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Abstract— A schedule is said robust if it is able to absorb some
degree of uncertainty in tasks duration while maintaining a stable
solution. This intuitive notion of robustness has led to a lot of
different interpretations and metrics. However, no comparison of
these different metrics have ever been preformed. In this paper,
we perform an experimental study of these different metrics and
show how they are correlated to each other in the case of task
scheduling, with dependencies between tasks.

I. INTRODUCTION

Research in scheduling has gathered a lot of different

solutions depending on the pursued objective. For instance,

if the objective function to minimize is the makespan (the

total execution time of the application) different heuristics have

been proposed in the literature such as HEFT [17], CPOP [17],

hybrid remapper [11], BIL [12], hybrid method [13] or

GDL [16]. However, there are a lot of other possible objectives

than minimizing the makespan. Among these objectives the

robustness has recently received a lot of attention [1], [3],

[5], [7], [14], [15]. A schedule is said robust if it is able to

absorb some degree of uncertainty in the task duration while

maintaining a stable solution. Thus, it is important to note that

the robustness alone is not a metric but it gives an idea of the

stability of the solution with regards to another performance

metric such as schedule length, load balance of an application,

queue waiting time of batch scheduler, etc. The reason why

robustness is becoming an important objective is the recent

focus on large systems that can be dynamic and where

uncertainty in terms of workload or resource usage can be very

important. Moreover, a brief look at the literature shows that

despite the fact that robustness is a very intuitive notion there

is no consensus on a single metric. Conversely, almost each

paper uses its own metric depending on the studied problem

and the general context of the work. Furthermore, there does

not exist a comparison between these different metrics, hence

it is not possible to decide which metric to use when designing

a heuristic.

In this paper we focus on comparing different metrics

of robustness in the context of scheduling task graph on

heterogeneous systems: we model an application as a set of

tasks having precedence constraints and a task as a set of

statements. The performance metric we use is the makespan

(the completion time of the application) and therefore, we

look at the robustness of the makespan when tasks may have

variations in their duration. Moreover, we try to see to which

extend optimizing the makespan can help in optimizing the

robustness. In other words, we try to answer the following

question: are short schedules more robust that long ones?

In this work we also test some makespan-centric scheduling

heuristics of the literature (BIL, HEFT, Hyb.BMCT) and see

on different scenarios how they perform in terms of robustness.

Therefore, the contribution of this paper is the following:

we provide a comprehensive study of different robustness

metrics in the case of task graph scheduling. We study how

they are correlated to each other and whether robustness

and makespan are conflicting objectives or not. Finally, we

compare the robustness of three different makespan-centric

scheduling heuristics.

The remaining of the paper is organized as follows. In

Section II we present the problem and the notations used in

this paper. Several works dealing with robustness are detailed

in Section III. The robustness metrics we use are described in

Section IV. In Section V we present the experimental setup we

used for testing and comparing the different metrics. Results

are shown in Section VI and discussed in Section VII. Finally,

conclusion and future works are given in Section VIII

II. MODELS

We model the parallel application by a directed acyclic

graph (DAG) G = (V,E, C), where V is a set of nodes

that represent tasks and E is a set of edges that represent

dependencies between tasks (often due to communications). C

is the set of communication volume between tasks. The target

platform is composed of a set of heterogeneous resources

each having different capacities in terms of network speed.

When there is no uncertainty we use two matrices to model

communication speed: T = (τi,j)1≤i≤m,1≤j≤m and L =
(li,j)1≤i≤m,1≤j≤m, where m is the number of machines. τi,j

is the time to send one data element from processor i to

processor j and li,j is the network latency from processor

i to processor j. To model the fact that communications are

way faster between two tasks mapped on the same processor

and thus negligible, we put ∀i ∈ [1,m], τi,i = li,i = 0.

Hence, if task 1 is mapped to processor i and task 2 is mapped

to processor j then the communication time between these

two tasks will be: li,j + c1,2 × τi,j , where c1,2 ∈ C is the

communication volume between task 1 and task 2. As we



want to deal with the case where communication times can

vary from one execution of the schedule to another execution

we enhance the previous model with random variables. In this

case, each li,j and τi,j are drawn randomly from a random

variable (which can be of any type). We use two parameters:

the minimum value of this random variable and the uncertainty

level (UL). The UL is such that the minimum value times the

UL gives the maximum value. The idea behind this ratio is

that the larger the task duration, the larger the possible values

of different execution times are. Also, the larger the UL, the

larger the possible values of the random variable are. Based

on these two values, it is possible to compute the probability

density of the corresponding random variable.

To determine the computation time of a task we use the

unrelated model. This means that for each task, the minimum

duration on each processor is given by a matrix of n rows

and m columns, where n is the number of tasks. We also

consider that the computation times may vary and thus, we

use the same UL as when we compute the communication

time to the maximum task duration and determine the random

variable that describe the task duration in case of uncertainty.

Although this model has some limitations, it is sufficient to

handle many different heterogeneity and uncertainty cases.

A schedule is the assignment of the tasks to the processors

with a start date and an end-date. In this work we consider only

eager schedule this means that each task, once allocated to a

processor starts as soon as possible in the same order that given

by the schedule. This means that there is no arbitrary delay

(or slack) in the schedule. Note that most of the scheduling

heuristics (list, clustering, etc.) produce eager schedule.

We call M the makespan of a realization. A realization is

computed by instantiating every computation and communi-

cation durations according to the random variables. M is then

the end-time of the last task to finish for this realization.

Given a schedule, it is possible to have an infinite number

of realizations and hence and infinite number of makespans.

However some makespans are more likely to occur than

others. This is why we introduce the notion of makespan

distribution. Given a schedule S we call fS the makespan

probability density function (PDF). With fS , one can compute

the probability that the makespan is within two bounds [x1, x2]
(noted (P(x1 ≤ M ≤ x2)) and is given by

∫ x2

x1

fS(x)dx. We

will also use the cumulative distribution function (CDF) of

the makespan FS . FS is the integral of the probability density

function fS . Therefore FS(x) gives the probability that the

makespan of schedule S is lower than x (noted P(M ≤ x)).
The probability density of the makespan comes directly

from the distribution of the task duration and communication

time. Computing numerically the probability density or the

CDF of the makespan is computing intensive for task graph

with independent task or DAG in which the distributions are

independent (an in-tree for instance) but is tractable. In the

case of independent distributions, only two cases need to be

consider (see [9], [10], for the details). The first case is when a

distribution is the ancestor of another distribution. The result-

ing distribution is computed by adding the two distributions

together. The sum of two distributions is computed by doing

the convolution of the two probability density distributions

and can be calculated numerically using Fast Fourier Trans-

form (FFT). The other case is when two distributions are

independent and join to another one. In this case we need to

compute the maximum of the two distributions. The maximum

of two independent distributions is done by multiplying their

CDF. Here again, it can efficiently be calculated by finding the

derivative of the probability density and integrating the result.

In the general case, however, a DAG can have a structure

such that distributions are not independent. In this case,

computing the probability distribution of the makespan is ex-

tremely difficult: in the general case it is #P-complete1 (see [8]

for the details). Several authors have proposed solutions to

approximate the distribution of the makespan for this case.

Among these methods two are of interest for our problem. The

Dodin method [6] uses a succession of reductions applied to a

given series-parallel graph. This results in a sole node whose

random variable is equivalent to the makespan distribution of

the complete graph. A mechanism is used to transform any

graph into a series-parallel one with some approximation. This

is one of the oldest methods and it gives acceptable accuracy.

The second method, from Spelde [10], is based on the central

limit theorem which states that the sum of random variables

tends to be normally distributed. Every random variable is then

simplified to its unique mean and standard deviation (the only

parameters needed to characterize any normal distribution) and

the makespan is calculated without doing any convolution.

Thus, this is a fast approximation method although it assumes

the independence of the random variable. Refer to [10] for

a description and a comparison of these methods. Moreover,

the above methods where designed for an unbounded number

of processors. In our case, since the number of processors is

bounded we have to modify the graph to obtain a distribution

of the makespan that corresponds to a given schedule. This is

done by adding edges between independent tasks when they

are scheduled consecutively on the same processor (such a

graph is called the disjunctive graph, see [15] for the details).

III. RELATED WORK

How to measure robustness is a subject that has not yet lead

to a wide accepted metric. Several works propose different

ways to measure this metric. In [1] the authors do a good

job in defining how to measure robustness: 1) defining the

performance features that need to be robust, 2) identify the

parameter that impacts the parameters that impact the robust-

ness are the duration of each task and each communication.

Hence, a schedule is said more robust than another one if

it requires a greater change of the task duration to exceed

some given bounds. The problem of that definition is that it is

hard to take into account the fact that some change in task or

communication duration are more likely to occur than others.

Moreover, computing this metric requires a lot of effort and

depends on the studied system.

1intuitively a #P problem consists in counting the number of solutions of
an NP problem.



In order to simplify the computation of the robustness,

[7] proposes to use the Kolmogorov-Smirnov (KS) distance

between the CDF of the performance metric under normal

operating condition and the CDF of the same performance

metric when perturbations occur. The idea is that if the

KS distance is large (close to 1) this means that the two

distributions are different and thus, that perturbation has a

large impact on the behavior of the studied system. However,

in many cases, the performance metric under normal operating

condition has only one value (think for instance of the arrival

time of the train at a station). In this case the distribution is a

Dirac function and the CDF is a step function. Moreover, if this

value is computed using the minimum of each intermediate

event, the KS distance is always 1 whatever the way you

organize the system. This means that this metric is not well

adapted to the case where the performance metric has only one

possible value, which is the case for the scheduling problem

studied here.

In [14] a subset of the authors of [1] proposes a new metric

called the probabilistic metric. It is defined as the probability

that the performance metric is confined within a given interval.

They evaluate this metric against the robustness radius (called

the deterministic robustness in the paper) and show that the

probabilistic metric is preferable to the deterministic metric in

the case of independent tasks scheduling.

Other definitions of the robustness are available in the

literature. In [3] Bölöni and Marinescu propose to use the

slack as a robustness metric. The slack of a task represents

a time window within which the task can be delayed without

affecting the makespan. The same authors suggest also to use

the entropy of the performance metric distribution to compare

schedules with the same makespan: given two schedules with

the same makespan they conjecture that the one with the

smallest entropy is the most robust. In [15] the authors study

another definition of slack and show that it is equivalent to

the definition given in [3]. They propose two new robustness

metrics for the scheduling problem. One is based on the

average delay between the expected makespan and different

realizations of the schedule under perturbation and the other is

the ratio of realization that are late compared to the expected

makespan. Moreover the authors show that minimizing the

makespan is a contradictory objective with the problem of

optimizing the robustness.

This brief look at the literature shows that there is no

consensus on a good metric for robustness. This exemplifies

the need for a comparison and a systematic study of different

metrics in order to determine how these metrics are correlated

to each other.

IV. ROBUSTNESS METRICS

As there is no consensus on a good metric definition, we will

compare some metrics proposed in the literature to each other.

However, not every metric is easy to implement. In our case

we consider the makespan as the performance metric. This

means that, for our problem, the robustness we measure is the

stability of the makespan whatever the different realizations

of the same schedule we can have. Given a task graph and a

target environment, we will schedule the tasks and compute the

makespan distribution. Let f be the PDF of the makespan of

the schedule, F the CDF of the makespan of the same schedule

and E(M) the expected makespan (the average value of the

makespan). Based on these definitions we define the following

robustness metrics.

• Makespan standard deviation. Intuitively the standard

deviation of the makespan distribution tells how narrow

this distribution is. The narrower the distribution, the

smaller the standard deviation is. This metric is related to

the robustness because when you are given two schedules

the one for which the standard deviation is the smaller is

the one for which realizations are more likely to have a

makespan close to the average value. Mathematically we

have:

σM =
√

E(M2) − E(M)2

• Makespan differential entropy. The differential entropy

of a distribution measures the uncertainty of that distri-

bution. If there is less uncertainty there is more chance

than two realizations give a close result and hence that

the schedule is robust.

h(M) =

∫ +∞

−∞

f(x) log f(x)dx

• Average Slack. The slack gives the sum of spare time in

the schedule [3]. It is intuitively related to the robustness

of the makespan as a schedule with a large slack is able to

absorb a lot of uncertainty. For a deterministic schedule

the slack is defined as

S =
∑

i∈V

M − Bl(i) − Tl(i)

Where M is the makespan, Bl(i) is the bottom level of

task i (the length of the longest path from i to an exit

node including i) and Tl(i) is the top level of node i (the

length of the longest path from an entry node to node

i excluding i). In our case we have random variables

that define tasks and communications duration. Hence, we

compute an approximation of the average slack by taking

the average value of the makespan, the task duration and

the communication duration.

• Slack standard deviation. Each task has its own slack.

Some tasks have a very large slack and other a slack

of zero. However, as shown in [15] only task with non-

zero slack can absorb uncertainty without delaying the

makespan. Hence, it is better to have as many tasks as

possible with a slack close to the average, this means

that the standard deviation of all the slacks needs to be

as small as possible. In order to compute the standard

deviation of the slack we use the average slack S as

defined above and the slack of every node i ∈ V :

si = M − Bl(i) − Tl(i). Then, we have the standard



deviation of the slack being:

σS =

√

∑

i∈V

(si − S)2

• Average lateness. A schedule is said late if its makespan

exceeds the average makespan. The average lateness as

defined in [15] is the average of the difference between

the makespan of the late realization and the average

makespan. If this metric is large this means that the

makespan tends to be far from the average and then that

the robustness is low. It is defined as:

L = E(M ′) − E(M)

where M ′ is the random variable describing the realiza-

tions that have a makespan larger than E(M).

• Probabilistic metric. This metric has been defined

in [14] and gives the probability that the makespan is

within two bounds. If this probability is high, this means

that the makespan of a given realization is likely to be

close to the average makespan and hence that the robust-

ness is high. We propose two variants of this metric. An

absolute probabilistic metric that measures the probability

of the makespan to be within [E(M) − δ, E(M) + δ]
where E(M) is the average makespan and δ a positive

constant given by the user. We also propose the relative

metric that measure the probability of the makespan to be

within [E(M)× 1
γ
, E(M)×γ], where γ is a real number

greater than 1. Formally, The absolute probabilistic metric

is defined as:

A(δ) = P(E(M) − δ ≤ m ≤ E(M) + δ)

and the relative probabilistic metric is defined as:

R(γ) = P(E(M)
γ

≤ m ≤ γE(M))

V. EXPERIMENTAL SETUP

Since our comparison of these metrics is mostly empirical,

great care should be taken to ensure the correctness of our

conclusions. Then, considerable attention was given to validate

the methodology, which involves the input task graphs, the

metrics evaluation and the exploitation of the results.

Several graphs were generated to study the correlations

in the general case (with random graph) and in two real-

application cases (namely, the Cholesky decomposition and

the Gaussian elimination [4]). The generation consists of

two phases: obtaining a deterministic graph and transforming

it into a stochastic one. For each kind of graph, we vary

the number of tasks (n = 10, 30, 100 and 1000) and the

degree of uncertainty (UL = 1.01, 1.1). Additionally, we

generated up to 10 different random graphs for each size. The

latency was not considered because its influence was negligible

on the correlation results. The random generation of DAG

requires some parameters, among which the communication-

to-computation ratio (CCR = 0.1), the coefficient-of-variation

(Vtask = Vmach = 0.5) and the average computation cost

of each task of the DAG (µtask = 20). The idea behind

the coefficient-of-variation is to define a ratio between the

mean and the standard deviation of each weight in order to

have a relative dispersion metric (see [2] for more details).

In our case, we apply a Gamma distribution and obtain

every deterministic computation and communication weights

with these parameters. Finally, concerning the shape of these

random graphs, each new node can only connect to the ones at

higher level and the out degree is uniformly chosen between

one and the sum of all nodes at higher levels. For real-

application graphs, only the weight of communications is

considered (not the bandwidth) in order to have values with

the same order for the processor and the communication times.

The computation time of each task on each processor is chosen

uniformly in the interval [minVal; 2 × minVal], where minVal

is the minimum processing time and is chosen randomly. Once

the graphs are generated for the deterministic heterogeneous

case, we apply the substitution of fixed values by stochastic

ones using random variable as detailed above. We use the

Beta distribution and select the parameters in order to have a

probability distribution corresponding to our observations and

expectations. To this purpose, we need a well-defined nonzero

mode (implying α > 1) and more small values than large

values (meaning we should have a right-skewed probability

distribution and thus β > α). Therefore, we selected α = 2
and β = 5.

The metrics evaluations were performed with a C program

using the GSL library for numerical analysis (random gener-

ation, FFT, interpolation and smoothing). Moreover, precision

and efficiency are guaranteed by the use of some classic

numerical technique such as Simpson integration and Overlap-

Add methods (for optimizing the convolution). Experimen-

tation shows that sampling each probability density with 64

values was largely sufficient with cubic spline interpolation.

On the scheduling side, random schedules are created by

repeating iteratively the following three phases: 1) choose

randomly a task among the ready ones, 2) assign it to

a randomly selected processor and schedule it eagerly, 3)

update the list of ready tasks. As stated before, HEFT, BIL

and Hyb.BMCT scheduling heuristics were also implemented

and validated with simple examples. Their performances on

larger graphs are excellent and consistent (a consequence of

the low degree of unrelatedness of the task graphs). The

evaluation of the makespan distribution (needed for most of

the metrics) was realized with Dodin and Spelde methods [10],

both gave similar results to the classical algorithm (which

assume the independence between random variables when

calculating the maximum). The simplest of these methods was

used (i.e., assuming independence of the random variables)

and its accuracy was measured for the worst cases, revealing

that for large graphs the independence assumption does not

stand anymore (see Figure 1). Indeed, we used two metrics

to evaluate the distance between the CDF of the makespan

using the independence assumption and the real CDF of the

makespan computed by running 100 000 realizations. The first

metric is the Kolmogorov-Smirnov (KS) that measure the

maximum distance between the two CDF and the second is
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a variant of the Cramér-von-Mises (CM) that measure the

distance in terms of area. Hence, although the independence

assumption shows some inaccuracy, we have found that a KS

value of 0.1 (which is mediocre) does not necessarily imply

that the correlation between metrics will be altered (especially

if the CM metric is correct, i.e. lesser than 0.1). Therefore

we have kept graphs having up to 100 nodes (those with

1000 nodes only serving as indications). The Figure 2 reveals

that even with poor KS and CM values, our approximation

is still close to the experimental realizations. Many metrics

calculations are based on the makespan distribution and are

thus straightforward to compute and to validate. For the

probabilistic metric, we have chosen δ = 0.1 and γ = 1.0003
in order to have values well distributed on the interval [0; 1]
(for different ULs, communication costs or processor weights

than the one we used here, these values should be adapted).

Measuring the slack is quite effortless, since it consists in

checking the equality between the bottom level of the first

task and the sum of the top level and the bottom level of the

last task. The overall program was checked to assure a correct

memory usage (including memory access and memory leak).

On the overall we have generated 52 cases with different

graphs type, number of nodes, target platform, uncertainty

level, etc. . . For each generated cases, we built 10000 random

schedules (2000 for those having n = 100) plus one sched-

ule for the 3 heuristics we have implemented (BIL, HEFT,

Hyb.BMCT). Even for the smallest graphs, the probability to

get the same random schedule twice is not high and these

quantities are sufficient for correlation measures. Each metric

is then compared to each other visually and with the statis-

tical Pearson correlation coefficient. Even if this correlation

measure only indicates the linear relationship between two

variables, it is sufficient for slightly curved set of points

as shown later. The final result is two matrices, one with

the average Pearson coefficients between each metrics, while

the other contains their standard deviation of the Pearson

coefficients.

VI. EXPERIMENTAL RESULTS

Among all the graphs we have generated, we have selected

three relevant ones that are typical of the general behavior

(see Figure 3, 4 and 5). On these figures, every 8 metrics

are compared to every other ones: leading to a matrix of 64

scattered elements. On the diagonal of the matrix is given the

name of each metric. On the lower part we plot the value of

each metrics for the random schedules and the schedules given

by the 3 tested heuristics. For instance, on Fig. 3, we plot the

value of the expected makespan against the entropy of the

makespan on the first column and third row (the makespan

is plotted on the x-axis and the entropy on the y-axis). For

easing the reading of the plot, we inverted three metrics in

order to have the optimization of the metrics corresponding

to its minimization (hence good results should be plotted in

the lower left corner of the corresponding plot). These metrics

are the slack, because our initial assumption is that a robust

schedule has high slack, and the two probabilistic metrics,

since we want to maximize the probability to be in an interval.

The inversion is done by subtracting the measured value to

the maximum that was obtained (for the slack) or to 1 (for the

probabilistic metrics cases). We did not invert the other metrics

because optimizing them consisted already to minimize them

(such as the makespan). Additionally, linear regressions were

performed on each plot, in order to visualize the correlation.

The upper part of the matrix contains the value of the Pearson

coefficients associated with each plot corresponding to the

metrics. The higher the correlation, the closer to 1 is the

absolute value of the Pearson coefficient. The minus sign for

correlation means that the metrics are negatively correlated (if

one metric increases, the other decreases). For instance we see

that, in Fig. 3 the average slack and makespan are negatively

correlated by a value of 0.64.

Since the Pearson coefficients show how the metrics are

correlated to each other, they are a good way to sum-up our

contribution. Hence, we have plotted in Figure 6 the matrix

with the Pearson coefficients of 24 different cases (the one with

graph of 100 nodes or less). In this figure we have plotted

the average value on the upper part of the matrix and the

standard deviation on the lower part. We see, for instance,

that the average lateness and the absolute probabilistic metric

are highly positively correlated (average Pearson coefficient of

0.981) with a very low standard deviation (0.022).



Fig. 3. Metrics correlation for the Cholesky graph of 10 tasks on 3 processors and UL=1.01. Lower part of the matrix: plot for 10000 random schedules
and the 3 schedules given by BIL, HEFT and Hyb.BMCT heuristics. Upper part of the matrix: value of the Pearson coefficients for the random schedules.

VII. DISCUSSION

We see immediately the correlation between a number of

robustness metrics that are the standard deviation, the differen-

tial entropy, the average lateness and the absolute probabilistic

metric. Furthermore, we divided the relative probabilistic by

the makespan. In this case, we see that it is also correlated

to the other ones. This is not plotted on the graphs but the

mean Pearson coefficient is 0.998 with a standard deviation

of 0.009 when compared to the makespan standard deviation.

This relation is common to every graph that was generated,

whatever the size, the UL or the type of graph was. The low

standard deviation of the Pearson coefficient also indicates that

the degree of correlation is almost always the same. Then,

these quasi-linear relationships suggest that the probability

density shape remains similar for every schedule. An expla-

nation is based on the use of the central limit theorem which

states that the sum of random variables having a finite variance

(as in our case) will be approximately normally distributed.

Indeed, despite the fact that the makespan is obtained by

performing a number of operations mixing sum and maximum,

the result distribution is really close to a Gaussian (however,

in some cases where the last node has many ancestors that are

finishing approximately simultaneously, this may not be true).

This hypothesis justifies the correlation between these metrics

in the case we can apply the central limit theorem. Since, it is

a convergence result, we analyze the number of sums needed

to satisfy the normal approximation in the worst case. Then,

we generated a special distribution (which is constructed with

a concatenation of Beta distributions, see Figure 7) and study

the accuracy of the approximation. We see on Figure 8 that

after only 5 sums with itself, our random variable is almost a

Gaussian and that after 10, the difference is negligible. Thus,



Fig. 4. Metrics correlation for a random graph of 30 tasks on 8 processors and UL=1.01. Lower part of the matrix: plot for 10000 random schedules and
the 3 schedules given by BIL, HEFT and Hyb.BMCT heuristics. Upper part of the matrix: value of the Pearson coefficients for the random schedules.

even for small graphs (with only 3 nodes on the critical path)

we can simplify the robustness evaluation by calculating only

one of the previously mentioned metrics.

A second observation can be made on the relation between

the makespan and the slack. If their correlation is not very

high and variable (the Pearson coefficient is -0.385 on the

average), it is always true that they are conflicting objectives in

the sense that optimizing one will produce a poor value for the

other metric. Intuitively, a schedule having a good makespan

will not have that much unused processor time and a schedule

with a lot of slack (or spare time) will not be efficient. The

average correlation is due to the existence of schedules with

significant makespan and small slack (take the example where

all tasks are scheduled sequentially on the same processor).

It is worth noting, too, that the three heuristics (BIL,

HEFT and Hyb.BMCT) give always the best makespan and

often the best standard deviation (and thus the best of the

three other linked metrics). Although the correlation is not

excellent and differs to some degree for each graph, there

is a noticeable relationship in the general case. To explain

this, we have to describe one phenomenon that arises when

we are evaluating the makespan probability distribution. The

random variable resulting from the sum of two others will

have a standard deviation roughly equivalent (equals for the

normally distributed random variables, and this is almost our

case, see the above argument) to the sum of the two firsts.

If we do not considerate the implications of the maximum

operator, a direct consequence is that the more tasks on the

critical path, the more significant is the standard deviation and

hence the final standard deviation will be high. As we modeled

the standard deviation to be proportional to the mean of task

duration, heuristics producing schedules with low makespan,



Fig. 5. Metrics correlation for a Gaussian Elimination graph of 103 tasks on 16 processors and UL=1.1. Lower part of the matrix: plot for 2000 random
schedules and the 3 schedules given by BIL, HEFT and Hyb.BMCT heuristics. Upper part of the matrix: value of the Pearson coefficients for the random
schedules.

hence having less task or shorter tasks on the critical path,

will have relatively less standard deviation than schedules with

large makespans. The imperfection of the correlation must be

due to the existence of the maximum operator.

One surprising result is the low correlation that exists be-

tween the slack and the other metrics, and specially the nature

of this correlation. Maximizing the slack seems indeed be a

conflicting objective with the robustness. This contradicts the

intuition that the more slack a schedule will have, the more it

will be able to absorb uncertainty. Additionally, some previous

work also proposed this metric for robustness. Hence, we

present some arguments that confirm this result. The Figure 9

exhibits four examples of schedule for a join task graph of N+
1 identical tasks having independent and identically distributed

(i.i.d.) random variables. Each schedule represents different

possibilities with the two objectives being the slack and the

standard deviation. The non-robust schedules (according to

standard deviation metric) are easy to interpret, which is to

say that almost any late task will have a repercussion on

the overall makespan. The schedule b) does have a good

robustness because only the three tasks on the critical path

will have an incidence on the makespan if one of those is

late. The schedule a) is more subtle, because it relies on the

characteristics of the maximum of two independent random

variables being similar. In this case, the resulting mean will be

greater than the original means and more importantly, the final

standard deviation will be lower than at least the maximum of

the two originals. A consequence is that the maximum of an

infinite number of i.i.d. random variables is equal to a Dirac

(which is completely robust) whose value is the maximum

possible value of these random variables. Then, the more tasks

we are waiting for, the more we will be sure that one is late,



Average
Makespan 0.767 0.762 -0.385 0.537 0.756 0.734 -0.467

0.107
Makespan
std. dev. 0.996 -0.460 0.480 0.999 0.982 0.148

0.109 0.002
Makespan

entropy -0.458 0.476 0.994 0.990 0.154

0.407 0.301 0.299
Average

Slack -0.873 -0.461 -0.444 -0.134

0.373 0.256 0.254 0.028
Slack

std. dev. 0.480 0.456 -0.084

0.098 0.001 0.002 0.291 0.248
Average
lateness 0.981 0.165

0.104 0.021 0.029 0.299 0.256 0.022
Abs.

probabilistic
metric

0.184

0.245 0.384 0.386 0.252 0.238 0.375 0.380
Rel.

probabilistic
metric

Pearson coefficients (top: mean, bottom: std. dev.)

Fig. 6. Average (top) and standard deviation (bottom) of the Pearson
coefficients for 24 different experiments
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and the more the schedule will be robust because we will

have more certainty on the expected maximum. With these

four examples, we see that the slack is not necessarily related

to the robustness. Moreover we see, as we already explain

why, that the slack and the makespan are conflicting objectives

and schedules with good makespan are often more robust.

These explanations are consistent with the measures showing

that slack and robustness are antagonist metrics (also showed

in [15]).

The motivation behind the standard deviation of the slack

metric comes from the fact that despite following a seemingly

pertinent intuition, the sum of all slacks is unable to take into

account every situation. Its standard deviation denotes a correct

distribution of every slack (a kind of robustness measure on a

sub-metric). However, it should be remarked that it does not

use the absolute value of the slack and thus a schedule with 0

slack will have a 0 standard deviation. Its correlation with the

slack confirms that low values only signify low slack. Then,

regarding the above discussion, even though experiments show

that it constitutes a slightly better metric than does the slack

alone, it does not add real significance to the study.

It was showed in [15] that the slack was related to two

robustness metrics (R1, the average lateness and R2, the ratio

of late schedule). However, it is conjectured that these metrics

were calculated in a way that was favorable to the slack

metric. Indeed, the base makespan to which was compared

the makespan of realizations was obtained by simplifying each

random variable to its means (which is an approximation

due to the convexity of the expected value operator for the

maximum of random variables). Thus R1 and R2 actually

measure the degree of this approximation which is lowered

when maximums are performed with random variables having

very different means. This case has more chance to happen

when there is some slack. Furthermore, and this may be the

main reason, the study was restricted to schedule with better

makespan than the one given with the HEFT heuristic which

reduces the cases of generality of the results. These hypotheses

would need to be deeply examined.



A last point deserving our attention is the consequence of

the maximum operator. It is stated that the maximum of two

i.i.d. random variables is more robust. In our case, the random

variables are not independent but the dependence depicted by

the task graph does not contradict this assertion. Therefore, it

would imply that a way to improve robustness is to increase the

similarity of the random variables on which we are making the

maximum (then, equilibrating the finish time of the ancestor

of every node).

VIII. CONCLUSION

Robustness is an objective that has led to a lot of different

metrics. However, there is no consensus on a wide-accepted

metric. Our empirical study was intended to determine the re-

lationship between a comprehensive set of robustness metrics

presented in the literature in the case of task graph scheduling

with precedence constraints. The first conclusion we can draw

is that several of them are equivalent mostly due to the impli-

cation of the central limit theorem. Consequently, the simplest

of these metrics, certainly the standard deviation, is sufficient

in most real cases and denotes the absolute dispersion of the

makespan, its lateness, etc. (which are all related). On a more

pragmatic aspect, we noticed that the makespan is almost

an efficient criteria for the robustness since HEFT, BIL and

Hyb.BMCT gave good results. However, since the correlation

between these two criterions is not perfect and especially

if we do not take a constant UL for a given graph (which

will break the equivalence between task duration mean and

standard deviation), we believe that the makespan could be a

misleading criteria. The last important point is the unsuitability

of the slack in our uncertainty model. We presented some

arguments to justify this observation and hypothesized that it

might be a better metric if the lateness is modeled otherwise

(e.g., by constant duration and a probability to be late) or with

variable UL or different probability densities.

Future works include:

• Extending the validity of the results to larger graphs with

greater and variable UL and with non-standard proba-

bility distributions (with some oscillations, for example).

Contrarily to what is stated in [9] which establish the

validity of the independence assumption when evaluating

the makespan distribution, we see that it is clearly not

the case for large graphs or/and with bigger ULs.

• Studying the correlation in the extreme cases (near the

Pareto front). Our results are indeed obtained with ran-

dom schedules which only give an indication of corre-

lation between the metrics. However, at some point (for

low makespan schedules) there could be some trade-off

to find.

• Validating the proposed model and the results obtained

from simulations by realizing experimentations on real

heterogeneous platform with concrete applications.

• Finding an efficient heuristic similar to classic list heuris-

tic based on the standard deviation of every tasks duration

rather than their mean or minimal value. This heuristic

should be able to produce good and robust schedules.
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