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Abstract. Basic algorithms have been proposed in the field of low-power (Yao
et al., 1995) which compute the minimum energy-schedule for a set of non-recurrent
tasks (or jobs) scheduled under EDF on a dynamically variable voltage processor. In
this study, we propose improvements upon existing algorithms with lower average
and worst-case complexities. They are based on a new EDF feasibility test that helps
to identify the “critical intervals”. The complexity of this feasibility test depends on
structural characteristics of the set of jobs. More precisely, it depends on how tasks
are included one in the other. The first step of the algorithm is to construct the Hasse
diagram of the set of tasks where the partial order is defined by the inclusion relation
on the tasks. Then, the algorithm constructs the shortest path in a geometrical
representation at each level of the Hasse diagram. The optimal processor speed is

chosen according to the maximal slope of each path.

Keywords: Real-time systems, low-power design, scheduling, complexity, dynamic
voltage scaling

1. Introduction

Two important problems related to the scheduling of a set of indepen-
dent jobs under EDF are addressed here : 1) the feasibility analysis and
2) the minimization of the energy consumption.

Existing solutions show that these problems are closely related; the
optimal energy minimization algorithm from Yao et al., see (Yao et al.,
1995), embeds the feasibility analysis from Spuri (Stankovic et al.,
1998) although both results have been developed independently. The
solutions of the two problems are also tightly linked with the new
algorithms developed in this study.

% © 2007 Kluwer Academic Publishers. Printed in the Netherlands.
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Dynamic Voltage Scaling under EDF Revisited 2

Existing work Amongst hardware and software techniques aimed at
reducing energy consumption, supply voltage reduction is particularly
effective. This is because the energy consumption of the processor is
a function which is at least quadratic in the voltage of the proces-
sor, see (Gruian, 2002) for more details. However, voltage reduction
requires the reduction of the maximal frequency of the processor. This
implies that a tradeoff has to be found between energy consumption
and performances.

In the last few years, variable voltage processors have become avail-
able (e.g., implemented with technologies such as Transmeta Crusoe,
Intel Speedstep and XScale, and AMD PowerNow!) and a lot of research
has been conducted in the field of dynamic voltage scaling. When real-
time constraints are matter of concern, the extent to which the system
can reduce the CPU frequency depends on the tasks’ characteristics
(execution times, arrival dates, deadlines ...) and on the underlying
scheduling policy.

Power-conscious versions of the two classical real-time scheduling
policies, namely EDF (Earliest Deadline First) and FPP (Fixed Priority
Pre-emptive), have been proposed. For FPP, Shin and Shoi (Shin and
Choi, 1999) presented a simple run-time strategy that reduces energy
consumption. Quan and Hu proposed a more efficient solution in (Quan
and Hu, 2001) as well as an optimal solution in (Quan and Hu, 2002)
having an exponential algorithmic complexity. Recently, Yun and Kim
in (Yun and Kim, 2003) proved that computing the voltage schedule of
a set of tasks under FPP is NP-Hard and they presented an approxi-
mation scheme that runs in polynomial time and whose gap w.r.t. the
optimal solution can be chosen arbitrarily small.

When the scheduling is made using EDF, Yao et al. in (Yao et al.,
1995) proposed an off-line algorithm to find the optimal voltage sched-
ule of a set of independent jobs. Recently, an approach solving the
same problem through a shortest path algorithm has been proposed
in (Gaujal et al., 2003; Gaujal et al., 2005) but it is restricted to jobs
with FIFO real-time constraints (a; < a;j — d; < d; where a; and d;
are the arrival time and the deadline of job i, respectively). For such
FIFO jobs, feasibility testing and energy minimization can be solved
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in O(N log(N)) versus O(N?3) with the Yao et al’s algorithm (for more
details on the complexity analysis, please refer to paragraph 2.3). The
problem of finding the optimal voltage schedule has also been solved
for recurrent tasks: periodic tasks in (Liu and Mok, 2003) and sporadic
tasks in (Qadi et al., 2003; Scordino and Lipari, 2006). It is worth
noting that several results, such as the uniqueness of the speed function
and the characterization of the points in time at which speed changes
occur, have been independently published in (Liu and Mok, 2003) and
(Gaujal et al., 2003; Gaujal et al., 2005).

Other directions of research concern the discrepancy between worst-
case execution times (WCET) and actual execution times. A first class
of algorithms, known as “stochastic scheduling” (Lorch and Smith, 2001,
Gruian, 2001; Gruian, 2002; Xu et al., 2004) consists of finding a feasible
speed schedule that minimizes the expectation of energy consumption.
A second class of techniques (Mossé et al., 2000; Shin et al., 2001,
AbouGhazaleh et al., 2003) is referred as “compiler-assisted schedul-
ing”. A task is divided into sections for which the WCET is known
and the processor speed is re-computed at the end of execution of each
section according to the difference between the WCET and the time
that was actually needed to execute the code. Other strategies consist
in dynamically collecting at the end of execution of each task the unused
computation time and share it among active tasks. Among those ap-
proaches, usually termed “dynamic reclaiming algorithms”, one can cite
(Aydin et al., 2001; Pillai and Shin, 2001), (Zhang and Chanson, 2002)
and (Liu and Mok, 2003). Finally, some techniques, such as in (Aydin
et al., 2004), anticipate the early completion of tasks and adjust the
CPU frequency accordingly.

Contribution of the paper This work is a complete generalization of (Gau-
jal et al., 2005) where the special case of energy minimization for
tasks with FIFO constraints has been studied. Here, a solution for the
general case is provided, i.e. the FIFO assumption is removed. This
generalization requires the introduction of several new concepts, such as

the Hasse diagram for inclusion and increasing subsequences in random
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sets. The worst case complexity of the proposed algorithm is always
better than existing approaches.

Furthermore, we provide a probabilistic analysis of the complexity
when the tasks are random. We show that the average complexity of
our solution is always lower than O(N2v/N). Actually, this bound is not
tight because it does not take into account the fact that deadlines have
to be larger than arrival times. In the case of Poisson arrivals and expo-
nentially distributed latencies, we prove that the asymptotic complexity
for finding the optimal voltage schedule is O(N?1og(N)). In more gen-
eral cases, numerical simulations suggest that the O(N?log(NN)) bound
still holds (to be compared with the O(N log(/N)) bound in the FIFO

case).

Model of the system We consider a single CPU dedicated to the exe-
cution of a finite set of some non-recurrent independent tasks (or [jobsl)
with real-time constraints. The CPU processing speed can vary over a
continuous range from 0 to 1 (the maximal speed of the processor is fixed
to 1 with no loss of generality: this can be achieved by re-scaling the
size of the jobs). The set of tasks is 7 = {71, ...,7n} and each task 7; is
characterized by a triplet (a;, s;, d;) where the quantities a;, s;, d; denote
the arrival time, the size (time needed to execute the task at maximum
speed) and the deadline of task 7;, respectively. Although only non-
recurrent tasks are considered in the following, it is worth noting that
the results presented in this paper can be applied to periodic tasks
by computing the schedule over one hyper-period, i.e. a time interval
equal to the Least Common Multiple (LCM) of the periods if tasks
are synchronous (first instances of all tasks released simultaneously) or
twice the LCM plus the maximum offset between the first instances
otherwise (see (Leung and Whitehead, 1982)).

Organization of the paper 'The Yao et al.’s algorithm for energy min-
imization is recalled in Section 2. Section 3 is devoted to our solution
for finding the critical interval under EDF. The correctness of the al-
gorithm is proved and its complexity is assessed both deterministically
and probabilistically. Finally, in Section 4, we address the problem of
computing the optimal voltage schedule.
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2. Existing results

In this section, we recall the Yao et al.’s algorithm for energy minimiza-
tion. This construction is presented in details using the notion of time
compression so that the differences with our approach can be easily
highlighted and also because several concepts and notations presented
here will be used in subsequent sections. In (Stankovic et al., 1998),
an algorithm for testing the feasibility of a set of jobs scheduled under
EDF is presented; it will be called the Spuri’s algorithm in the following
since it is based on a theorem stated by Spuri (Theorem 3.5 pp 33
in (Stankovic et al., 1998)). The Spuri’s algorithm is used at step 2 of
the Yao et al.’s algorithm as described in paragraph 2.2. The speed of
the CPU at time ¢ is denoted v(t) (or u(t), in the following sections, to
make a distinction with the classical construction). The construction of
the optimal speed function, denoted by vy,,(t), is given by Yao et al.
in (Yao et al., 1995). The goal of this construction is to minimize energy
consumption while ensuring that no deadline will be missed. Basically,
the algorithm works by identifying the time interval, termed the critical
interval, over which the highest processing speed is required. The lowest
admissible speed is computed for this interval, the tasks belonging to
this interval (i.e. arrival date and deadline inside the interval) are then
removed (this step is termed time compression in the following) and a

similar sub-problem is constructed with the remaining tasks.

2.1. TIME COMPRESSION

Here, we explain how to suppress the interval [a,d] from the time-line
and how to modify the set of tasks accordingly. The bounds of the
interval are denoted by a and d since, in the following, a and d will nec-
essarily be arrival dates and deadline dates respectively. The notation
7; C [a,d] means that task 7; belongs to [a,d] (a; > a,d; < d). When

suppressing [a, d], the task set is modified in the following manner :

— If 7; C [a,d] then 7; is removed.

— For all remaining tasks, s; is unchanged and
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Figure 1. Example of time compression by [a, d]. Task 7512 is removed.

e ifa; € [a,d] then a; := a, else if a; > d then a; := a; — (d —a),
e ifd; €a,d] then d; := a, else if d; > d then d; :== d; — (d—a).

This procedure is called time-compression by the interval [a,d] and is

illustrated in Figure 1.

2.2. YAO ET AL.’S ALGORITHM

The Yao et al.’s algorithm is based on a recursive procedure which can
also be described by a new sort of “compositions” of functions. Let f

and g be real functions with appropriate domains and let [a,d] be a

[a,d]
time interval, then the function ¢ Vv f is defined as follows :

a,d
— ift <a, then (g [\/] Ht) =g(t),

— it e fad), then (g V' 1)(t) = £(2),

it > d, then (¢ V' £)(t) = g(t — (d— a)).

Note that this operation is not associative. Also, the domain of all the

functions involved is not explicit in the definition. If we define h :=
[a,d]
g V f this means that the domain of f is [a,d], g is defined over an

interval including a, say [b, ¢] and that h is defined over [b,c + d — a].
Yao et al. define the Tintensity”™ of an interval as the workload

brought by the tasks belonging to the interval divided by the length

of the interval. Intuitively, it is the smallest amount of work that has to
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be done during the interval to meet the timing constraints. The inten-
sity Wia,q over [a,d] is Wiaq = X7, Claqy Sk/(d — a). The algorithm
proposed in (Yao et al., 1995) constructs the function vy,,(¢) which is
the optimal speed for minimizing the total energy consumption while
respecting deadlines whatever the scheduling policy. This algorithm can
be decomposed in the following steps (starting with n = 1) :

1. Compute the critical interval I,, := [a;, dj] where a; and d; are such
that Wig, a;) := maxo<a<d Wia,a)- The only values of a and d that

have to be considered are arrival dates and deadlines, respectively.

2. Owver I, the function f, is set to a constant : f(t) := Wia,a; Vt €
I,. All jobs in I,, must be executed at this rate.

3. Use time-compression by I,. If at least one task remains then n :=

n+ 1 and go to step 1, otherwise go to step 4.

In—l

I
4. Function vy,, is completely defined by : vye := fn V (- Vv f1)-

2.3. SOME COMMENTS ON THE COMPLEXITY

The immediate worst-case complexity of this algorithm is O(N?3) where
N is the number of jobs : there are at most IV successive critical intervals
and the computation of each critical interval (step 2) using the Spuri’s
algorithm can be done in O(N?) since for each arrival date there are
at most N deadlines to consider. In (Yao et al., 1995), the authors
write, without more details, that using “a suitable data structure such
as the segment tree”, the running time can be reduced to O(N log?(N)).
However, this was never really achieved as mentioned in (Yao, 2003).
We actually do not know how to obtain an implementation of their
algorithm in less than O(N3) and we are not aware of any paper in
literature that has addressed this problem with a complexity lower than
O(N?3).

It is worth to point out that feasibility under EDF can actually
be assessed using a discrete event simulation of the scheduling using
the a; and the d; as event points. Such a simulation would run in
O(N log(NNV)) with, for instance, a tree data structure to store the active
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jobs. However such a strategy cannot be applied in our context since
we need to identify the critical interval.

The rest of the paper is almost entirely devoted to the presentation
of a new algorithm that identifies the critical interval faster than ex-
isting algorithms (developed independently in (Yao et al., 1995) and
(Stankovic et al., 1998)).

3. Computation of the critical interval

The new algorithm presented here relies on the construction of the
Hasse diagram of a Partially Ordered SET (Poset) and on the solution
of a shortest path problem that has been proposed in (Gaujal et al.,
2005). These two points will be investigated first. We then provide a
new algorithm that constructs a CPU speed function u*(t) and we prove
that u*(t) = vyao(t) over the critical interval. Then, we evaluate the
algorithmic complexity of the algorithm both in a deterministic and in a
probabilistic way and show that it improves upon Yao et al’s algorithm.

3.1. THE HASSE DIAGRAM

Let us consider the Poset P on the set of tasks with the partial strict or-
der being defined by the strict inclusion of the intervals : P = {[a;, d;], <
}, where the strict order < corresponds to the level of nesting of the
intervals. More precisely, [a,d] < [¢/,d'] if [@/,d'] C [a,d], i.e. ¢’ > a and
d <d.

A finite Poset can be represented by its Hasse diagram (see (Weis-
stein, 1999) for more details), where the elements of the Poset are
partitioned into levels. The first level is the subset of all minimal el-
ements (here intervals which are not included in any other), the second
level is the subset of all elements which are immediately larger than the
minimal elements (i.e. included in at least one minimal interval) and
so forth. The levels in the diagram are denoted L1,--- , Lx where K is
the highest level. One denotes by L(i) the level of the interval [a;, d;]
in P, it will be called the level of task 7;. The set of tasks that will be
considered for illustration purposes in the following is :
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T1
T2
T3
T4
a) s
Te
7

Level 3
b) Level 2

Level 1

Figure 2. Sub-figure a) represents the overlapping of the intervals [a;,d;] while
sub-figure b) shows the corresponding Hasse diagram.

TV | T2 | T3 | T4 | T5 | T6 | T7

The Hasse diagram associated with this set of tasks is given in
Figure 2 b) while Figure 2 a) shows how the intervals [a;, d;] overlap.

We now explain how to compute the levels of all the tasks in the
Hasse diagram in O (N log(NV)) elementary operations. The construction
uses an array L that will be used to store the levels of the tasks : L][i]
is the level of 7;. Another array, called T, stores the value of largest
deadline on a given level: T'[k] = max{d;s.t. level of 7; = k}. The arrays

L and T are constructed iteratively by the algorithm below.

1. Reorder the set of tasks so that they are sorted according to the

arrival times a; (ties are broken using the earliest deadlines).

2. T|0] := o0, T[1] :==dy, L[1] :==1 and for all k = 2..N set T[k] :== 0.
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3. For i from 2 to N do

a) Dichotomy-Search of d; in the current T gives k, the only index
such that T[k] > d; > Tk + 1].

b) Tlk+1] :=d;; L[i] ==k + 1.

Note that the dichotomic search is valid because 7' is sorted in increasing
order. The correctness of this construction comes from the fact that,
once the arrivals have being sorted (a < @), checking if [a,d] C [d¢/,d]
is done by merely checking if d’ > d (see, for example, (Fishburn, 1985)
for more on interval orders).

The total complexity of the algorithm is O(N log(N)) : the initial
sort is in O(N log(/N)) and each dichotomy uses O(log(V)) operations
and it is repeated N times.

3.2. THE SHORTEST PATH CONSTRUCTION

The case K = 1 (FIFO tasks) is treated in (Gaujal et al., 2005). The
algorithm involves the construction of the shortest path between 0 and
T with given upper and lower bounds. The construction in the general
case also uses this framework, but, this time, we need to construct such
a path for each level of the Hasse diagram.

For convenience, we assume that a; = 0 (all dates can be shifted to
the left) and let T def max;{d;}. For all tasks on level k and higher in
the Hasse diagram, we construct two cumulative functions Ag(t) and
Dy(t) over the interval [0, T] using the following definition:

Aty = > si-Ljgeg, Dp(t)= D si-lyg<y.
i, L()>k i, LG)>k

The functions Ag(t) and Dy(t) are staircase functions (i.e. piece-wise
constant, with a finite number of pieces). Also note that A is left-
continuous while D is right-continuous. They represent the cumulative
work arrival and the cumulative work deadline, respectively.

Let g be an arbitrary non-decreasing and strictly convex function.
In power aware scheduling, such a function is classically used to model
the energy consumption of the processor. The consumption at time ¢
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depends on the processor speed u(t) and, for instance, with the CMOS
technology, typically, g(u(t)) ~ aCu(t)'*2/(=1 where 1 < v < 3,0 >
0,C > 0, see (Gruian, 2002) for more details.

Let us consider Problem 1 where the parameter k corresponds to the

subset of tasks with levels & and higher in the Hasse diagram.

Problem 1. Find an integrable function uj, : [0, T] — R such that

fOTg(u,’;(s))ds is minimized, under the constraints

Wi(E) > 0 VEe o, T, (1)
/0 Lui(s)ds < Aw(t) Vte o, T, (2)
/0 “wi(s)ds > Dy(t) Wte o, T). 3)

Constraint (1) means that the processor speed is necessarily non-
negative. Constraint (2) simply states that one cannot execute the work
that has not arrived while constraint (3) says that the total amount of
work done by time ¢ shall not be smaller than the cumulated work of
the tasks with deadlines lower than or equal to .

It has been shown in (Gaujal et al., 2005) that if there exists a
function ug(t) that verifies (1), (2) and (3) then an EDF schedule will
meet the deadline constraints if all tasks are FIFO (a; < a; — d; < d;).
This does not hold for arbitrary tasks since the feasibility requirement
cannot be solely expressed with constraints (2) and (3). To illustrate
this fact, we have constructed two sets of tasks and the corresponding
cumulative functions A and D (the index k is skipped). The first set
is made of job 71 = (0,4,10) and job 7 = (4,1,5). The second set is
71 = (0,1,5),75 = (0,3,10) and 74 = (4,1,10). Note that the second
set is FIFO while the first one is not. The cumulative work arrivals
A(t) and A'(t) are the same in both cases. The cumulative deadlines
D(t) and D’(t) are also equal. Therefore, the two solutions of Problem 1
with the two sets of tasks, u*(¢t) and u*/(¢) are equal. Figure 3 displays
the function A(t) = A'(t) as well as D(t) = D’(t) and the integral
U*(t) = [3u*(s)ds where u*(t) = 1/2, V0 <t < 10.

Note that the CPU speed w*(¢) is sufficient to finish all tasks of the
second set before their deadlines but is not enough for the first set :
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Alt) = A1)

LUt D(t) =D'(t)

Figure 8. FIFO and non-FIFO tasks

task 75 needs a CPU speed greater than one during the interval of time
[4,5] to meet its deadline.

Problem 1 has been studied in (Gaujal et al., 2005). Solving prob-
lem 1 with k& = 1 provides the optimal voltage schedule v* that en-
sures feasibility for FIFO tasks. The main properties of the solution of

Problem 1 are summarized in the following theorem.

Theorem 1. (Gaujal et al., 2005)

i- For all k, the optimal solution uj, of problem 1 is unique if g is strictly
convez (up to a set of measure 0). Furthermore, uj does not depend on
g, as long as g is a non-decreasing convex function.

it- The optimal solution uj, satisfies the following inequality’ :
Supg<t< 7 Ui (t) < supg<i< pur(t), for all functions wy, satisfying con-
straints (1), (2) and (3).

iii- The integral U} def SUZ(S)ds is the shortest path from O to T while
staying between Ay and Dy, (see Figure 4 for an illustration,).

- If the functions Ay and Dy, are given under the form of two ordered

lists of points, the construction of uj(t) can be done in linear time.

The algorithm constructing uj, presented in (Gaujal et al., 2005),
is inspired from the “Graham scan” algorithm which is an algorithm for
computing convex hulls that runs in linear time when applied to a set of
ordered points in the plane (see, for instance, (Boissonnat and Yvinec,
1998)).

! here, the sup operator stands for the essential supremum, since all functions are
only defined almost everywhere.
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3.3. DESCRIPTION OF THE CRITICAL INTERVAIL, ALGORITHM

Let us recall that K is the highest level in the Hasse diagram, one
denotes by 7, with 1 < k < K, the set of all the tasks at level k£ and
higher. The algorithm for finding the critical interval is given below.

1. Forallke{l--- K}

a) Construct uj(t) the optimal solution of Problem 1 with param-
eter k.

b) Define ry, := supg<i< uj(t) and I, an interval s.t. Vt € I, uj(t) =

Th.
2. Let ke := argmaty<p<p Tk Then Iy, is a critical interval.

An example of this construction is given in Figure 4 using the same set
of tasks as in Figure 2. The functions U} (t) o fg uf(x)dx are displayed
instead of u}(¢) in order to show why such functions are called shortest
paths. We get 73 = 1/2, 7y = 7/11 and r = 12/22. Note that the
maximum 79 = 7/11, is reached by u} over the interval [4,15] made of
tasks 73, 74 and 7. This is the critical interval. Also note that the whole
set of tasks is feasible since ro = 7/11 < 1.

3.4. CORRECTNESS OF THE ALGORITHM

This section is devoted to the proof of the correctness of the algorithm.
In the following, I. denotes the critical interval and W7y, the intensity
over the critical interval, is denoted W,.. We also define the function v¥_

as the Yao’s construction over the set of tasks 7, (therefore, vl = vy,,).

Lemma 2. The following assertions are true:

i~ SUP; Uy, (1) = We.

ii- For all k, v_ is a solution of Problem 1 with parameter k (not
necessarily optimal).

iii- For all 1 < k < K, sup,v%__(t) < sup, o5} ().

Proof. The proof of point i is a direct consequence of the construction
of vy, (see (Yao et al., 1995)). Point 4 follows from the fact that all
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Figure 4. Figure a) shows Uj (t) = ft u3(z)dz, Figure b) shows Uj (t) = ft us (z)dx
and Figure c) shows U7 (t) = fot ui (z)dw.

feasible scheduling policies with a processor with speed u must satisfy
constraints 1,2 and 3. As for 7, this is simply because 7 C 7;_1 and
because the maximal intensity grows when new tasks are added. U

Lemma 3. For allt € [0,T], sup,uj(t) <sup,v¥, (t).

Proof. By Lemma 2(ii), v¥_ is a solution of Problem 1 with parame-

ter k (not necessarily optimal). Using Theorem 1(74) shows that t €
[07 T]’ Supt ’U’Z‘(t) S Supt U]Xg’ao(t)' D

Lemma 4. sup, ry > We.
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Proof. We consider all the tasks included in the critical interval I, =
[ac, d.] as one super-task 7. whose size s. is the sum of the sizes of all
tasks included in I. while its arrival is a. and its deadline is d.. Note
that the level L. of this new task is the lowest level of all tasks in I,.
By definition of 7, all non-critical tasks in 77, are not included in 7. :
non-critical tasks starting before 7. end before 7. and non critical tasks
starting after a. finish after d.. This means that Dy (d.) — AL (a.) =0
since A is left-continuous and D right-continuous. The construction of
uy _implies that sup,ey uy (t) > (Dr.(de) — Az (ac))/(de — ac) = We.
Finally, supy ri, > rp, > We. O

Theorem 5. Let k. = argmaz, ri. Then, v, = W, and the interval

Iy, s a critical interval.

Proof. By Lemma 2(7), sup; vv,,(t) = W.. Moreover, Lemma 2(ii) says
that sup, vk _(t) < sup, vF7'(t). Combining this with Lemma 3, one
gets sup; Uvao(t) > sup; wuj(t) for all k. In particular, sup; vy,,(t) >
sup, uj, (t), where k. = argmax, rj. Finally, Lemma 4 says that 7, >
W, and using the two previous inequalities shows 7, = W,. The interval

I, is therefore a critical interval. O

Note that uj # v¥ in general. However, as shown above, the equal-

ity holds inside the critical interval for k..

3.5. DETERMINISTIC ANATLYSIS OF THE COMPLEXITY

Assume that tasks have already been sorted by their arrival date as
well as by their deadlines. Assume that the levels in the Hasse diagram
are also given. The time complexity of constructing uj, is linear in the
number of tasks at level & and higher as shown in (Gaujal et al., 2005).
Computing r is also linear in the number of tasks at levels greater than
k. Therefore, the complexity of the algorithm to construct vy is (up to

a multiplicative constant)
N

K

i=1 k=1
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where N, is the number of tasks at level i. The highest complexity
corresponds to the case where there is one task at each level lower than
K and Ng = N — (K — 1) tasks at level K. The complexity is thus
O(KN — K?)2).

Note that this time complexity is linear if all tasks are on level 1
(the FIFO case where K = 1) which is the best possible case. The
worst case arises when K = N with 1 task on each level, where the
complexity becomes O(N?/2) (it is easy to patch this worst case and
solve the problem in linear time by merely testing r;1 < 1). Since
K < N, the complexity of the algorithm presented above is at most
quadratic. We would like to point out that a worst case complexity
of O(NK) constitutes an improvement over O(N?) (complexity of the
Spuri’s algorithm) since K is in most cases much smaller than N (it
depends on structural properties of the task set and not directly on its
size). The problem investigated below is to estimate the value of K for
typical sets of tasks.

3.6. PROBABILISTIC ANALYSIS OF THE COMPLEXITY

As seen above, the main improvement provided by the new algorithm
is to replace a factor N by a factor K in the complexity. Although, it
is obvious that K is always smaller than or equal to N, it is interesting
for practical purposes to know what the difference may be in typical

cases.

3.6.1. Bound on the average complezity for arbitrary distributions
In this paragraph, we provide upper bounds on K when the character-
istics of the tasks are chosen randomly. Recall that K is the number of
levels in the Hasse diagram of the N tasks. In other words, K is the
length of the longest increasing subsequence in the Poset P (see para-
graph 3.1). Here, the Poset P can be represented in R? by comparing
the points (a;, —d;) using the component wise ordering. An illustration
of this representation is given in Figure 5-b).

The problem to estimate the average length of the longest increas-
ing subsequence in a two-dimensional partially ordered set was studied
extensively in (Aldous and Diaconis, 1995). If the arrivals and the dead-
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a g
. »
T :
/r /
/ - [ R
» / . L] r.
—dj —d; *
a) Points are randomly chosen b) points are randomly chosen
in the whole quadrant. below the d|agona| . The |Onge§
The longest increasing sequence increasing sequence s shorter (3).
isof length 4.

Figure 5. The general case versus the case of jobs where necessarily d; > a;.

lines (a;,d;) are chosen randomly in R? | and if all tasks are mutually
independent, then one has the following result.

Theorem 6. (Aldous and Diaconis, 1995) The expected value of K
verifies E(K) = 2v/N + o(v/'N).

This result is quite general since no assumptions are made on the
distributions of the points in ]R%r. In our case, we can hope that the
expected value of K is much smaller because the deadlines and the
arrival times verify the constraint (Vi, d; > a;) so that all points
(ai, —d;) are below the diagonal (see Figure 5b).

When jobs are considered instead of random points, the average K
should be much smaller than when the points can be anywhere in R? as
in Figure 5. To make this intuition more precise, we consider the case
where the arrival process is Poisson and the relative deadlines (d; — a;)

have exponential distributions.

3.6.2. Awerage complexity for Poisson arrivals and exponential
deadlines

Lemma 7. If the arrival process is Poisson and the relative deadlines

have exponential distributions, then E(K) = O(log(N)).
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Proof. The intensity of the Poisson process is denoted by g and the
parameter of the exponential deadlines by A. As mentioned before, the
problem can be seen as a two dimensional problem by plugging a; on
the z-axis and —d; on the y axis. We obtain a set E of N points in the
plane. In this framework, K is the longest sequence of component-wise
increasing points (a;,,—d;,) < -+ < (@i, ,—di, ). Now, if we consider
any given point h = (ap, —dp,), the longest increasing sequence Sy, start-
ing in this point is clearly smaller that the total number T} of points
which are larger than (ap, —dp). Let H be a typical random point.

P(Sy >0b) < P(Tyg > D), (4)
< Ae AT Z P(k arrivals in an interval of length z) db)
z=0 k=b
= )\Z/ e~ ATk ak 1) i, (6)
fe=b?*=0
- i( : )k/w” "/l d (7)
A+t =\ A+ = v

A& RN oo \°
)6
Mo \A T 1 +p
where (5) comes from conditioning on the value of dy = = and the fact
that all points larger than H must have an arrival time between ay and

ag + z. Equality between (5) and (6) holds by applying the monotone
convergence theorem and y = (A + p)z in (7).

Next, we use the fact that Sy are associated variables (see Appendix

A for a proof). By using Corollary 3.3 in (Barlow and Proschan, 1981),

P(K >b) = P(max S > b) < 1 - (H (1—-P(Sy > b))) .
hekE

By using (8),

b
= (H(l—P(SH>b))) gl—(l—((ﬁ) W

hek
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Now, introducing a = log )‘—Z’i, we obtain
o
E(K) = 1 +/ PK > )dx

OOO
< 1+/ 1—(1—e)Ndyg
0

=1 _|_/ (1 _ Z(_l)kcrlfefakz)dm -1 +/ Z(_l)kJrlCTIfefakxdx
0 k=0 0 k=1

N N
00 1
_ 1+Z(_1)k+lcﬁ/ e’o‘kxd:czl—kZ(—l)k“C’,’f—k
k=1 0 k=1 @
1 bk [T k-1 1t kk,
:1—— — - — _ — — —
~3 ) C”/o Wl = 1 a/o (Y (1) Chut — 1)du
k=1 k=0
111 N 1] =
—1-— [ (- Ddu=1-= [ —~(1—u—1 1 - w)id
2, =Y —nde=1- 2 [ —u-) 3 - v
1 1 N—-1 ) 1N71 1 .
= 1+-— 1—w)idu=1+ = 1 — )L
o, S wd=1 S -0
1 N
= 1+=> —=0(log(N))
i=1

O

Although the result is only proved in the Poisson-exponential case
(i.e. task arrivals are Poisson distributed and relative deadlines are expo-
nentially distributed), we believe that the log(/N) bound for the average
K is rather robust and holds in many more cases. To illustrate this, we
have run several simulations where the set of jobs were randomly chosen

according to various probability distributions.

3.6.3. FExperimental results

To test the robustness of the O(log(NN) bounds over the distribution of
the arrivals and the deadlines, the average value of K was computed on
sets of jobs whose characteristics (arrivals and deadlines ) are randomly
chosen. Several probability laws were considered such that the intensity
of the arrivals and the expected value for relative deadlines are identical
for all of them. The following configurations were considered :
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— uniformly distributed inter-arrivals / uniformly distributed relative
deadlines,

— uniformly distributed inter-arrivals / exponentially distributed rel-
ative deadlines,

— Poisson arrivals / exponentially distributed relative deadlines,

— Poisson arrivals / power-law distributed relative deadlines (i.e.
P[X > z] = Caz™™. Here, n = 2 and C is adjusted to obtain

the same mean as in the other cases).

Figure 6 summarizes the results. The results of the case “uniformly dis-
tributed arrivals / exponentially distributed relative deadlines”, which
are almost identical to “Poisson arrivals / exponentially distributed
relative deadlines”, are not shown in Figure 6. Each point is the average
value of 1000 experiments. One observes that, in these experiments, the
log(N) bound for K holds for all the distributions. Also observe that the
average value of K increases with the variance of the deadlines (from
uniform, to Poisson, to power laws). However, in all cases the behavior
of K remains logarithmic in NV (even when the variance is infinite, as
for the power law). This suggests that the log(N) bound should hold
for many more cases than those covered by Lemma 7.

Now, if one considers the average complexity of the complete al-
gorithm for computing the critical interval, Theorem 6 and Lemma 7
imply that the average complexity of the new algorithm is lower than or
equal to O(NV/N) and can be O(N log N) under the assumptions used
in Lemma 7. On the other hand, the average complexity of the classical
algorithm of Spuri is larger than k((N? 4+ N)/2) for some constant k,
whatever the distribution of the arrivals and the deadlines, since this is
the minimal number of operations required to find the critical interval
(corresponding to the case where tasks have FIFO constraints).

3.7. PARALLEL COMPLEXITY

Yet another advantage of the shortest path algorithm over Spuri’s algo-
rithm, is the possibility to run it in parallel efficiently. Here is a parallel
version of the algorithm:
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Poisson arrivals / expo. deadlines +
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Poisson arrivals / power-law deadlines *
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Figure 6. Average value of K, the number of levels in the Hasse diagram, for different
distributions of the arrivals and relative deadlines (same expected values for all
distributions).

1. In parallel for allk € {1--- K}

a) Construct uj(t) the optimal solution of Problem 1 with param-
eter k.

b) Define ry, := supg<< uj(t) and I, an interval s.t. Vt € I, ui(t) =

Tk.

2. Compute ke := argmar<p<g 7 by comparing the values of 1y,
ke{l---,K} with a binary tree.

Using the PRAM model, with P < K processors, the complexity of
the first step is O(NK/P) while the complexity of the second step is
O(K/P +log(P)). This yields an almost linear speed up.

To go further, one may also compute each uj () in parallel within step
(1), using a parallel algorithm for computing shortest paths in graphs in
time O(log?(n)) with a polynomial number of processors. This means
that the whole algorithm belongs to the class NC of parallel algorithms.

On the other hand, we do not know any efficient way to parallelize
Spuri’s algorithm and we are not aware of any paper in the literature
that has addressed this problem.

RTS_BGNN.tex; 26/05/2007; 12:46; p.21



Dynamic Voltage Scaling under EDF Revisited 22

4. Energy minimization

In this section, we consider the problem of choosing, at each time ¢, the
speed u(t) to execute all tasks within their deadline constraints while

minimizing the total energy consumption.

4.1. DESCRIPTION OF THE ALGORITHM

The function vy,, actually provides a solution to the problem of min-
imizing the total energy used by the processor when the immediate
energy consumption of a processor going at speed wu, is of the form
g(u), where g is convex and increasing. This result is obtained by Yao
et al. in (Yao et al., 1995). Let us now describe how to compute the
sequence of optimal frequencies with a lower complexity than the Yao
et al.’s algorithm.

The scheme is exactly the same as in (Yao et al., 1995) but we sub-
stitute the Spuri’s algorithm for the one proposed in Section 3 that finds
the critical interval. Then the speed is fixed over the critical interval.
Time compression by the critical interval is used and a sub-problem
is constructed with the remaining tasks. This leads to the following
algorithm.

1. For k = 1..K construct uj(t). Let r; = supg<;<p uj(t); the critical
interval I. = [a;, b;] is such that Wi, 41 = supy .

2. Set the speed on [a;,b;] equal to Wia; p,1- Using time compression,

remove interval [a;, b;]. Return to step 1 if at least one task remains.

The execution of the algorithm in our foregoing example, whose task
set is given in the table of paragraph 3.1, is displayed in Figure 7.

It should be noted that K, the number of levels in the Hasse dia-
gram, cannot increase after the time compression of the critical interval.
Indeed, if task, say 71, is not strictly included in task, say 7o, before time
compression, then 71 is not strictly included in task 7o, after compres-
sion, either. On the other hand, K may decrease by time compression.
Imagine that task 7 is strictly included in task 7o before time compres-
sion and that the deadlines (or the arrival times) of both tasks fall in
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Aq(t)

Ua(t) > ui(t)

Figure 7. Minimal energy consumption constructed using the repeated shortest path
algorithm.

the compressed interval, then they are not strictly included anymore
after time compression.

Since there is at most IV critical intervals, the feasibility algorithm
(step 1) is invoked at most N times and the worst-case complexity of
the algorithm is O(K N?). As for the average complexity, by Theorem 6,
it is always lower than or equal to O(N2v/N). Furthermore, when tasks
have Poisson distributed arrival times and exponential latencies, the
average complexity is O(N2log N) by Lemma 7.

The correctness of this algorithm is implied by the correctness of the
feasibility algorithm (see Theorem 5) and the correctness of the Yao et

al.’s algorithm.

4.2. EXPERIMENTAL RESULTS

To evaluate the gain that one can expect in practice with our algorithm
(the Shortest Path algorithm) with respect to Yao et al.’s algorithm,
experiments were conducted on random sets of jobs. The sets of jobs
are created according to the following procedure :
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Figure 8. Computation times of the optimal voltage schedule for the Shortest Path
and Yao et al. algorithms on the same random sets of tasks. For each problem size,
the result is the average of 10 experiments. Computations were stopped when at
least one experiment took more that three hour of CPU time.

— the arrivals follow a Poisson process of mean S/N where S is an

arbitrary time interval (S = 230 in our experiments) and N is the

number of jobs,

— the deadline of each job follows an exponential distribution of mean
S/N while the size is uniformly distributed over an interval in such

a way as to reach an average load of 0.5.

The computation times for each algorithm are shown in Figure 8 for
a number of jobs varying between 1000 and 15000. Each point is the
average value of ten experiments. Computations were stopped when at
least one experiment took more than three hour of CPU time on a 2Ghz
CPU and no point is drawn in this case (i.e. Yao et al.’s algorithm with
more than 9000 jobs).

From Figure 8, one sees, as expected, that the running time of Yao
et al.’s algorithm is O(N?3) while our shortest path algorithm runs
in O(N?log(N)) much less than the O(N%v/N) bound valid for ar-
bitrary distributions of the tasks’ characteristics. The O(N?log(N))
behavior was expected since the experiments were conducted with the

assumptions of Lemma 7.
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When the number of jobs becomes greater than 9000, some solutions
cannot be found within three hour of CPU time with Yao et al.’s algo-
rithm while problems with more than hundreds of thousands jobs can be
solved in the same amount of time using the Shortest Path algorithm.
For 9000 jobs, the speedup is equal to 42 with respect to Yao et al.’s
algorithm.

While several thousands may seem like a rather large number of
tasks, it has to be noted that in practice, it is sometimes necessary to
handle such large sets of jobs since computing the voltage schedule for
periodic tasks with arbitrary deadlines has to be done over a period of
time that can be very long (twice the LCM of the tasks periods plus
the maximum offset between the first instances of the tasks, see (Leung
and Whitehead, 1982)).

5. Conclusions

In this study, we first proposed a new algorithm for finding the crit-
ical interval of a set of independent jobs scheduled under EDF. This
algorithm outperforms the existing approaches in terms of average and
worst-case complexity. In future work, it may be possible that further
complexity improvements can be achieved with local optimization pro-
cedures when tasks exhibit specific characteristics (for instance, when
tasks are almost all nested).

Based on this result, the other contribution of this study is a new
way of finding the optimal voltage schedule. This proposal has a lower
complexity than the classical algorithm of Yao et al. and it also brings
several extensions such as coping with a finite number of speeds, non-
convex cost functions or finding the schedule that also minimizes the

number of speed changes (see (Gaujal et al., 2005)).
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Appendix

A. Appendix: Association of the longest increasing

sequences

This appendix is devoted to the proof that the random variables .S;
are associated. This property is used in the proof of Lemma 7. For
definition and properties of associated variables, we refer to (Barlow
and Proschan, 1981).

Actually, a more general result will be proven : If (z1,91), ..., (Zn,Yn)
are random points in R%r, then the corresponding longest increasing
sequences S7 ...,S, are associated.

The proof holds by first discretizing the space Ri. Let us consider
the set Fx = {0,...,K} x{0,...,K}. At each point (i,j) € Ef,
corresponds a binary random variable X; ;. In the following, we assume
that the variables X;; are independent. The meaning of X;; is the
presence (or not) of a point at position (4, j).

Now, ng is the length of the longest increasing sequence of points,
starting at position (7,7) (whether there is a point at position (i, j) or
not).

Is it clear that each random variable ng is an increasing function of
(Xij)(ij)eEx- Since (X; ;)i j)eE, are independent, then (Sil,(j)(i,j)eEK
are associated by Theorem 2.2 and Property P3 , page 30, in (Barlow
and Proschan, 1981).

Now, if we merely consider those SZK] that actually correspond to
the presence of points, this subset is still associated by Property P,
page 30, in (Barlow and Proschan, 1981). When the number of points
happens to be n, those n variables SZIZ are associated.

Now, to get back to the original continuous case, we let K go to
infinity and scale Ex properly, so that the positions (i, j) become dense

in the set {0, max; z; } x{0, max; y; }.
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