R. Avanzi, N. Thériault, and Z. Wang, Rethinking low genus hyperelliptic Jacobian arithmetic over binary fields: interplay of field arithmetic and explicit formul??, Journal of Mathematical Cryptology, vol.2, issue.3, pp.2006-2013, 2006.
DOI : 10.1515/JMC.2008.011

R. M. Avanzi, Aspects of Hyperelliptic Curves over Large Prime Fields in Software Implementations, Proc. 6th International Workshop on Cryptographic Hardware and Embedded Systems, pp.148-162, 2004.
DOI : 10.1007/978-3-540-28632-5_11

D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, Public Key Cryptography ? PKC 2006 Proc. 9th International Conference on Theory and Practice of Public-Key Cryptography, pp.207-228, 2006.
DOI : 10.1007/11745853_14

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. J. Bernstein, Elliptic vs. hyperelliptic, part 1 Talk given at ECC, 2006.

C. Corp, The Certicom ECC challenges, 1997.

M. Fouquet, P. Gaudry, and R. Harley, Finding Secure Curves with the Satoh-FGH Algorithm and an Early-Abort Strategy, Advances in Cryptology ? EUROCRYPT 2001, pp.14-29, 2001.
DOI : 10.1007/3-540-44987-6_2

URL : https://hal.archives-ouvertes.fr/inria-00514426

P. Gaudry, Fast genus 2 arithmetic based on Theta functions, Journal of Mathematical Cryptology, vol.1, issue.3, p.314, 2005.
DOI : 10.1515/JMC.2007.012

URL : https://hal.archives-ouvertes.fr/inria-00000625

T. Granlund, GMP, the GNU multiple precision arithmetic library, 1993.

R. Harley, The ECDL project, 2000.

P. L. Montgomery, Evaluating recurrences of form x m+n = f (x m , x n , xm ? n) via Lucas chains, 1983.

P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, vol.44, issue.170, pp.519-521, 1985.
DOI : 10.1090/S0025-5718-1985-0777282-X

M. Scott, MIRACL: Multiprecision integer and rational arithmetic c/c++ library, 1988.

V. Shoup, NTL: A library for doing number theory, 1990.

M. Stam, On Montgomery-Like Representations for Elliptic Curves over GF(2k), Public Key Cryptography ? PKC 2003, pp.240-254, 2003.
DOI : 10.1007/3-540-36288-6_18

T. Wollinger, J. Pelzl, and C. Paar, Cantor versus Harley: optimization and analysis of explicit formulae for hyperelliptic curve cryptosystems, IEEE Transactions on Computers, vol.54, issue.7, pp.861-872, 2005.
DOI : 10.1109/TC.2005.109