the required set of functionalities.

The choice of perl calls for some comments. The C++ language offers several methods
which could provide the needed genericity. An object-oriented approach with a virtual
base class would fail on the speed requirement. The unavoidable indirect function call
for virtual methods would be a major performance hit, in particular for the sizes we are
focusing on (for small sizes, an inlined implementation of the operation would be most
suitable). Furthermore, the variety of fields on which different specialized code is needed
would require different classes to be generated by other means anyway.

The template mechanism from C++ provides essentially what is needed. Indeed, this
allows a static overriding of functions, leaving the possibility of inlining. We believe however

1By the time of the Speed conference, we plan to distribute a first beta release of mpFq.

that the kind of syntactic manipulation that is offered by C++ templates can also be
obtained by other means. At the expense of losing the type checking of code specializations,
we have opted for doing the code generation using perl, which is best suited for text
manipulation.

3.1.1 The dilemma of assembly

In many cases, writing critical routines in assembly is required for gaining speed. This
is due to strict limitations of the C language concerning arithmetic. For instance, after
adding two machine-words, if there is an overflow (a carry), the C language ignores it,
whereas on many platforms this information is still available at the assembly level. Also
the popular x86 architecture gives access to the full double-word result of a multiplication,
whereas only the low significant word is reachable from C. A third example is assembly
instructions specific to some platform, like for instance the SSE-2 instructions set [1]. Such
instructions and the corresponding data types are not accessible with standard C.

There are several approaches to writing assembly. It is possible to write a standalone
function, that respects the application binary interface (ABI) of the C compiler/system
we use. This is very convenient but it means that a possibly costly function call has to
be payed each and every time one needs it. The other approach is not standard, but
available in many compilers, including the Gnu C compiler (GCC). It consists in inline
assembly language insertion using the asm() keyword. The programmer must tell the
compiler which registers are used for input, ouput and temporary usage during the assembly
stage. This has the advantage of avoiding the function call. Another option is language
extensions which are specific to some compilers. Several compilers (including GCC as well
as compilers from Intel, Microsoft) provide the emmintrin.h include file, with for instance
the _mm_slli_epi64 macro which corresponds to the psrlq assembly instruction (which
right-shifts a 128-bit SSE-2 register).

Deciding between standalone functions and inline assembly language is a matter of
length of the assembly code, but not only. One could think that writing a C function as
a list of small blocks of asm() interleaved with pure C code is a good idea, but sometimes
it appears that it is better to write the whole function in assembly to help the compiler
in register allocation and handling the data flow. Unfortunately, right now, we have not
yet been able to find a strict rule for when an approach should be chosen or another, and
trying several implementations is the only resort.

3.2 The API and function naming

The API of mpFq is as follows: Let TAG be a mnemonic that corresponds to a finite field or
a family of finite fields. In fact, TAG will also be different if the internal representation of
elements of the same finite field are different. For instance, 2_27 can be the mnemonic for
the finite field with 227 elements in classical (polynomial basis) representation; or p_mgy_3
can be the mnemonic for the family of prime finite fields where the modulus fits in 3
machine-words and the elements are in Montgomery representation. Then the C types and

the C functions corresponding to this mnemonic start with mpfq_TAG. For instance, an
element of F227 will have a type mpfq_2_27_elt, and the multiplication function between
two such elements will be called mpfq_2_27_mul.

3.3 Macros and inline functions

All these types and functions are stored in two files: mpfq_TAG.c and mpfq_TAG.h. The
speed requirement means that all the functions that take less than (say) a few hundred
cycles must be inlined. Instead of using the C preprocessor for defining macros, mpFq is
developed using static inline C functions that are included in the .h file. The inlining
effect is the same, but compared to a macro, this has the advantage to allow the compiler
to perform a type checking and to facilitate the debugging (when switching off the inlining
optimisation options of the compiler). For instance, in F289 the add function will be as
follows:

static inline mpfq_2_89_add(mpfq_2_89_field_ptr K,

mpfq_2_89_dst_elt r, mpfq_2_89_src_elt s1, mpfq_2_89_src_elt s2)

{

r[0] = s1[0]^s2[0];

r[1] = s1[1]^s2[1];

}

This example calls for additional remarks:

• The first argument of most mpFq functions is a pointer to the finite field in which the
operation takes place. For most implementations, it is not used, but in some case
it is convenient. For instance if the implementation of the multiplication covers all
prime fields of a given size, then the modulus should be accessible to the function,
and is then obtained from the first argument.

• The type for an element is split into two subtypes marked src and dst. This fol-
lows GMP practice to distinguish between const and variable arguments. Adding
the keyword const to a variable sometimes helps the compiler to choose the right
optimization.

3.4 Code generation

It should be now evident that there will be a lot of redundancy between different .c and .h

files of mpFq. To avoid the problems with maintaining a code with a lot of code duplication,
we have chosen to have most of the C and assembly sources of mpFq generated automatically
by perl scripts. The power of perl with manipulating files, strings, regular expressions
makes it a very nice alternative to any macro-based preprocessing (like CPP or M4) or to
a template-based C++ approach.

We give an example of the power of this approach: when writing the code for the trace
of an element in a specific finite field of characteristic 2 in polynomial basis representation,

one wants to precompute the powers of the defining element x that have trace 1, in order
to create the mask. If you do not allow a powerful enough language for the preprocessing,
this precomputation will have to be stored and shipped with the library sources, whereas
a perl script has no problem to do this precomputation on the fly, just before creating
the appropriate C function. It is even possible, if some precomputations would be tedious
in perl, to hand off some of the work to an external program in C (mpFq uses such a
convenience).

We have implemented a main perl module that helps in the organization of the code
generation. Several perl scripts in mpFq generate code, but they are not handling the
global organization themselves. Instead, the API for mpFq for all finite fields is concen-
trated in a single file api.pl that lists the functions that should be present, together
with their prototypes. The generation of the .c and .h files for a given mnemonic TAG is
done by the main module, which iterates over the functions in the API. It delegates the
generation of these functions to the specialized scripts, fetching perl subroutines named
code_for_<function_to_generate>. At the end the main module reconstructs both files
from all the codes, and creates the appropriate prototypes. This approach allows to enforce
conformance to the API.

4 Benchmarks

4.1 Development status of mpFq

The API and the main perl module of mpFq are more or less fixed. mpFq will probably
gain more functionalities gradually, and most importantly we need to improve speed at
every possible level. Until now we have focused on 64-bit architectures based on the
AMD64 instruction set. This covers essentially all the processors currently sold for personal
computers and workstations (Athlon64, Opteron, Core2, recent Xeon). We believe that
in a near future, 32-bit architectures will be found only in embedded systems. Our code
works on 32-bit architectures but the assembly support is inexistent or very poorly written.
Furthermore, on many 32-bit architectures, the floating-point unit is more powerful than
the integer unit, so that this would probably give the best performance, and we didn’t
implement this.

Apart from the target architecture, we have been concentrating in optimizing the finite
fields that are needed for our BATs. In particular, for a prime field modulus which is
not sparse, the Montgomery representation should probably be used, but this is not yet
properly set in mpFq, so that the benchmarks are somewhat deceiving2.

While mpFq has good performance for some operations, some other are in dire need for
improvement (finite field inversion notably).

2Montgomery representation arithmetic will probably be in place by the time of the Speed conference.

4.2 Benchmarking methodology

We start with a word of warning: measuring the cost of a small operation is essentially
impossible on modern computers. Assume that an operation takes 20 cycles; assume also
that this operation is implemented in an inlined function (in C or assembly, this does
not really matter for this discussion). The cost of setting up the data and preparing the
registers at the beginning might take a few cycles (say 4 cycles), and this task is done by
the compiler. However, those 4 cycles might become much less if the context of the function
call is favorable (that’s one of the advantages of inlining). Therefore, some discrepancy is
inherently attached to the measurement.

There are basically two ways of timing an operation: either ask the operating system
(with the getrusage() function) or use the tick counter of the processor (the rdtsc as-
sembly instruction on x86). The first approach is fine only for very long tasks, since the
precision is of the order of the millisecond. The second approach is suitable only for rather
short tasks, since any interruption or context switch of the system will perturbate the
measure. Also, there is some kind of “Observer effect” for very small operations: a call to
rdtsc is not serializing, which means that there is no guarantee that the instructions are
executed in the order they are written. This is of course not good for our purpose. There is
a variant of rdtsc that is serializing (or one can add some serializing operation before and
calibrate it), but then we really perturbate the operation we are measuring, since there is
a high risk of flushing the pipeline.

In our context, we have mostly used the getrusage approach for our measures. Since
the operations we want to measure are small, we repeat them a large number of times and
divide the running time accordingly. On a few tests we have made, the results are not
too far from the other approach based on rdtsc, and consistent with the running times of
the BATs we have built upon the measured operations. But an operation like an addition
in F2113 can definitely not be measured in an optimized implementation, since its cost is
essentially just the cost of fetching the appropriate data: if it is already in registers, then
the operation will be less than 2 cycles or even zero (if the xor’s can be inserted between
higher latency instructions), but if this operation must be done at a time where all the
registers are already occupied, moving data between the stack and the registers can cost a
non-negligible time.

4.3 Cost of basic operations for prime fields

For prime fields, we have written mpFq implementations for each machine word size of the
modulus (up to nine words) and for the two finite fields that we use in our cryptographic
applications. The algorithms we have implemented are by no means original (classical
representation and we have used a basic binary extended GCD for the inversion). The costs
of basic operations for these fields are given in Table 1 and Table 2. We also give similar
benchmarks in NTL and ZEN for comparison. NTL and ZEN do not take advantage of the
pseudo-Mersenne form of the modulus. However, in ZEN one can activate a Montgomery
representation that speeds-up computations, so we give both timings.

We can see that mpFq is faster than NTL for all sizes. ZEN with Montgomery represen-
tation is comparable or slower than NTL except for 1 word primes, where it is sometimes
faster than mpFq. As one can expect, the difference is more visible for small sizes, and on
Opteron, since our assembly code is best suited to this processor. The gain obtained by
writing a reduction procedure that is specific to a pseudo-Mersenne modulus is visible on
the last two columns.

We conclude with a comment on the usual practice in curve-based cryptography: quite
often, to compare the costs of different coordinate systems or addition chains, only the
multiplications and squarings are counted, and the additions are said to be negligible.
This is clearly not the case, for instance for the field F2255

−19 on the Opteron where the
mul/add ratio is less than 6. The same kind of ratio is observed with the ZEN and NTL
libraries, and is even amplified by the fact that an addition or subtraction is much slower
than with mpFq.

Table 1: Time (in nanoseconds, with 2 significant digits) for basic operations in Fp on an
AMD Opteron 250 processor at 2.40 GHz.

mpFq:

1 word 2 words 3 words 4 words 2127 − 735 2255 − 19

add 2 4 5 7 4 8
sub 2 3 5 5 4 9
sqr 67 108 170 230 14 30
mul 66 109 180 240 16 45
inv 420 2600 4600 7500 2600 7400

NTL:

1 word 2 words 3 words 4 words

add 40 42 36 47
sub 38 40 28 44
sqr 120 150 230 290
mul 120 150 230 290
inv 1600 4400 6600 9200

ZEN/ZENmgy:

1 word 2 words 3 words 4 words

add 8/11 44/44 44/44 48/49
sub 7/8 64/71 66/70 73/75
sqr 62/90 270/170 420/270 520/320
mul 68/95 300/180 450/270 600/340
inv 1700/2100 3300/4300 4800/5900 6500/7500

Table 2: Time (in nanoseconds, with 2 significant digits) for basic operations in Fp on an
Intel Core2 6700 processor at 2.66 GHz.

mpFq:

1 word 2 words 3 words 4 words 2127 − 735 2255 − 19

add 1 2 4 8 3 8
sub 1 4 5 7 3 9
sqr 73 110 180 240 17 40
mul 74 120 190 260 19 53
inv 300 2000 3600 5800 2000 5800

NTL:

1 word 2 words 3 words 4 words

add 38 45 53 67
sub 38 45 52 64
sqr 110 130 210 270
mul 110 140 210 270
inv 1200 3400 5800 8000

ZEN/ZENmgy:

1 word 2 words 3 words 4 words

add 6/6 41/41 46/46 57/57
sub 4/4 54/60 60/62 73/78
sqr 52/52 280/120 400/170 550/250
mul 52/60 280/120 400/180 590/260
inv 1000/1000 2500/3000 3800/4300 5000/5900

4.4 Cost of basic operations for binary fields

The binary fields up to F2255 are implemented in mpFq, using a polynomial basis representa-
tion. We have chosen defining polynomials with lowest possible Hamming weight. Figure 1
shows the performance of the multiplication, squaring and inversion using mpFq compared
to the NTL and ZEN libraries for these fields. The figure also indicates the timings for
the “unreduced” multiplication and squaring operations. The graphs on the left side cor-
respond to timings on an AMD Opteron CPU at 2.40 GHz, while the graphs on the right
side correspond to timings on an Intel Core2 CPU at 2.66 GHz.

The algorithms implemented for the different operations are the classical ones described
for instance in [8, chap. 11]. So far, the multiplication is done using the schoolbook
algorithm, but Karatsuba and Toom-Cook variants have to be measured in comparison.
It appears that for all sizes, the best performance for the multiplication is attained by
using the SSE-2 instruction set [1]. Using these instructions, it is effectively possible to
work in parallel with two 64-bit machine words at a time. The performance gain is most
remarkable on the Intel Core2 CPU.

The comparison with the NTL library shows that mpFq is faster than NTL except in

a few situations. The ZEN library is somewhat slower than NTL in particular for the
inversion (we did not investigate where this problem could come from). In our ZEN test
program, we have activated the precomputations that could yield speedups, but we have
not tried to split the extension in a double extension; in the documentation of ZENfact (a
submodule of ZEN), there are examples of such constructions that provide a speedup, but
this is not really automatic. We have also skipped the optimization that builds a logarithm
table, since this is valid only for tiny fields.

The inversion in mpFq has not been looked at seriously, it merely has the merit of giving
correct results. Concerning the multiplication, the relative under-performance of the SSE-2
implementation on the AMD Opteron CPU is probably explained by the different imple-
mentation of the SSE-2 pipeline on this particular CPU compared to the Intel Core2. On
both CPUs, the large steps around 2250 call for further optimization, and will be investi-
gated. For this purpose, an automatic tuning program is being prepared. We mention that
NTL has a conspicuous problem for finite fields smaller than F264 . This should probably
not be worried about and should be considered as an easy tuning issue.

5 Writing BATs with mpFq

We have used mpFq to write efficient software implementation of the Diffie-Hellman key
exchange protocol based on curves. We started with the curve25519 parameters given by
Bernstein [4]: this is an elliptic curve in Montgomery form defined over F2255

−19, such that
both the curve and the twist are secure. We obtain the following timings on our two test
machines.

curve25519
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 128 145
Time for one scalar mult. in cycles 307,000 386,000
Number of scalar mul. per second 7800 6900

We have designed a cryptosystem of genus 2 of the same level of security that we
called surf127eps. It is based on a genus 2 curve defined over F2127

−735 that has complex

multiplication by K = Q

(

i
√

5 +
√

53
)

. The Jacobian of this curve has an order which

is 16 times a prime and is suitable for using the Kummer surface formulae of [11] that we
have implemented. We obtain the following timings on our two test machines.

surf127eps
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 116 154
Time for one scalar mult. in cycles 279,000 410,000
Number of scalar mul. per second 8600 6500

We can see that for prime fields, the Opteron behaves better than the Core2. This
might be surprising since this Opteron is a 3-year old computer, whereas the Core2 is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

zen
ntl

mpfq/mul
mpfq/mul_ur

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250

zen
ntl

mpfq/mul
mpfq/mul_ur

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250

zen
ntl

mpfq/sqr
mpfq/sqr_ur

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250

zen
ntl

mpfq/sqr
mpfq/sqr_ur

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

zen
ntl

mpfq/inv

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250

zen
ntl

mpfq/inv

Figure 1: Time (in microseconds) for Multiplication, Squaring, Inversion in F2n

(Left column is on AMD Opteron 2.40 GHz, right column is on Intel Core 2 2.66 GHz)

a brand new architecture; however our skills to optimize assembly code for the Core2 is
clearly not the same as for Opteron.

The other observation is that a genus 2 cryptosystem can beat an elliptic one with our
implementation, depending on the processor. However, if a general, efficient genus 2 point
counting implementation were available, one could construct a Kummer surface with small
coefficients, thus saving a lot of operations (as shown by Bernstein [5]). We expect that
the situation would be constantly in favour of genus 2.

In order to test our library and to measure the difference between prime fields and
characteristic 2 curve based cryptosystems, we have also implemented the scalar multipli-
cation on elliptic curves in characteristic 2, based on the formulae by Stam [18], over the
finite field F2251 and a genus 2 scalar multiplication based on the Kummer surface, over the
finite field F2113 . This time there is no problem for the point counting in genus 2, thanks
to p-adic methods (we have used Magma for these point counting computations).

The results are the following. It should be noted that the performance suffers from the
lack of fine-tuning of the multiplication algorithm (in particular, we acknowledge that the
multiplication in F2251 is still sub-optimal).

curve2_251
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 863 506
Time for one scalar mult. in cycles 2,070,000 1,350,000
Number of scalar mul. per second 1100 2000

surf2_113
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 441 268
Time for one scalar mult. in cycles 1,060,000 713,000
Number of scalar mul. per second 2200 3700

Comparison with other scalar multiplication implementations

The usual problem when comparing timings is that the computers are quickly evolving,
so that comparison is difficult. This is particularly true in the present case, where we are
concentrating only on 64-bit architectures, whereas almost all implementations reported in
the literature rely on 32-bit architecture. This is strange, since the Opteron has been sold
for 4 years, now, and the gain of using 64-bit is clear.

Additionally, usually the reported implementations are there to illustrate some im-
provement in the group law formulae, so that no two papers are really comparable if one is
mostly interested in the underlying finite field implementation. Therefore we give the raw
data, without trying to scale it to our experiment platform or to the coordinate system we
choose.

For each reference, we mention the result that corresponds more or less to the security
level we have chosen.

In [2], an implementation of curve arithmetic in characteristic 2 has been written, based
on a carefully written set of finite field routines. There timings are given on a 32-bit Power
G4 at 1.5 GHz. In genus 1 over F2251 , a scalar multiplication takes 3758 microseconds. In
genus 2 over F2109 , a scalar multiplication takes 1673 microseconds.

In [4] where curve25519 is described, Bernstein reports an implementation between
620000 and 950000 cycles depending on the processor. All the processors that are con-
sidered are 32-bit, and therefore floating point arithmetic used. In [5], he gives a genus 2
implementation (very similar to surf127eps) that takes 580000 cycles on a Pentium M.

In [19], an implementation in characteristic 2 gives the following timings on a Pentium
4 at 1.8 GHz: in genus 1 over F2191 , a scalar multiplication takes 2780 microseconds and in
genus 2 over F295 , it takes 3410 microseconds.

In [3], Avanzi has used his NuMongo library to implement scalar multiplication for
curves over prime fields. The timings are for an Athlon 1 GHz: in genus 1 over a 256-bit
prime field, it takes 3048 microseconds and in genus 2 over a 128-bit prime field, it takes
3575 microseconds.

6 Future plans

The future directions of mpFq are numerous, given the amount of algorithms that would be
worth giving a try. For prime fields, we need to adapt our implementation of Montgomery’s
REDC algorithm [15] to the mpFq library. We also plan to improve the inversion both on
prime and binary fields.

Given the growing interest in pairing-based cryptography, we will probably provide
implementations of extension field arithmetic (with specialized code for the most frequently
used extension degrees).

It is planned to extend mpFq to handle polynomials and matrices over finite fields and
generate optimized source code files for this purpose. This might lead us to consider the
case of large polynomials, and include FFT algorithms which are suited to the base fields
used.

As for the BATs, we still have room for improvements in the choice of the addition
chain. Right now, we have used the most basic binary ladder. We plan to try some of
the heuristic algorithms available in the literature for finding better addition chains, for
instance the so-called PRAC algorithm by Montgomery [14].

Acknowledgments

Although we are only two authors, we rely heavily on GMP, not only as a dependency
library, but also as a source of inspiration for the design of mpFq. We have also taken ideas
from ZEN, NTL and from software written by R. Harley for the ECDL challenges. We
wish to thank Paul Zimmermann and Richard Brent who shared several ideas with us on
the topic of muliplication in binary fields.

The genus 2 curve that we use for the BAT called Surf127-735 has been generated by
the CM method using tools written by T. Houtmann.

References

[1] Advances Micro Devices. AMD64 Architecture Programmer’s Manual, Volume 4: 128-

Bit Media Instructions, 2005.

[2] R. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hyperelliptic jaco-
bian arithmetic over binary fields: interplay of field arithmetic and explicit formulae,
2006. Preprint available at http://www.cacr.math.uwaterloo.ca/techreports/

2006/cacr2006-07.pdf.

[3] R. M. Avanzi. Aspects of hyperelliptic curves over large prime fields in software
implementations. In M. Joye and J.-J. Quisquater, eds., CHES 2004, vol. 3156 of
Lecture Notes in Comput. Sci., pp. 148–162. Springer–Verlag, 2004. Proc. 6th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, Cambridge,
MA, USA, August 11-13, 2004.

[4] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, eds., Public Key Cryptography – PKC 2006, vol. 3958
of Lecture Notes in Comput. Sci., pp. 207–228. Springer–Verlag, 2006. Proc. 9th
International Conference on Theory and Practice of Public-Key Cryptography, New
York, NY, USA, April 24-26, 2006.

[5] D. J. Bernstein. Elliptic vs. hyperelliptic, part 1, 2006. Talk given at ECC 2006. Slides
available at http://cr.yp.to/talks.html#2006.09.20.

[6] Certicom corp. The Certicom ECC challenges, 1997. Description at http://www.

certicom.com/index.php?action=ecc,ecc_challenge.

[7] F. Chabaud and R. Lercier. ZEN, user manual, 1996–2007. Homepage at http:

//zenfact.sourceforge.net/.

[8] H. Cohen and G. Frey, eds. Handbook of elliptic and hyperelliptic curve cryptography.
Chapman & Hall / CRC, 2005.

[9] J.-G. Dumas, T. Gautier, P. Giorgi, J.-L. Roch, and G. Villard. Givaro, une biblio-
thèque C++ pour le calcul formel, 1987–2007. Homepage at http://ljk.imag.fr/

CASYS/LOGICIELS/givaro/.

[10] M. Fouquet, P. Gaudry, and R. Harley. Finding secure curves with the Satoh-FGH
algorithm and an early-abort strategy. In B. Pfitzmann, ed., Advances in Cryptology –

EUROCRYPT 2001, vol. 2045 of Lecture Notes in Comput. Sci., pp. 14–29. Springer-
Verlag, 2001.

[11] P. Gaudry. Fast genus 2 arithmetic based on Theta functions. J. of Mathematical

Cryptology, 2007. To appear. Preprint available at http://eprint.iacr.org/2005/
314.

[12] T. Granlund. GMP, the GNU multiple precision arithmetic library, 1993–2007. Home-
page at http://gmplib.org/.

[13] R. Harley. The ECDL project. http://cristal.inria.fr/~harley/ecdl/, 2000.

[14] P. L. Montgomery. Evaluating recurrences of form xm+n = f(xm, xn, xm − n) via
Lucas chains, 1983. Preprint available at ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz.

[15] P. L. Montgomery. Modular multiplication without trial division. Math. Comp.,
44(170):519–521, Apr. 1985.

[16] M. Scott. MIRACL: Multiprecision integer and rational arithmetic c/c++ library,
1988–2007. Homepage at http://www.shamus.ie/.

[17] V. Shoup. NTL: A library for doing number theory, 1990–2007. Homepage at http:
//www.shoup.net/ntl/.

[18] M. Stam. On Montgomery-like representations for elliptic curves over GF (2k). In
Y. G. Desmedt, ed., Public Key Cryptography – PKC 2003, vol. 2567 of Lecture Notes

in Comput. Sci., pp. 240–254. Springer–Verlag, 2003.

[19] T. Wollinger, J. Pelzl, and C. Paar. Cantor versus Harley: Optimization and analysis
of explicit formulae for hyperelliptic curve cryptosystems. IEEE Trans. Comput.,
54:861–872, 2005.

