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Abstract: We performed a traveling wave analysis of a two phase isothermal Euler model to exhibit the inner
structure of shock waves in two-phase flows. In the model studied in this work, the dissipative regularizing
term is not of viscous type but instead comes from relaxation phenomena toward equilibrium between the
phases. This gives an unusual structure to the diffusion tensor where dissipative terms appear only in the mass
conservation equations. We show that this implies that the mass fractions are not constant inside the shock
although the Rankine-Hugoniot relations give a zero jump of the mass fraction through the discontinuities. We
also show that there exists a critical speed for the traveling waves above which no %! solutions exist. Neverthless
for this case, it is possible to construct traveling solutions involving single phase shocks.
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Structure des chocs pour un modéle Euler diphasique isotherme

Résumé : Nous avons réalisé une analyse par ondes progressives d’un modéle Euler & deux phases pour décrire
la structure des ondes de chocs dans les écoulements diphasiques. Dans ce modéle, les termes de régularisation
dissipative ne sont pas de type visqueux mais proviennent de termes de relaxation vers 1’équilibre entre les
phases. Cela donne une structure inhabituelle au tenseur de diffusion ou des termes dissipatifs apparaissent
seulement dans les équations de conservations des masses. Nous montrons que ces termes impliquent que les
fractions massiques ne sont pas constantes dans les zones de choc bien que les relations de Rankine-Hugoniot
prévoient un saut nul des fractions massiques au travers d’un choc. Nous montrons aussi qu’il existe une vitesse
d’onde critique au dela de laquelle il n’existe plus de solution %'. Cependant, dans ce cas, nous montrons que
I’on peut construire des solutions qui font apparaitre des chocs monophasiques.

Mots-clés : Analyse asymptotique, Dévelopements de Chapman-Enskog, Relations de Rankine-Hugoniot,
Structure des chocs, Ondes progressives, Ecoulements diphasiques compressibles



Shock Structure in a Two-phase Isothermal FEuler Model 3
Contents

[l__Tntroduction 5

2_The mathematical model 7

2.1 _Entropy and diSsipativityd . . . . . . . . ... e e 7

2.2 HyperbaliCityl . . .« o v v e e e e e e e e 8

B Derivati Fil | 8

B.1__The two-pressure, two velocity barotropicmodel . . . . . ... ... .o 9

B.1.1 Quasi-linear form of themadel . . . . .. .. .. ... .. .. ... ... ... 9

B.1.2 Existence of an entropy . . . . . . .. ..o 10

B.1.3 Hyperbolicitsd . . . . . . . .. . . 11

8.2 First-order Chapman-Enskog analysid . . . . . . . . . o vt i it 11

LT iR Tuti f Ll ] 1 model 14

M1 Weak shockd . . ... ... ... 17

B2 Strongshackd . . . . . .. 17

E N cal Ticationd 18

l6_Conclusiod 22

RR n° 6274



H. Guillard, V. Perrier

List of Figures

i

Profiles in the shock for the weak shock case. upper left : pressure, upper right : velocity, lower left : mass fraction| 1

2
3

Profiles in the shock for the strong shock case obtained from numerical integration of (52l upper left : pressure, upper
Mass fraction profile in the shock for the strong shock case, FV scheme compared with the numerical integration of (E
s 0 - - 3 - - : - - -

INRIA



Shock Structure in a Two-phase Isothermal FEuler Model D

1 Introduction

Hyperbolic systems of Partial Differential Equations of the form

oU oU
wr A(U)% =0 (1)

where U € IR™ and A(U) is an n x n matrix, appear in a large number of domains in science and engineering.
It A(U) =dyF(U) for some flux function F(U), system () becomes a system of conservation laws of the form

oU  OF(U)

ot + ox
A paradigmal example of these systems are the Euler equations of gas dynamics expressing the conservation of
mass p, momentum pu and energy pe where U = (p, pu, pe)! and F(U) = (pu, pu® + p, (pe + p)u)t with p the
pressure.
A characteristic feature of systems ([Il) or () is that their solutions can become discontinuous even for analytic
initial data. This leads to the concept of shock solutions of these systems : For system of conservation laws of
the form (@) a shock traveling with speed s € IR is a weak solution of @) of the form

=0 2)

[ Uy for xz<st
U(x,t)—{ Ur for z > st (3)

that satisfies the Rankine-Hugoniot relations :
F(Ur) — F(UL) = s(Ur — UL) (4)

However, this concept of shock waves is too wide : Actually many step functions satisfying the Rankine-Hugoniot
conditions (@) can exist simultaneously and thus the initial value problems for () may have multiple solutions.
A successful way to remedy to this problem is to add some dissipative mechanism to @) and to rely on a
traveling wave analysis [6l, T4, [7] of the resulting system. More specifically, the system (@) is changed to an
enlarged dissipative system of the form

U OF(U) 0 ou
o T T on —5%(D(U)%) (5)

where D(U) is a dissipative tensor and ¢ a small positive parameter. Then one look for traveling waves solutions
U(x—st) with U(—o0) = U, and U(400) = Ug of @). If such solutions exists, as ¢ — 0, U((x—st)/e) converges
to the discontinuous step function (@) defining in an unique way the shock solution of ) compatible with the
enlarged system ().

However, the practical realization of a traveling wave analysis faces many difficulties. The most important
one concerns the choice of the dissipative tensor D(U). It is clear from the previous discussion that the dissipa-
tive tensor selects a particular shock solutions from the possible solutions of (@). In the case of non-conservative
systems i.e systems () that cannot be put under the form (@), the situation is even worse : Not only the
structure of the shock but also the end states on the two sides of the discontinuity depend heavily on the precise
shape of the dissipative tensor. Actually, in non-conservative systems, the regularizing effect of the diffusive
tensor precisely dictate the amplitude of the jump relations connecting the two states of the discontinuity. We
refer for instance to [2] for examples showing the strong influence of the viscosity tensor on the generalized
Rankine-Hugoniot relations in non-conservative systems.

For concrete problems, this question is of great practical importance. It implies that the dissipative tensor
cannot be arbitrary and must in some sense encode the right physic of the inner structure of a shock.
At present, for concrete problems, the small number of works that have dealt with the effective construction of
traveling waves as a means to define shock solutions have mainly considered viscous regularizing tensors D(U)
[I1, 2. In these works, the dominant regularizing effect is assumed to come from viscosity and the dissipative
tensor contains non-zero terms in the momentum equations only.
For simple models of flows, this choice is certainly reasonable. However, for more complex flow models as the
ones encountered in two-phase or multicomponent flows, the dissipative tensor can contains, beside viscous
effects, many other dissipative effects (Dufour, Soret, etc). This is the case, for instance if the dissipative tensor
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6 H. Guillard, V. Perrier

has been constructed by the modeling techniques used in non-equilibrium thermodynamics [8)]. For these cases,
it is not obvious that viscous regularization has the dominant effect.

In the present work, we would like to present an example of another kind of possible regularizing effects than
viscous ones in a simple model of two-phase flows. This effect is based on the existence of relaxation phenomena
in two-phase systems that drive the two phases toward mechanical and thermodynamical equilibrium. As a
consequence, the dominant effect in the regularizing dissipative tensor is not a viscous one leading to a quite un-
usual structure of this tensor. We will neverthless show that a traveling wave analysis for this system is possible.

Moreover, from a physical point of view, although the system we will consider is simple, we will see that it
reveal interesting and unusual features on the structure of shocks in two phase flows. In particular, we will see
that this model reveal that the mass fractions in the structure of a two-phase shock is not a constant. This is
unexpected since the Rankine-Hugoniot relations for the partial mass equation (that are in conservative form
even for other complex non-equilibrium models) predict a zero jump of the mass fraction.

The sequel of this paper is as follows : In section 2, we will present the model and its mathematical
properties. In particular, we will show that this model is endowed with a mathematical entropy compatible
with the dissipative tensor. Section 3 is devoted to the derivation of this model. It will show that the specific
form of the dissipative tensor results from relaxation phenomena between phases that drives two-phase systems
toward equilibrium. In section 4, we will study the existence of traveling waves for our model while section 5
will present some numerical examples.

INRIA



Shock Structure in a Two-phase Isothermal FEuler Model 7

2 The mathematical model

In this work, we are concerned with a traveling wave analysis for the following system

2 (0)+ o (pu) = 0 (6
SV 4 (V) e (Y (1= V) = 0 (62
o (o) + 5= (p(u)? + ) = 0 63

This system describes a two-phase medium composed of two immiscible fluids & = 1,2 where the pressures in
the phases 1 and 2 are equal and given by barotropic state laws. To be more specific, p here denote the total
density of the flow, u its velocity while Y is a mass fraction expressing the relative proportion of the mass of
one of the two fluid over the total mass. For definitiveness, we will assume that this mass fraction is relative to
the fluid 2 : Y = Y5. The mass fractions Y}, are related to the volume fraction ay, by the relation agpr = pYa
where py, is the phase densities. The fact that the two fluid cannot mix is expressed by the saturation constraint
a1 + ag = 1. Finally, the pressures pg, k = 1,2 in the two phase are given by barotropic state laws pr, = pr(pk)-
The phase densities as well as the pressure p are then found by solving the system of equations expressing the
equality of the pressures in the two phases as well as the saturation constraint giving :

p1(p1) = p2(p2)

p1 p2 P

1-v) ) _1

The partial mass conservation equation (Bl2) contains a diffusive term that expresses the fact that the velocities
of the two phases are not exactly equal. They differs from the center of mass velocity u by a relative velocity
u-. An asymptotic analysis of the non-equilibrium two-phase model to be performed in section B provides the

following estimate for this term

Uy = (Y—a)% (7

The system () has been introduced in [9] as a model for isothermal bubbly flows. Numerical approximation
for this system was proposed in this work and it was shown that despite its simplicity, this system is able to
reproduce two-phase computations usually performed with more complex models.

Here our interest in this model is different and we use it to study the possible regularizing effect in two-phase
models of second-order perturbations of the form displayed in equation (@2). Actually, in contrast to many
models considered in studies on viscous shock profiles, the model (@) does not contain a viscous regularization
in the momentum equation and one may wonder if the diffusive term in (B2) is sufficient for a regularizing effect
to occur. Example of the non-viscous Navier-Stokes system with thermal diffusion [5] shows actually that shock
solutions could develop even in the presence of diffusive terms in the equations. Therefore, the question to know
if shock solutions of () admits diffusive profiles is of interest given the non-standard form of the dissipative
tensor. In the remainder of this section we summarize the mathematical properties of this model.

2.1 Entropy and dissipativity
Let us set U = (p, pY, pu)’ and write the system (@) under the form :

oU OF(U) 0 U
o " Tor 0 PG

) (8)
with obvious notations. The mathematical properties of system (@) have been studied in [9] and we refer to
this work for the proof of the results that we recalled in this section. First since the system (B is barotropic,

we can define the Helmholtz free energy fi(px), k = 1,2 of each phase by :

filor) = pi(pr)/ P}

RR n° 6274



8 H. Guillard, V. Perrier

With these definitions, we introduce the following function
u?
n(U) = p= +pY f2(p2) + p(1 = Y) f1(p1) (9)

We then have

Proposition 2.1 n(U) is an entropy for the system (A). Moreover, in the two-phase case (Y €]0,1]), the
diffusion tensor D(U) is dissipative for this entropy.

Indeed for smooth solutions, n(U) verifies the equation

an(U) LOF(U) 0 ou. _, . 9U oU

1D 4wy - ) = 2 (o) - DO)S) ~ Vi) S D) (10)
but it can be shown (see [9]) that
Vun(U) - 51;2:U) _ 3(77(U8)m+ p)u
while
Vi) 9 D) = (u,)?

and then proposition Elis proved

2.2 Hyperbolicity

If we now concentrate on the first order convective part of system (Bl

oau n OF(U)
ot ox

=0 (11)

we have (see [9] for the proof)
Proposition 2.2 The system [{[dl) is hyperbolic with a complete set of eigenvectors associated to the eigenvalues

)\1([]):’[1,—0,7 )\g(U):'LL7 )\3(U)=u+a (12)

where a is the speed of sound defined by the expression

1 - Qe
oa? Z (13)

2
% PEGL

Moreover, the characteristic fields associated with the waves A\ (U) = v — a and A\3(U) = u + a are genuinely
non linear while the characteristic field associated with the wave A2(U) = u is linearly degenerate.

3 Derivation of the model

In this section, we show that the model (@) can be derived from a barotropic version of the Baer-Nunziato
model [T]. For this we will assume that the pressure and velocity relaxation times tend to zero and consider the
first-order Chapman-Enskog expansion of the barotropic Baer-Nunziato model in this limit. Note that in [9],
the model (@) was also derived from the classical two-velocity, one pressure two fluid model (see for instance
[, 16}, 10]) in the limit of large drag coefficients. This section presents an alternate derivation and therefore is
not essential to the remainder of the paper. It can be skipped by readers not interested by the details of the
derivation of ().

INRIA



Shock Structure in a Two-phase Isothermal FEuler Model 9

3.1 The two-pressure, two velocity barotropic model

The non-equilibrium 1986 Baer-Nunziato model [I] or some of its variations have been recently the subject of
several works to model two-phase flows [T5], B, 3] . In this section, we describe an isothermal version of this
model. We thus consider a flow composed of two immiscible fluids, a; denote the volume fractions of each phase
(a1 + a2 = 1), pi their phase densities while uy are the vector velocities. Finally p; are the pressures related
to the phase densities p; by barotropic equations of state

Pr = Pr(pr) (14)

that in accordance with standard thermodynamic, verify

and we note ai(pr) = +/Opr/Opk the speed of sound in the phase k. With these notations, the model that we
consider is

80;:1 + div(arprur) = 0 (15.1)
% + div(aipiu @ uy) + Vaupr = prVar + Muz —uy)  (15.2)
50:92:2 +  div(aepous) - 0 (15.3)
% + div(azpauz ® uz) + Vagpy = prVas — AMuz —u1) (15.4)
% + wupVay = p(p2 —p1) (15.5)

In these equations, py and wuj stand respectively for the inter-facial pressure and velocity. Let us define Y, =

(agpr)/p the mass fraction of the phase k where p = Zi:l agpr is the mixture density. wuj is here chosen as
the center of mass velocity

2
k=1

Considerations on the entropy dissipation of the model (to be given later in this section) show that with this
choice of the inter-facial velocity, the inter-facial pressure must have the following value :

2
=y, Yirk (17)
k=1

where k = (2,1) when k = (1,2). The model ([3) contains relaxation parameters A\ and p > 0 that determine
the rates at which the velocities and pressures of the two-phases reach equilibrium. In many situations (bubbly
pipe flows, bubble column, etc ), the pressure equilibrium time is extremely small while the time necessary to
reach velocity equality is much larger. This leads to consider the classical two-velocity, one pressure models
(2, 16l M0]) where equation (IA5) is replaced by the assumption of pressure equilibrium pi(p1) = p2(p2).
However, this last model fails to be hyperbolic and in the sequel, we prefer to derive (@) directly from (IH)
instead of assuming a priori pressure equality between the two phases.

3.1.1 Quasi-linear form of the model

In the sequel, the material derivative of a quantity ¢ with respect to the velocities u; of each phase k as well
as the inter-facial velocity u will be denoted by :

Drp 09
_ ) _ _ 18
e = t—f—ukV(b for k=1,2 and k=1 (18)

RR n° 6274



10 H. Guillard, V. Perrier

Using this notation, the momentum equations ([[A2)-([[A5) and the mass conservation equations ([ 1)-([T34),
it is easily seen that the velocities uj obey the following equations :

Diu

aipr—p .~ +Vaipr = prVos +A(uz —w) (19.1)
Dsu

Q202 ;tz +Vagpa = ppVas — Muz —uy) (19.2)

Next, using the volume fraction equation ([[Hl7), we can rewrite the mass conservation equations ({[E11)-(I24)
in term of phase densities p; under the form

D .
(o7 ll)lt)l +aiprdivur = pi(up —w1).Vag + ppi(p2 —p1) (20.1)
Dspo .
(6 Dt + O[QdelV'UzQ = pQ(UI — 'UQ).VO[Q — ,LLpQ(pQ — pl) (202)
D
Finally, to get the equations for the pressures py of each phase, we write that since py = pr(pr), then gzk =
D
a: gik and we obtain
Dipy 245 _ 2 2
oy Dt +aiprajdivu; = pray(ug — w1).Vag + ppraj(pe —p1) (21.1)
Daps 21 _ 2 2
s Di + agpeazdivuy = paaz(u — u2).Vag — ppaaz(p2 —p1) (21.2)

Let us summarize these results. In term of the variables ®(ug, px, a2), the isothermal non-equilibrium model
(@) can be written under the quasi-linear form

Diuq

T, + Vaipy = prVai + Auz —uy) (22.1)
Dou

Q202 ;tQ + Vagps = pIVOéQ — /\(UQ — Ul) (222)
D1ipy 23 _ 2 2

a1, +arpraydivu; = praj(ug —u1).Vog + pprai(pe — p1) (22.3)
Dopo 23 _ 2 2

Qo D1 +agpaazdivuy = paaz(up — u2).Vag — ppaaz(pe — p1) (22.4)

DIOéQ

—_— = — 22.

Dt w(p2 — p1) (22.5)

In the sequel, we will denote Cy, = pyaj the bulk modulus.

3.1.2 Existence of an entropy

Proposition 3.1 Let n(U),G(U) be defined by

2 2
n =i (G filp) + azpa(F 4 fa(p2)
u2 u2
G(U) = wi(aipi (= + filpr)) + arpr) +uz(azpa(52 + fa(p2)) + azp2)

2 2

then n(U),G(U) are a couple entropy-flux that verifies :

n

9 + divG <0

INRIA



Shock Structure in a Two-phase Isothermal FEuler Model

3.1.3 Hyperbolicity

Proposition 3.2 The system ([IA) is hyperbolic with a complete set of eigenvectors associated to the eigenvalues

Al(U):ul—al
)\Q(U):ul—i—al ’

)\4(U) = Uz — az

As(U) = ur As5(U) = uz + as

(23)
where a; is the speed of sound in the phase i Moreover, the characteristic fields associated with the waves
AM(U), A2(U), M (U), A5(U) are genuinely non linear while the characteristic field associated with the wave
A3(U) = uy is linearly degenerate.

3.2 First-order Chapman-Enskog analysis

In this section, we are interested in situations where the relaxation times are small compared with the others
characteristic times of the flow and derive a reduced model for these situations. Thus we set A = \°/¢ and
p = u’/e where \° and pu° are O(1) and we analyze the case ¢ — 0. This analysis is similar to the ones
performed in [T2] and [9] and uses the Chapman-Enskog expansion technique. For the sake of simplicity, this
analysis will be done in 1-D. First, we set U = *(u1, u2, p1, p2, a2). Using the results of paragraph BTl we write
system (Z2) in the form

ou ou R(U)

— + AU 24
o AU G =2 @
where the Jacobian matrix A(U) is given by :
up 0 1/p1 0 (p1—pp)/(capr)
0 uy 0  1/pa (p2—py)/(02p2)
A(U) = Cl 0 U1 0 Cl (Ul - UI)/al (25)
0 Cg 0 us Cg (UQ — UI)/OQ
0 0 0 0 ug
while the source term R(U) has the following expression :
A (uz — ur)/(arpr)
—Xuz — u1)/(azp2)
RU) = 10C1(p2 —p1)/on (26)
—11°Ca(pa — p1)/ 2
10 (p2 — p1)
The equilibrium set
£ ={U ¢ R*;R(U) =0} (27)
is a smooth manifold that can be parametrized by the mapping M : u € IR> — U € &£ defined by
U1 u
u1 u U1 u
u | =1 »p — uy [=1] p (28)
us Q2 U2 p
U3 a2

For any u = (u,p, az) € IR3, the linearized source term evaluated on an equilibrium state has the expression

=A%/ (aipr)  A%/(apr) 0 0 0
A/ (a2p2) =A%/ (azp2) 0 0 0
R'(M(u)) = 0 0 —u°Cy/ar pPC%/a; 0 (29)
0 0 plCo/as  —p°CY/an 0
0 0 —pu° uO 0

RR n° 6274



12 H. Guillard, V. Perrier

Looking for solutions of (24 close to the equilibrium manifold £ we introduce the ansatz

U=Mu)+eV =

0
0 Uz
2 +e| pt (30)

ESTUS RSN

2

0 1
2

and in agreement with the Chapman-Enskog asymptotic technique, we choose the first-order correction V' in
Rng(R/(M(u))), the first step is thus to characterize the elements of this space. For this we have

Lemma 3.1 Let V ="'(u},ud, pi, p3,a3) € Rng(R'(M(u))) then it exists w = (w1, w2) € IR? such that

u% = —wl/Yl (311) p% = —UJ201/041 (313)
ui = w1 /Y  (31.2) Pt = wyCy/az  (31.4)
al = —ws (31.5)

Proof: The expression Z9) of the linearized source term shows that a basis of Rng(R'(M(u))) is given by the
two vectors

—1/YP 0
1Yy 0
I' = 0 ;o IP=| —-CY/a (32)
0 C3 /a3
0 -1

Thus for any vector, V' € Rng(R'(M (u))), there exists w € IR? such that V = w;I' + w2I? and the relations

B1) follow.

It remains now to find the expression of the coordinates w in term of the order 0 variables *(u?, p°, a3) and
their derivatives. This is done in the following result :

Lemma 3.2 Let V = (ul,ul,p},p,ad) € Rng(R'(M(u)) be the vector of fluctuations and introduce the
notations u, = uy —ul and Ap = pl — pl then the following relations hold true

11 9p° op°

Oy, = pOYOVO(— — )2 — (v - 92 1
0 _ A0 0

wAp = adal G1=C, Ou (33.2)

a9CY + aJCY 9z
Proof: Let us introduce the ansatz U = M (u) + £V in system (24), up to terms of order O(e) we obtain

OM (u) OM (u)

5 + A(M(u))T — R (M(u)).V = O(e) (34)
or in developed form
o’ Jou® 1 9p° A
- o T (h = 1
o +u o + N0zl (uy —uy) O(e) (35.1)
oul ou® 1 op° A0
2 202
apO apO auO Oco
S Ol e —p)) = 0() (3539) (35)
1
ap° 00p oau0 n°Cy 1 1
tu o=+ 0o — (p1—p2) = O(e) (354)
ot Ox 3) al INRIA
ool 0al
—= +u’—==2 = 1%(py — pi) = O(e) (35.5)



Shock Structure in a Two-phase Isothermal FEuler Model

Multiplying @32) by o909, @33 ) by a?p? and taking the difference, one obtains ({§31). The expression for
the difference of the pressure fluctuations can be obtained in the same way. 0

Now, combining the last two lemmas, we can characterize completely the first order correction V €
Rng(R'(M (u)))

Proposition 3.3 Up to terms of order O(e) the fluctuations V € Rng(R'(M(w))) are given by

ul = =Y u, (36.1) pl = —ag%Ap (36.3)

ud =Y u,  (36.2) py = ag%Ap (36.4)
0,0

o} = —"L2Ap (36.5)

We can now use these results to construct a reduced model valid up to order 2. It appears that for this
purpose, the use of the conservative variables (a?p?, p%u®, p°e®, a9) is more appropriate. Thus considering the

equations ([Hl), we expand each variable f into a mean part and a first-order correction
f=7"+ef! (37)

then use Proposition B3 to express the first-order corrections and finally neglect all terms of order smaller than
E.

In the sequel, we introduce the notations : p° = 37_ a9p? the mixture density. The details of the computations
are now as follows

Proposition 3.4 (Mass conservation equations) : There ezists a non negative scalar x such that the mass
conservation equations can be written :

0 0 0 Op
a(ﬂgyko) + %(PQYISUO) - 5%0((718 - Tzlco)%) = 0(e)
Proof : First, we need to express the first-order fluctuations of the phase densities p;.. Since we have py, = pi(px)
we deduce that
1 €1
pr(p +ep) = pi(p) + —5Pi
i

then pi = p}/a? and with [BE2) to express the first-order velocities we obtain

0 0 d [((p°YPY))? 1 1. op°
() + gladatnt) = e (Vg o - o 39)
that are exactly (B4) with
(P°YYR)?
X
with the definition 7, = 1/pg. For future reference, we will denote Ji, the partial mass "diffusive" flux :
(P°YYP)? 1 1L.aop®  (PYP)(adad) 0, p°
Jp= 2 (5 — =) = 2 L 2 (0 0y 39

Proposition 3.5 (Mixture momentum conservation equation) : There ezists a non negative scalar
coefficient p such that the momentum conservation equation can be written :

9.0 0
E(PU)‘F

9, oud

%(N%) =0

0
(P 1) — e
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Proof: First, we remark that the total momentum is up to terms of order O(g?) equal to its 0-order approxi-
mation. This is a direct consequence of [§111)-(BI12) and ([BI13) as we have

2

2
> anprur =Y (arpr)u’ + el(anpr) u’ + (arpr)ut] + O(?)
k=1 k=1

Thus, to obtain the mixture momentum equation, we sum the two momentum equations and obtain

0

0
900y, 90,002, 0
P w) + 5 (07 () )+
9 o 9 o (40)
0,1 1,0\ _ (-2
e (3 affph) + (3 ala) = O()
k=1 k=1
Since o} + ad = 0 we finally obtain :
9 ) + L +59) + 23 aleh) = O (a1)
ot pu o p\u p o k:1akpk =
and the result follows from ([B83) with
(C9 —CY)? (a?af)® 1 L or 0/s2y12
. - (ol 1 L)
e B PRI R L
“af " af
O

To summarize, the first-order Chapman-Enskog expansion of the two-velocity, two-pressure model barotropic
model ([[H) is given by the following set of equations. Observe that this system is formally very close to the
compressible Navier-Stokes system:

0

0 0
&(a?/’?) + %(G?P?UO) e = 0 (42.1)
0 0 0
&(agﬂg) + %(agﬂguo) - E%JQ = 0 (422)
0 0 0 ou’
&(POUO) + %(PO(UO)Q +9°) - Cor <N8—x) = 0 (423)

where the expression for J; and u are given in Propositions Bl and B3 Comparison between (#2) and the
model (@) shows that ([@Z) obtained from (&) contains in addition to the dissipative terms present in the model
(@) a viscous-like contribution in the momentum equation. This viscous contribution comes from the assumption
that pressure relaxation effects are of the same order of magnitude than velocity drag relaxation effects. As
pointed out in the begining of this section, in many cases of practical interest, one can consider that the pressure
relaxation time is much shorter than the velocity relaxation time and therefore the viscous term in [E23) is
actually much smaller that the drift mass flux and the appropriate reduced model for these situations is (ﬂ)
Moreover, for the eos that we will consider in the next section, the viscous contribution in (@Z) disappears.

4 Traveling wave solutions of the reduced model
In this section, we specialize the discussion to the following equations of state :

pp = pras  for k=1,2 (43)

THowever, the opposite can be true for some situations : in plasma physics for instance, the velocities of the different particles,
say the ions and the electrons are almost identical while the ionic and electronic pressures can be very different

INRIA



Shock Structure in a Two-phase Isothermal FEuler Model

where ay, the speed of sound in the phase & is a constant. For definiteness, we will assume with no loss of
generality, that as > a;. With these eos, the viscosity-like term in the momentum equation disappears and the
system (#Z) reduces to the model (@l):

20+ 2 (o) = 0 (1
Do)+ Loy~ e (oY (1= YIu) = 0 (442)
D (o) + 2 (p(w)? + p) — 0 (143)

ot ox

where u, is given by the following relation :
o
ox

We want to establish the existence of a certain class of solutions of this system, namely the traveling waves
solutions defined as follows

ur = (Y — ) (45)

Definition U(t,z) is a traveling wave solution of #4)) if
1. There exists a real s and a one-parameter function U(£) such that U(t,z) = U(z — st)

2. There exist two state vectors Uy, and Ug such that

1im§_,_oo U(f) = UL (461)
lime . o U'(€) =0  (46.2)
lime 400 U(E) = Ur  (46.3)
lime 0o U'(€) =0 (46.4)

If such solutions exist, they are characterized by the differential system of degree 2 :
(F(U)) = sU" = (D)UY (47)

In the sequel, we will assume with no loss of generality that s > 0. The right state Ug is therefore the
unperturbed state (before the passage of the wave) while the left state Uy, is the perturbed state (after the
passage of the wave). Since the system (@) is in conservative form Z) can be integrated once to yield a
first degree differential system. Moreover integrating the system (@) between £ = —oo and £ = oo yields the
Rankine-Hugoniot conditions that the two end states Uy and Ugr must satisfy if they are connected by a shock
wave. These jump conditions are :

Lemma 4.1
pr(uR — 5) = pr(ur —s) (48.1)

YRpR(uR — S) = YLpL (UL - S) (482)

urpr(ur — 8) + PR uppr(ur —s) +pr  (48.3)

Let us define M = pr(ur — s) = pr(ur — s) the constant mass flux across the wave. Equation {@&1) estab-
lishes that the mass flux M is a constant. Two cases are therefore possible, M > 0 or M < 0. They are
associated respectively with a 1-compression wave or a 3-compression wave. According to Lax shock criterion,
a 3-compression wave has to verify

u— < s

u —a >s>ut —al

for the two states U~ and U™ on the two sides of the wave. In this study, we assume that s > 0 and thus
M = p(u — s) < 0. The case of a 1-compression wave M > 0 can be handled similarly by changing £ in —¢.
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We also note that if M # 0 then the relation {8 2) implies that the mass fractions are equal on the two
sides of the discontinuity.

In the sequel we are interested to show the existence of viscous profile connecting two end states verifying
ER), that is we are interested to find a solution U of the profile equation

DU = F(U) — F(Ug) — s(U — Ug) (49)

such that U — Uy, for ¢ — —oo. For convenience, we will omit the notation "in the sequel. The integration
between £ and +oo of the equations @Al1) and [@A3) gives using the boundary conditions (HH)

Lemma 4.2
p(&)(u(§) — s) = M = constant (50.1)

M (rf —7(€) +p—p(€) = 0 (50.2)

where we have used the notation 7 =1/p.

The next step in the analysis of the differential system #T) is to reduce it to a first degree autonomous
differential equation. This is done in the following result :

Lemma 4.3 The differential system {{7) associated with the right boundary conditions

{ lime 400 U(€) = Ur
lime oo U'(€) = 0

can be reduced to the following first order autonomous system of dimension 1 in the variable z = p — pgr

Y- Y)(a-Y) = Tz(MMT(Z%__p;)_ 2 (51)

associated with the following definitions for the specific volume and velocity

z
T = TR — m (521)

R z
= - — 52.2

and where Y and o are functions of z given by the expressions

_ z(M?tr — pr — 2)
Y(z) = Yr+ o) (53.1)
alz) = a3V () (53.2)

7(2)(Pr + 2)

Proof: We first begin to prove (E31). The equations of state py = pra; allow to write
pr = Yia] + Yaa3 = (a3 — a})Y + a3

that can be solved for Y to obtain

v pT — a3 :p(MQTR+pR—p)—M2a%
(a5 — af) M?(a3 — a?)

from which (B31) follows by noting that
prTR = (a3 — af)Yr + af
Next, we consider (B32). The definition of « = s together with the state law gives
Y  a3Y(z2)

o0=—=—"———=

TpP2 pT
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that is exactly (B32). Next, the relations &2) comes from (&0). Finally, the integration between ¢ and +oo of
the mass fraction equation gives
M(Y = Yi) = p¥ (1= Y)(Y — a)p

that together with (E31) gives &)).

Let us define z;, by 21, = pr, — pr = M?7r — pr. The existence of viscous profiles is thus reduced to the
study of the ode

z(zp, — 2)
St ol T

M(a3 — ay)

We begin to note that z;, > 0 since by the Lax criterion we have s — ug > ap that implies Trp%(s — ugr)? >
pra% = pr. The ode (B can therefore be studied between z = 0 and z = 2y, that are two equilibrium points.
Before studying the stability of these equilibria, we have to check if (B4 can become singular. We are thus lead
to study the function Y (2)(1 — Y (2))(a(z) — Y (2)) for z € [0, z1].
We begin to remark that (a(z) —Y(z)) > 0 for Y (1 —Y) > 0 since from the state law and the definition of «

we have (2 a)
P —p2 a3~ @
a(2)=Yz)=Ykr)—=Y)1-Y(z) ——————
(0 =Y () =YL =y (o)1= V() - s
Therefore, it just remains to study Y (2)(1 — Y (z)) where Y (z) is given by (@3l1). Between z = 0 and z = z,
Y (2) > Yr and thus the only possibility for the ode ([B4)) to become singular is that Y'(z) > 1. We are then lead
to consider two different situations.

Y1-Y)(a-Y) = (54)

4.1 Weak shocks
Consider the function

2(zp — 2)
M?(a3 — a3)
This is a second degree polynomial in z whose maximum is reached for z = z /2. The value of this maximum
is

Y(2) =Y + (55)

2 M2 — 2
Yinax = YR + 2 25 2\ ( QTRQ pRQ)
AM?*(a3 —ai) ~ 4M?(a3 — af)
and is a increasing function of M?2. Therefore it exists a critical value of the mass flux M,,;; such that if
M? < M2, then Y., < 1 and then the ode (B4) is never singular. Some algebra gives :

M2, = a® +2(1 = Ya)(af — a3) +2/(1 - 5;2)(@? —a3)(a® + (1 - Ya)(af — a3)) (56)
TR

with a? = Trpr. To end the study of this case, we just have to study the stability of the two equilibria z = 0
and z = zy. Linearizing (B4) in the vicinity of these two points shows easily that z = 0 is a stable equilibrium
while z = z, is unstable. We summarize this case in the result :

Proposition 4.1 : Weak shock case If the mass fluz verifies M? < M?2,, the ode (54) is never singular and
therefore, it exists a unique €' solution connecting the two equilibriums z = 0 and z = z1, and in consequence

a viscous profile connecting the two states Uy, and Ug.

4.2 Strong shocks
We are now interested in the strong shock case, for which

M? > M?

crit

in this case, the equation
2(zp — 2)

M?(a3 — af)
admits exactly 2 roots (eventually identical) that we will denote z; and z5 with 0 < 25 < z7 < zp. For z = 25
or z = z}, the ode (Bd) becomes singular and it is not possible to connect z = 0 to z = 2z, by a ¢ orbit.
However, the important point to note is that since z = 0 and z = z;, are equilibria corresponding to two states
Ur and Uy, that satisfy the Rankine-Hugoniot relations (BTl then the two states U}, and U; corresponding to
2y, and zj also satisfy the same Rankine-Hugoniot relations (@Il with the same mass flux :

1=Yr+ (57)
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Lemma 4.4 Let U} = '(7} p,uj g, Y7 ) be the two states corresponding to the variables 2} r given by the
relations (B2) and Y} p = 1 then U} g satisfy the Rankine-Hugoniot relations (1)) with the same jump velocity
s

Proof: This can be seen by noting that the Rankine-Hugoniot relations results from the integration of 1) :
Let &} and & be the coordinates where z = 2] and z = zJ;, respectively. Integration of @) between { = —oo
and £ = &£} and between § = {5 and { = +oo respectively yields :

F(Uz) —F(UL) = S(Uz — UL)
F(Ur) — F(Ug) = s(Ur — Up)

because in § = &7  the diffusion tensor disappears : D(U} ) = 0 while in { = +oo the gradients d¢U are null.
Adding the previous two equations and using the fact that Uy and Ug verify the Rankine-Hugoniot equations
shows that they are also verified by Uj, and Uy g

Now, although the ode (B4 becomes singular in z = 25 and z = 2}, this ode can be integrated to connect
z=0to z =z} and z = 2} to zr, respectively. Together with the previous lemma, this allows the definition of
traveling wave solutions connecting the two end states Ur and Uy, :

2 .., there is mo € viscous profile
connecting the states Uy, and Ur. The ode [57) is singular in z} and z}, and there exist an infinite number of
orbits connecting the two equilibria z = 0 and z = z1,. These orbits are composed of

Proposition 4.2 : Strong shock case If the mass fluz verifies M? > M?>

- a €' two-phase solution connecting the equilibrium z = 0 and z = 2}, or equivalently Ug and U},
- a discontinuous one-phase shock connecting the two states U, and U}

- a €' two-phase solution connecting z = z; and the equilibrium z = z;, or equivalently U; and Uy,

Note that the width of the one phase region is arbitrary. Therefore the profile equation (@) admits an infinity
of solutions that differ only by the width of this region. In particular, this one phase zone can be reduced to a
single point.

5 Numerical applications

We illustrate the results of the previous section with some numerical applications. In these examples, the
equations of state characterizing the two fluids are

pr = pra;  with a; = 1000 and ag = 3000 (58)

The unperturbed state is given by
Y1 =05 p=8910 u=10 (59)

and according to the state laws (B8), this corresponds to the following values of the densities :
p1=891x10"% py=99x1072 (60)

and p = a1 p; +asps = 1.634862385321101 x 10~2. With these values, the minimum mass flux to have a shock is
M = pr(ur — s) = 12.0692269235486 and according to expression (Bf), the minimum mass flux corresponding
to a blow-up of €' solutions is M, = 27.3763735493943.

Computation of a ¢! solution : We first compute a €' solution corresponding to a mass flux equal to M = 17.
According to the Rankine-Hugoniot relations (1)) the state after the passage of the shock is given by

Y1 =05 p=17677.3288439955 u = —505.725226117383 (61)
corresponding to the following values of the densities

p1 = 1.767732884399551 x 1072 py = 0.196414764933283 (62)
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and p = 3.24354657687991 x 10~2. This solution was computed by two different methods. The first method
integrates the ode (B4 with initial conditions given by a slight perturbation of the pre-shock state ([Ed). The
computation is stopped when a steady state is obtained. We will check that this state correspond indeed to
the post-shock state. From the numerical point of view, a Runge-Kutta method of order 4 with adaptive time
stepping has been used.

The second method is a finite volume method that solves directly the PDE system (). The numerical method is
the one of [9] except that the hyperbolic solver has been changed for a Roe scheme. This was done because Roe
scheme has the property of computing exactly the stationary discontinuities. Therefore in this way we minimize
the influence of the numerical viscosity of the scheme on the width of the shock profile and expect the results
to depend only on the dissipative Darcy-Drift model. These finite volume computations have been done in the
coordinate system of the shock, starting from discontinuous initial conditions given by the Rankine-Hugoniot
conditions and integrating in time the system (@) until a steady state is reached. For these FV computations,
a 1000 node mesh was used.

Figure [M shows the computed profiles in the shock region. In agreement with the theoretical results a smooth
shock profile of non-zero width is obtained and the mass fraction passes through a maximum. One can also
note that the two numerical methods give identical results.

18000 100

e S ETE——— FV scheme
17000 - exact ODE i exact ODE
P ———TN ]
16000 - B
15000 1 -100 1
o 14000 | 1 o 200 - \ ]
=1 | £
2 13000 | } ~ F
g g
[=% | - - 4
12000 - { b 300
11000 1 400 | ]
10000 B
-500 ———— S
9000 b 4
8000 L L L L 600 L L L L
-50 0 50 100 -50 0 50 100
space (m) space (m)
0.58 T
FV scheme
exact ODE
0.57 B
0.56 B
0.55 B
j =
8 \
I3] 0.54 | \ g
E \
%] i
@ 053 1
£
0.52 - B
0.51 B
05 pb—m—m— ——— e ———
0.49 L L L L
-50 0 50 100
space (m)

Figure 1: Profiles in the shock for the weak shock case, upper left : pressure, upper right : velocity, lower left :
mass fraction

Computation of a discontinuous traveling wave solution : Next, we turn to the computation of a strong shock.
The pre-shock state and fluid characteristics are the same than in the previous computations but we use now
a value of the mass flux equal to M = 29 > M,,.;;. For this case, the Rankine-Hugoniot relations gives the
following values for the post-shock state

(Y1) =0.5 pr =51441.6386083053 wuy = —1456.60822787260 (63)
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According to the analysis since M = 29 > M,,;;, no ¢! solutions can exist and the solution will blow-up in two
states U} and U}, given by the roots of the equation (7). Solving this equation, gives the following values :

M) =1 pj =21834.3523662052 uj, = —435.667322972591
(64)
(Y1); =1 p} =38517.2862421001 wj} = —1010.94090490000

One can check that this is exactly what is reproduced by the numerical methods. Integration of the edo
&4) from the two states zg = 0 and z;, shows that the values z}; and 2] are asymptotically approached for
t — Foo. The corresponding states U; and Uy, satisfy the Rankine-Hugoniot relations with the same mass
flux M and thus it is possible to connect them by a single phase shock corresponding to Y; = 1. This is what
is shown in figure @ In these figures, the width of the single phase zone is arbitrary. In particular, it can be

55000 200

exact ODE —— exact ODE ——

50000 - . ol

45000 - g 200 |

40000 B
-400 -
35000 [ B
-600 -
30000 [ B
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-800

pressure

25000 [ 1
-1000
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20000 |- 1
-1200

T

15000 - 1

T

10000 - 4 -1400

5000 : : - : : : -1600

0 20 40 60 80 100 0 20 40 60 80 100
space (m) space (m)

1r ‘ : ‘ ‘ exact ODE ———

09 | 1

08 | 1

0.7 | 1

mass fraction

0.6 | 1

05 i L L n n d |
0 20 40 60 80 100
space (m)

Figure 2: Profiles in the shock for the strong shock case obtained from numerical integration of (B4l upper left
: pressure, upper right : velocity, lower left : mass fraction

equal to zero and the mono-phase region reduced to a single point. On figure ] we gave a non-zero width to
this region in order to show that the shock profile has infinite derivatives when the states U} and U}, are reached.

We have also repeated this computation with the finite volume scheme of [9] to integrate the system (f). The
initial condition is given by an inviscid shock between the two states (BY) and (63). The steady state obtained is
displayed in figure Bl for the mass fraction and compared with the result obtained from the numerical integration
of (B4). In these computations the width of the mono-phase region is zero and the solution displays an infinite
derivative at this point. An extremely large number of grid points is therefore needed to approximate the
derivative of the solution at this point. This is what is shown in figure ll where the number of grid points
have been increased in order to capture this region of large derivatives. It is seen that as the number of grid
nodes is increased, the maximum value of the mass fraction tends to 1 in perfect agreement with the analytical
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results of the previous section. Actually, for the 8000 node mesh, the maximum value of the mass fraction was
0.985661816.

dl | | P ' ODE -~ :
FV scheme - 1000 nodes ===
09 |
&5 08} : |
g E
P :
7 H
3 H
1S 0.7 E |
t
§
0.6 |
0.5 | sisesssesssmssspuismsssssssssnanesy O
-20 0 20 40

60 80

100
space (m)

Figure 3: Mass fraction profile in the shock for the strong shock case, FV scheme compared with the numerical
integration of (B4
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= 0.7 ! B
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0.5 T i
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Figure 4: Mass fraction profile in the shock for the strong shock case, using an increasing number of grid points.
The various curves are shifted from each other in order to have a better representation of the maximum value
of the curve in the shock region.
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6 Conclusion

The correct definition of shock solutions in hyperbolic systems is generally an open question. This is particularly
true for models in non-conservative form such as in many two-phase flow models. From a mathematical point
of view, the definition of shock solutions for these systems necessarily demand some kind of regularization. In
principle, traveling waves analysis [6], [I4] [7] provide a satisfactory way to describe the inner structure of a shock
and consequently should allow a rigorous definition of shock waves.

However, in this case, the choice of the dissipative tensor appears to be crucial as it defines the valid shock
solutions. In this work, we have investigated on a simple model of two phase flow, a particular structure of
dissipative tensor that differs from the usual viscous tensors constructed from a Navier-Stokes analogy.

Using Chapman-Enskog expansion, we have shown that this type of tensor results from mechanical relaxation
toward equilibrium between two phases and that it represents the dominant effect in two phase flows.
Traveling wave analysis for this model has been performed. This analysis has revealed that despite the zero
mass fraction jump implied by the Rankine-Hugoniot relations, the mass fraction is not constant in the shock
region. Moreover, this analysis has also shown the existence of a critical speed of the waves above which no ¢!
solutions exist. However above this critical speed, we have shown the possibility to construct traveling solutions
involving single phase shocks.
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