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Abstract: In this paper, a new framework for the tracking of closed curves and their
associated motion fields is described. The proposed approach enables a continuous tracking
along an image sequence of both a deformable curve and velocity field. Such an approach is
formalized through the minimization of a global spatio-temporal continuous cost functional,
w.r.t a set of variables representing the curve and its related motion field. Relying on an
optimal control technique, the resulting minimization sequence consists in a forward integra-
tion of an evolution law followed by a backward integration of an adjoint evolution model.
This latter pde includes a term related to the discrepancy between the state variables evolu-
tion law and discrete noisy measurements of the system. The closed curves are represented
through implicit surface modeling, whereas the motion is described either by a vector field
or through vorticity and divergence maps depending on the kind of targeted applications.
The efficiency of the approach is demonstrated on two types of image sequences showing

deformable objects and fluid motions.
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Méthode variationnelle pour le suivi couplé de courbes

et de mouvement

Résumé : Dans cet article, nous décrivons un nouveau procédé permettant de suivre des
courbes fermées et leur champ de mouvement associé. La méthode proposée réalise le suivi
continu d’une courbe déformable et d’'un champ de vitesse au cours d’une séquence d’images.
Le probléeme consiste & minimiser une fonctionnelle spatio-temporelle globale par rapport &
un ensemble de variables représentant la courbe et son mouvement associé. En s’appuyant
sur le principe du controle optimal, une loi d’évolution est intégrée le long de la séquence, puis
sa loi d’évolution adjointe est intégrée rétrogradement. Cette derniere équation aux dérivées
partielles est liée a un terme de distance entre les variables d’état fournies par la premiere
intégration et des mesures discrétes du systeme. Les courbes fermées sont représentées par
des surfaces implicites. Le mouvement est quant a lui décrit, suivant 'application, par un
champ de vecteurs ou par des cartes de vorticité et de divergence. L’efficacité de ’approche
est démontrée sur deux types de séquences d’images présentant des objets déformables et des

mouvements fluides.

Mots-clés : Controle optimal; modele dynamique; suivi de courbes; méthode variationnelle
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1 Introduction

1.1 Motivation and scope

Tracking the contours and the motion of an object is an essential task in many applications of
computer vision. For several reasons such a generic issue appears to be very challenging in the
general case. As a matter of fact, the shape of a deformable object or even of a rigid body
may change drastically when visualized from an image sequence. These deformations are
due to the object’s proper apparent motion or to perspective effect and 3D shape evolution.
This difficulty is amplified when the object becomes partially or totally occluded during
even a very short time period. Such a visual tracking is also a challenging issue when the
curve of interest delineates iso-quantities transported by a fluid motion. This last case is of
importance in domains such as meteorology or oceanography where one may wish to track
iso-temperature, contours of cloud systems, or the vorticity of a motion field. Here, the most
difficult technical aspect consists in handling the tracking of these features in a consistent
way with respect to appropriate physical conservation laws. Another serious difficulty comes
from the dimensionality of the state variables. In contexts involving for instance geophysical
flows, the targeted curve which represents clouds, sea color or temperature may exhibit high
topological changes and presents unsteady irregularities over time. Such behaviors make
difficult the use of a reduced parametric description of the curves. They can be only described
in spaces of very large dimension. In addition, the fluid motion of the regions enclosed by
such curves may only be accurately described by dense motion fields. The joint tracking
of a curve and its underlying motion requires as a result to handle a state space of huge
dimension. This curse of dimensionality remains true for general unknown natural objects

(either rigid or deformable) observed in complex environments.

1.2 Related works and their limitations

This context makes difficult the use of recursive Bayesian filters such as the particle filter [B],
since stochastic sampling in large state spaces is usually completely inefficient. Even if such a
filter has recently been used for fluid motion tracking [T4) [T5], this kind of techniques are only
applicable when the unknown state can be described on a reduced set of basis functions. Fur-
thermore, coping with a coupled tracking of curves and motion fields augments significantly
the problem complexity. For such an issue, numerous approaches based on the level set repre-
sentation have been proposed [12, [I8, 211, B2, B6, B9, @3, B5]. All these techniques describe the
tracking as successive 2D segmentation processes sometimes enriched with a motion based
propagation step. Segmentation techniques on spatio-temporal data have also been proposed
Bl OR]. Since level sets methods do not introduce any temporal consistency related to a given
dynamical laws — i.e. a tracking process —, they are quite sensitive to noise [33] and exhibit

inherent temporal instabilities. Tmplausible growing/decreasing or merging/splitting cannot
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4 Papadakis € Mémin

be avoid without introducing hard adhoc constraints or some statistical knowledges on the
shape [I3], 26, 2] and as a consequence dedicate the process to very specific studies. Besides
these approaches can hardly handle occlusions of the target or to cope with severe failures
of the image measurements (for instance a complete loss of image data, a severe motion
blur, high saturation caused by over exposure or failure of the low level image detectors). In
the context of fluid motion, a prior learning of the “fluid object” shape is in essence almost
impossible and the inclusion of fluid dynamical laws related to the Navier-Stokes equation is
essential to provide coherent physical plausible solution.

In A7, an approach based on a group action mean shape has been used in a moving av-
erage context. Contrary to previous methods, this approach introduces, through the moving
average technique, a kind of tracking process. This tracking is restricted to simple motions
and does not allow to introduce complex dynamical law defined through differential operators.
The explicit introduction of a dynamic law in the curve evolution law has been considered in
[B6]. However, the proposed technique needs a complex detection mechanism to cope with

occlusions.

1.3 Contribution

In this paper, we propose a technique which allows to handle both the tracking of closed
curves and the underlying motion field transporting this curve. The approach is related to
variational data assimilation technique used for instance in meteorology [, 25, B8]. Such
a technique enables, in the same spirit as a Kalman filter, a temporal smoothing along the
whole image sequence. It combines a dynamical evolution law of state variables representing
the target of interest with the whole set of available measurements related to this target.
Unlike Bayesian filtering approach which aim at estimating a probability law of the stochastic
process associated to the feature of interest, variational assimilation has the advantage to
allow handling state spaces of high dimension. From the motion analysis point of view, such
framework allows to incorporate a dynamical consistency along the image sequence.

The framework we propose provides an efficient technique to incorporate general dynam-
ical constraints into a coupled motion and segmentation process. As it is demonstrated in
this paper, the method is particularly well suited to the analysis of fluid motion and defor-
mations. This technique could also be useful for batch video processing. We provide some
results toward this direction even if efficient answers for such applications would need much

more works.

1.4 Outline of the paper

The paper is organized as follows. After a description of the data assimilation technique in

section Bl we introduce the proposed curve tracking method in section The method is

INRIA
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then extended for a joint motion and object tracking in section @l Two kind of applications
are studied here: fluid motion tracking in section EZJ] and natural object tracking in section
As it will be demonstrated in the experimental sections, such a technique enables to
handle naturally noisy data and complete loss of image data over long time periods without
resorting to complex mechanisms. This paper extends a conference paper which focus on

contours tracking [40].

2 Variational tracking formulation

In this section, we first describe the general framework proposed for tracking problems.
It relies on variational data assimilation concepts [4, 25, B8] proposed for the analysis of
geophysical flows. For a sake of clarity, we will first present a simplified formulation where
the state variable of interest obeys to a perfect evolution law. Let us note that this situation
corresponds to the most usual model used in geophysical domain for data assimilation. This

section will also be for us a mean to define properly the basic ingredients of the framework.

2.1 Data Assimilation with perfect model

Direct evolution model Let the state space V be an Hilbert space identified to its dual
space. Noting X € W(to,ty) the state variable representing the feature of interest, which is
assumed to live in a functional space W(to,t¢) = {X|X € L2(to,t5; V), X € L*(to,t5;V)}
and assuming that the evolution in time range [to; ;] of the state is described through a (non

linear) differential model M : Vx]tg,t;[— V, we get the following direct problem:

For a given n € V, let us define X € W(to, ty) such that:
O, X (t) + M(X (t),t) = 0, (1)

This system gathers an evolution law and an initial condition of the state variable. It is
governed by a control variable n € V), identified here to the inaccuracy on the initial condition.
The control could also be defined on model’s parameters [25]. The direct problem () will
be assumed to be well posed, which means that we first assume that the application ¥V —
V :n+— X(n,t) is differentiable Vt €]to,t] and secondly that given n € V and t; > to,
there exists a unique function X € W(to,ts) solution of problem () and that this solution
depends continuously on n (i.e: V — V : 5 +— X(n,t) is continuous Vt €]to,ts[). Let us
also assume that some measurements (also called observations) Y € O of the state variable
components are available. These observations may live in a different space (a reduced space
for instance) from the state variable. We will nevertheless assume that there exists a (non
linear) observation operator H : V — O, that goes from the variable space to the observation

space.

RR n° 6283



6 Papadakis € Mémin

Cost function Let us define an objective function J : ¥V — R measuring the discrepancy
between a solution associated to an initial state control variable of high dimension and the

whole sequence of available observations as:

t

T =5 [V =B 0.0l + il )

0

The overall problem that we are facing consists in finding the control variable n € V that
minimizes the cost function J. Norms || - |[r and || - || are respectively associated to the
scalar products (R~'-,-) , and (B~'., ~>v, where R and B are symmetric positive defined
endomorphisms of V. In our applications, R and B are respectively called, with some abuse
of language, the observation covariance matrix and the initialization covariance matrix. They
enable to weight the deviations from the true initial state to the given initial condition and

to quantify the exactitude of the observation model.

Differential model In order to compute the partial derivative of the cost function with
respect to the control variable, system () is differentiated with respect to 7 in the direction

on. The following differential model is obtained:

Given n € V , X (t) a solution of ([{l) and a perturbation dn € V,

X
dX = 86—577 € W(to, ty) is such that:
n

0pdX (t) + (OxM)dX (t) = 0,
In this expression, the tangent linear operator (xM) is defined as the Gateaux derivative of

the operator M at point X:

OXMX(D) = iy M(X(t) + ﬁd);(t)) — M(X (1) @

The tangent linear operator (OxH) associated to H may be defined similarly. Differentiating
now the cost function (@) with respect to 7 in the direction dn leads to:
aJ b X
(Gon) == [ (v ~m00. 0505500 e+ (X ()~ Xor),
877 \ to 677 R
ty 0X (5)
— _/ <(8XH)*R—1(Y - H(X)), 8_776n> dt + (B~'(X (to) — X0),0m),, -
to Vv

where (0xH)*, the adjoint operator of (OxH), is defined by the scalar product:
VeeV, Vye O (OxH) ,y)0 = (z, (OxH) y),, . (6)

Adjoint evolution model In order to estimate the gradient of the cost function .J, a first
numerical brute force approach consists in computing the functional gradient through finite

differences:
J(n+eex) — J(n)

€

Vaud =~ Jk=1,...p|,

INRIA



A wariational method for joint tracking of curve and motion 7

where € € R is an infinitesimal perturbation and {ey,k = 1,...,p} denotes the unitary basis
vectors of the control space V. Such a computation is impractical for space of large dimension
since it requires p integrations of the evolution model for each required value of the gradient
functional. Adjoint models as introduced in optimal control theory by J.L. Lions [30} 1]
and seminally applied in meteorology in [25] will allow us to compute the gradient functional
in a single integration. To obtain the adjoint equation, the first equation of model (@) is

multiplied by an adjoint variable A € W(to, ;). The result is then integrated on [to,tr]:

/tf@th(t), () dt + /tf<(8XM)dX(t), (D)) dt = 0,

to to

After an integration by parts of the first term and using the second equation of the differential

model @), we finally get:

~ [ 0D + @xb A, X (@), di = ). dX (1)) ~ Nt Gy (D)

to

where the adjoint operator (OxM)* is defined by the scalar product:

VeeV, VyeV (OxM) z,9),, = (x, (OxM)"y),, . (8)

In order to obtain an accessible expression for the cost function gradient, we impose that

A(ty) = 0 and we define the following adjoint problem:

Given n € V, t; > to and X (¢) solution of (), let us define A € W(to,ty)

such that:
(9)
—ON\(t) + (OxM)*A(t) = (OxH)*R™Y(Y — H(X (1)) Vit €lto, ty,
)\(tf) =0.

In the same way as for the direct model, we assume that given n € V, t;y > ¢y and X €
W(to, ts) solution of problem ({ll), there exists a unique function A € W(to,ts) solution of
problem (@). We also assume that this solution depends continuously on 7 (i.e: V —V :n+—

A(n, t) is continuous Vt €]tg, t7[).

Functional gradient Combining now equations [{), [@ and (@), we obtain:

0 1
<a—‘;,6n>v =~ (A(to), 0y + (B (X (to) — Xo), 6n),, -

The cost function derivative with respect to  finally reads:

27 _

e —\(to) + B~1(X (to) — Xo). (10)

As a consequence, given a solution X (¢) of the direct model (), the functional gradient can
be computed with a backward integration of the adjoint model [{@). The adjoint variable then
enables to update the initial condition, by canceling the gradient defined in ([0):

RR n° 6283
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X(to) = Xo + BA(to) (11)
where B is the pseudo inverse of B~! [A]. As the complexity of the adjoint model integration
is similar to the integration of the direct model, the use of this technique appears to be
very efficient for state space of large dimension. A synoptic of the overall technique is given

in algorithm (ZII). This first approach is widely used in environmental sciences for the

Algorithm 2.1 Perfect Model
Let X(to) = Xo.

@i
(ii

(iii

) From X (to), compute X (t), Vt €|to, ts] with a forward integration of system ().

) With X (t), realize a backward integration of the adjoint variable with the system (d).
) Update the initial condition X (to) with relation ().

)

(iv) Return to (i) and repeat until a convergence criterion.

analysis of geophysical flows [25, B8]. For these applications, the involved dynamical model
are assumed to reflect faithfully the evolution of the observed phenomenon. However, such
modelling seems to us irrelevant in image analysis since the different models on which we
can rely on are usually inaccurate due for instance to 3D-2D projections, varying lighting
conditions, or completely unknown boundary conditions. Considering imperfect dynamical
models now comes to an optimization problem where the control variable is related to the

whole trajectory of the state variable. This is the kind of problem we are facing in this work.

2.2 Data Assimilation with imperfect model

The dynamical model we consider now is defined up to a control function v € W(ty, tr, V),
where v(t) € V, and as previously up to a control variable on the initial state n € V. We
are now facing an imperfect dynamical system which depends on the whole trajectory of
the model control function and on the initial state control variable. Formally, the system

associated to an imperfect model reads:
Given (v,n) € W,V), let us define X € W(to,ty) such that

{ X (1) + M(X (£),t) = v(t) Vit €lto, 5], (12)
X(to) = XO + 7.

Cost function As previously, the objective function J : Wx ) — R gathers a measurement
discrepancy term and penalization terms on the control variables norms:
t t
L 2 1 2 1 [ 2
Jwm) =5 | Y -HX@@),n )k d+ 5l +5 [ vl d.  (13)
to to

The norm || - ||q is associated to the scalar product <Q*1~, > where (Q is a symmetric

V7
positive defined endomorphism of V' called the model covariance matrix. We aim here at

INRIA



A wariational method for joint tracking of curve and motion 9

finding a minimizer (n,v) of the cost function that is of least energy and that minimizes

along time the deviations between the available measurements and the state variable.

Differential model In the aim of computing partial derivative of the cost function with
respect to the control variables, system () is first differentiated with respect to (v,7) in the
direction (dv, on):

Given (v,n)e(W,V), X (t) solution of (&) and a perturbation (dv, dn)e(W x V),
X X
dX = %—Véu + 63_77677 € W(to, ty), is such that:

{ BdX () + (OxM)dX (t) = 6u(t) Vit Elto, ],

(14)

The differentiation of cost function (3] with respect to n has been previously computed and

given in equation (). The differentiation with respect to v in the direction dv reads:

<g_J 5V>W: -/ ”<y ~H(X), (aXH>§—fau<t>>Rdt +/ (00X (0) + VX W) 000

t t (15)
- */t f<(8xH)*R71(Y—H(X))v %_)V(ciy(t)>vdt - / (Q @X () + MIX(0)),60(1)), de.

to

Adjoint evolution model Similarly to the previous case, the first equation of model (IZ)

is multiplied by an adjoint variable A € W(to, ;) and integrated on [to, ¢ ]

ty ty ty
/t (0edX (1), A1)y, dt—i—/t (8XM(X(t))dX(t),)\(t)>v dt :/t (6u(t),)\(t)>v dt.

After an integration by parts of the first term and using the second equation of the differential
model (@), we finally get:

*/t (=0 + (OxM)"A(t), dX (8))y, dt = (A(ts), dX (1)), — (A(to), 0m)y, */t QA(t)ﬁV(t))v dt.

(16)

As previously, in order to exhibit an expression of the gradient of the cost function from the

adjoint variable, we define the following adjoint problem:
Given (v,n) € (W, V), t; > to and X (t) a solution of (), we define A € W(to, ty),
such that:

“OA) + (OxM)*A() = OxH*R-1(Y —H(X(8)) Vi elto ts],
)\(tf) =0.

(17)

RR n° 6283
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Functional gradient Combining equations ([H) and (), the functional gradient is given
by:

<g—i, 5y>w+<g—‘;, 5n>vz/tof<Q*1(atX(t)+M(X(t)), Sv(t)),, dt +(B~ (X (to)—Xo),on),,

f/t f<(8x]HI)*R1(YH(X(t))),g—idy(t)Jr %—;(577>v dt.
0 ———
AX (1)

Introducing ([[H) and [@), we obtain:
0J 0J
(o), (500,
Z/t f<Q_1(5tX(t)+M(X(t))—A(t% 0u(t)),, dt—(A(to), on),+ (B~ (X (to) — Xo), 1),

= (Q7(@:X +M(X) — X, 0v),,, + (=A(to) + B~ (X (to) — Xo0),0n),, -

The derivatives of the cost function with respect to v and 7 are identified as:

21— Q7NBX + M(X)) — A, (18)
21— _\(to) + B\ (X(to) — Xo). (19)

Canceling these components and introducing ) and B, the respective pseudo inverses of
Q! and B!, we get:
{ B X (t) + M(X () = QA(t) 20)
X (to) — Xo = BA(to).
The second equation still constitutes an incremental update of the initial condition. However,
the integration of this system requires the knowledge of the whole adjoint variable trajectory,
which itself depends on the state variable through (). This system can be in practice

integrated introducing an incremental splitting strategy.

Incremental function Defining the state variable as

{ X(t) = X(t) +dX(t) Vt € [to, tf], 1)

X(to) = Xo,

where X (t) is either a fixed component or a previously estimated trajectory of the state

variable, equation ([0) can be written as:

X () +M(X(t) = 0 vVt €]to, ty[, (22)

OdX (t) + 0 M(X (t))dX (t) QA(t) Vit €]to, ty]. (23)

The update of the state variable X is as a consequence driven by an incremental function dX.
The adjoint variable X is obtained from a backward integration of () and the trajectory of

X. The initial value of this incremental function is otherwise obtained from (@) and reads:

dX (to) = BA(to). (24)

INRIA
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Equations ([[2), @), ), @3) and @) give rise to a variational assimilation method with
imperfect dynamical model. A sketch of the whole process is summarized in Algorithm (22).

The algorithm principles are also schematically pictured on figure [l

Algorithm 2.2 Let X (tg) = Xo.
(1) From X (to), compute X (t), Vt €]to, t¢[ with a forward integration of system (Z2).

(il) X(t) being given, realize a backward integration of the adjoint variable with the system

@y.
(i) Compute the initial value of the incremental function ([Z4).
(iv) From dX(to), compute dX (t), Vt €]to, t¢[ with a forward integration of system (23).
(v) Update X = X +dX.

(vi) Return to (ii) and repeat until convergence.

L J

T I [
?\:%‘\I,/AV I, Is Ig I
1'I\'Nu uhsenuratiuns"JIlIr
Figure 1: Assimilation algorithm principle. This figure gives a synoptic of the overall principle of
the method. After an integration of the initial condition Xo (blue trajectory), a backward integration

of the adjoint variable relying on a measurement discrepancy (purple trajectory) enables to compute

a forward incremental correction trajectory (red curve) and so on...

RR n° 6283



12 Papadakis € Mémin

2.3 Additional ingredients

Before turning to the application of such a framework, let us note that the system we have
presented so far can be slightly modified and enriched considering a final condition or addi-

tional types of observations.

Final condition Symmetrically to the initial condition equation, a final target state can

eventually be added through an additional equation:

Given (v,n,w) € W, V,V), let us define X € W(to,1s), such that:
atX(t) + M(X(t),t) = V(t) Vit G]to,tf[,
X(to) = Xo +n,
X(ty) =X5+w,

(25)

with w € V an additional control variable. The cost function to minimize in this case
incorporates an extra penalization term on the norm of this new control variable:

t

1 [ 5 1, 5 1 (U 5 1 5
J(v,n,w) = 5 1Y = H(X (v (t), n, w,0))l[Rdt + S lnlls + 5 llv@llodt + Sllwllr.  (26)
to

to
The norm || - || is associated to the scalar product (F~1., ~>I. The differentiation of the

cost function (Z0]) with respect to v in the direction v is:

9 = /tf (OxH)*R™H(Y — H(X)) 90X dt + (F~' (X (ty) — Xy), 6w)
aw,yvf . X ,awwv ¥ £)iow),, .
(27)
The introduction of an additional equation on the final state modifies the final condition of

the adjoint model. It now reads:

Given (v,n,w) € (W, V,V), ty > to and X(t) a solution of ), let the adjoint variable
A € W(to,t5), be defined such that:
{ —O\(t) + (OxM)*A(t) = (OxH)*R™H(Y — H(X)) Vt €lto, ty],

Atp) = F~H (X5 — X(ty)).
(28)

Several observations If we consider a set of observations Y; € O;, i € {1,...,N} re-
lated to the state variable through the observation operators H;(V, O;), the measurement

discrepancy term of the cost function becomes:

N
1
5 DIV~ (X, ) (29)

i=1

INRIA
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The norms || - ||, involved in this term are associated to the scalar products (R;™",) 0.

Such a term also implies a straightforward modification of the adjoint model:
Given n € V, t; > to and X (¢) solution of (), let the adjoint
A € W(to, ty), be such that:
—0A() + (OxM)*A®) = 23, (OxHL)" Ry H(Yi — Hi(X) vt €lto, 1yl
)\(tf) =0.

(30)

2.4 Discussion on convergence

The convergence criterion introduced in Algorithm Bl can be defined from the norm of
the objective function gradient, namely |A(tp)| < «, where « is a given threshold. The
value of this threshold must be as small as possible, but above numerical errors due to the
discretization schemes used. An empirical test related to the numerical stability of the adjoint
operators discretization [, [[7] allows to determine this threshold value. Referring to Taylor
expansion, this test consists in checking that the ratio
B

— 1.

Computing the numerator through finite differences, whereas the denominator is obtained
by the adjoint model, the test enables to find for a given set of measurements the smallest
value of « that respects this limit.

In order to optimize the minimization process, different types of efficient gradient descent
strategies can be used (Conjugate Gradient, quasi Newton methods...). In this work, we use
a simple fixed step gradient descent.

As for the global convergence of the method, the minimization problem has a unique
solution if the functional J is convex, lower semi-continuous and if:

J(v,n) = oo.

1m
[lvllw—00,lInlly—o0

If the involved models M and H are non linear, the functional will be likely not convex. The
convergence (assuming that there exists a unique solution which depends continuously on the
control variable) may be realized only toward a local minimum which depends on the chosen
initialization. Hence, the initialization term is, in general, of great importance to obtain a
good solution. However, the control parameter on the initial condition equation enables to

model an incertitude on this initial state.

2.5 Relations with the Kalman filter and the Kalman smoother

We briefly discuss in this section the relations between the previous system and the Kalman

filter and smoother. As variational assimilation technique and Kalman filtering are based on
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very same kind of systems, both techniques share some similarities. Theoretical equivalence
between the two techniques have been proved for linear systems (both model and observation
operators are linear) [6, [29]. One of the main difference concerns the goal sought by each
technique. Kalman filter aims at computing recursively in time the two first moments of
the conditional distribution of the state variables given all the available observations [I] —
formally the sequence of past observations in case of filtering and the complete sequence
in case of smoothing — whereas a variational assimilation technique aims at estimating the
minimal cost trajectory in batch mode. In case of a linear Gaussian system, the first moment
of the filtering distribution and the solution of the variational technique are equivalent. This
is not the case for non linear systems. Furthermore, unlike Kalman filtering, variational
approaches do not provide any covariance of the estimation error. From a practical and
computational point of view, there exists also some differences between both techniques.
Kalman filtering requires at each iteration to inverse the estimation error covariance matrix
in order to compute the so called Kalman gain matrix. The dimension of this matrix is
the square of the size of the state vector, as a consequence Kalman filtering is unfeasible
for large state vectors. At the opposite, variational assimilation does not require such an
inversion. The estimation is done here iteratively by forward-backward integrations and not
directly through a recursive process like in Kalman filtering. This point makes variational

assimilation methods very attractive for the tracking of high dimensional features.

2.6 Batch filtering vs. recursive tracking

As already mentioned in the previous section, one of the main differences between Bayesian
filters and variational assimilation techniques relies in the underlying integration that is op-
erated. The forward recursive expression of the former makes Bayesian filter well suited to
real time tracking. They are on the other side only efficient for low dimensional state spaces.
The latter techniques are inherently batch processes as they are based on forward-backward
integration schemes. Unless relying on temporal sliding windows such a characteristic makes
their use difficult for real time tracking. Nevertheless, their abilities to cope with large dimen-
sional state spaces and with (highly) non linear differential dynamics make them interesting
for a batch video processing. Such analysis is interesting each time that one wishes to extract
from a sequence of noisy and incomplete data a continuous and temporal coherent sequence
of features with respect to a specified dynamics. As we will show in the following sections this
is of particular interest when one aims at analyzing fluid flows from image sequences. We also
believe that such a scheme could bring valuable information for the analysis of deformations
in medical images or in the domain of video processing for purposes of video inpainting, ob-
ject recolorization, morphing or video restoration. We give some hints about these potential

applications in the following.
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3 Application to curve tracking

Before dealing with the most complex issue of jointly tracking curve and motion, we will first
focus in this section on the application of the variational data assimilation to curve tracking
from an image sequence. In this first application, the motion fields driving the curve will be
considered as reliable external inputs of the system. For such a system, different types of

measurements will be explored.

3.1 Contour representation and evolution law

As we wish to focus in this work on the tracking of non parametric closed curves that may
exhibit topology changes during the time of the analyzed image sequence, we will rely on an
implicit level set representation of the curve of interest I'(¢) at time ¢ € [to,ts] of the image
sequence [39) HD]. Within that framework, the curve I'(t) enclosing the target to track is
implicitly described by the zero level set of a function ¢(x,t) : @ x R+ — R:

I'(t) = {z e Q] ¢(z 1) = 0},

where €) stands for the image spatial domain. This representation enables an Eulerian repre-
sentation of the evolving contours. As such, it allows to avoid the ad-hoc regridding processes
of the different control points required in any explicit Lagrangian — spline based — curve de-
scription. The problem we want to face consists in estimating for a whole time range the
state of an unknown curve, and hence of its associated implicit surface ¢. To that end, we
first define an a prior: evolution law of the unknown surface. We will assume that the curve is
transported at each frame instant by a velocity field, w(x, t) = [u(x,t), v(zx, t)]T, and diffuses
according to a mean curvature motion. We will assume that this evolution law is verified
only up to an additive control function. In term of implicit surface, the overall evolution law
reads:

o+ Vo -w—ek|Ve| =v, (31)

where £ denotes the curve curvature, and v(x, t) the control function. Introducing the surface

normal, equation [I) can be written as:

o+ (w-n—er)||Vo| =v, (32)

SM(g)

where the curvature and the normal are directly given in term of surface gradient:

. Vo Vo
= div [ —— d n=——.
" ’”(nwn) N ]

As previously indicated, the motion field transporting the curve will be first assumed to be

given by an external estimator. In practice, we used an efficient and robust version of the
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Horn and Schunck optical-flow estimator [34]. Concerning the covariance @ of the control
term involved in the evolution law, we fixed it to a constant diagonal matrix since it is rather
difficult to infer precise model’s errors. Two different ranges of value have been used. For
sequences where accurate motion fields can be recovered we fixed this value to a low value
(typically 0.005). At the opposite, for sequences for which only motion field of bad quality
are obtained this parameter has been set to a higher value (0.5) as we are facing in that case

a rough dynamic.

Tangent linear evolution operator To apply the variational data assimilation principles,
we must first define the expression of the Gateaux derivative of the operators involved. Using

equation (B2), the evolution operator reads in its complete form as:

- -~ . V¢
1(6) = Vo w —el| Vol (o0 ).

This operator can be turned into a more tractable expression for our purpose:

M) _ (39

M(¢) = Vo'w—¢ <A¢ - N

The corresponding tangent linear operator at point ¢ finally reads:

Vo V24 <V¢V¢T

Vo V26V 49 o

OsMp = Vo w —e|Adp —
¢ RZIE RZIE

- Id) V(Sqﬁ} (34)

Operator discretization Before going any further, let us describe the discretization schemes
we considered for the evolution law. This concerns the evolution operator, the associated
tangent linear operator and the adjoint evolution operator. We will denote by qﬁ, ; the value
of ¢ at image grid point (4, j) at time ¢ € [to;t¢]. Using @Il and a semi-implicit discretization

scheme, the following discrete evolution model is obtained:

PIEAt gt
Z’JTtZ’J +M¢§j t+AE 0.

Considering ¢, and ¢,, the horizontal and vertical gradient matrices of ¢, the discrete

operator M is obtained as :

t+AL i t ’ t
M, gttt [ (@i - —(B)is | grgrrar [ (@)is 7
¢’i,j¢” (( ty+At)i,J' ) b ||V¢f,j||2 (¢2)ig i (¢§c)u

where we used usual finite differences for the Hessian matrix V2¢ and a first order convex
scheme H] for the advective term V¢ - w. This scheme enables to compute the surface

gradients in the appropriate direction:
T _ . — .
Vi jwi; = maz(uij,0)($i5)s +min(uiz,0)(¢is)a +maz(vig,0)(¢is)y +min(vij,0)(¢i)y

where (¢), and (¢), are the left semi-finite differences, whereas (¢); and (¢), are the right

x

ones. The discrete linear tangent operator is similarly defined as:

(60421 )
0P A5 )

2¢ (A B)
9.. MS E"TAt =M 1) E_F-At_ o A4
8t b %5 i [Vl
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where A and B are:
A = dudy($eybe = Puady) + (8)° (Pyyde — Puydy),
B = 040, ($oyby — Guyi) + (62) (Sraty — Py @5)-
As for the iterative solver involved in the implicit discretization, we used a conjugated
gradient optimization. The discretization of the adjoint evolution model is finally obtained
as the transposed matrix corresponding to the discretization of the derivative of the evolution

law operator.

3.2 Initial condition

In order to define an initial condition, we assume that an initial contour of the target object is
available. Such contours may be provided by any segmentation technique or specified by the
user. Given this initial contour, we assigned a signed distance function to the implicit function
at the initial time. This initial condition is also assumed to hold up to some uncertainty.
More precisely, the value of ¢(x, o) is set to the distance g(x,'(tg)) of the closest point of a
given initial curve I'(tp), with the convention that g(a,T'(tg)) is negative inside the contour,
and positive outside. An additive control variable models the uncertainty we have on the

initial curve. This initial condition reads:

¢z, to) = g(x,I(to)) + n(z,1).
The covariance matrix B models the uncertainty on the initial state has been defined as a

diagonal matrix

B(x) = Id — e~ 9@t
This covariance fixes a low uncertainty on the level set in the vicinity of the initial given

curve. This uncertainty increases as soon as we move away from the initial contour.

3.3 Measurement equation

Associated to the evolution law and to the initialization process we previously described,
we have to define a measurement equation linking the unknown state variable and available
observations. In this work, the observation function Y (¢) is assumed to be related to the
unknown state function ¢ through a differential operator H and an additive discrepancy
function e:

Y(x,t) = H(p(x, 1)) + e(z, t). (35)
In this work we use two different measurements equation for the curve tracking issue. Let us

further describe the two options we devised.

3.3.1 Noisy curves observation

The simplest measurements equation that can be settled consists to define an observation

function, Y'(¢), in the same space as the state variable ¢, with the identity as measurements
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operator, H = Id. Sticking first to this case, we define the observation function as the signed
distance map to an observed noisy closed curve, g(a,T'(t)). These curves I'(t) are assumed to
be provided by a basic threshold segmentation method or by some moving object detection
method. Let us outline that such observations are generally of bad quality. As a matter of
fact, thresholding may lead to very noisy curves and motion detectors are usually prone to
miss-detection or may even sometime fails to provide any detection mask when the object
motion is too low. In this case, we define the covariance R of the measurements discrepancy
as
R(x,t) = Roin + (Rmaz — Runin)(Id — e~ 1Y@y,

This function has lower values in the vicinity of the observed curves (R,,i, = 10) and higher
values faraway from them (R4, = 50). When there is no observed curve, all the correspond-

ing values of this covariance function are set to infinity.

3.3.2 Image observation based on local probability density

The previous observations require the use of an external segmentation process which we would
like to avoid. To directly rely on the image data, a more complex measurement equation can
be built to deal with local probability distributions of the intensity function. This model
compares at each point of the image domain (2 a local photometric histogram to two global
probability density functions p, and p, modelling respectively the object and background
intensity distribution. These two distributions are assumed to be estimated from the initial

location of the target object. The measurements equation we propose in this case reads:

F(¢a I)(:Bat) = [1 - dB(pV;capo)]Q 1¢(z)<0 + [1 - dB(pV;capb)]Q ]-qb(z)ZO = 6((3, t)a (36)

where dp is the Bhattacharya probability density distance measure and py,, is the probability
density in the neighborhood of pixel  and ¢ is the function modelling the observation error.
By replacing the densities with intensity average, we retrieve the Chan and Vese functional
proposed for image segmentation [d]. The Bhattacharya distance is in our case defined as:

255

dp(p1,p2) = Vp1(z)p2(2)dz.

0
This distance equals one if the two densities are identical. Let us note that the discrepancy be-
tween the measurements and the state variable does not appear explicitly. The measurement
operator gathers here the measurements (the local intensity distribution) and the relation
between the measurements and the state variable (the appropriate Bhattacharya distance).

The corresponding linear tangent operator in the sense of distributions [9] is:

05F = (I = dp(pva po))” = [1 = di(pvas p))”) 8(0), (37)

where d(+) is the Dirac function. In this case the covariance associated to the measurements

error € has been fixed to a diagonal matrix corresponding to the minimal empiric local
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photometric covariance:

R(z,t) = E[Min((1 - dg(pv,, po))*, (1 = dp(pva. p3))*)]-

Finally, let us recall that for these first series of experiments the motion field transporting the

curve of interest is assumed to be provided through an external motion estimation technique

34].

3.4 Experimental results

The first example shown on Figure Bl concerns a meteorological image sequence of the Me-
teosat infra red channel. We rely here on the simplest measurement model built from noisy
curves. It is extracted through a simple threshold technique that select a photometric Infra-
red level line. Thus, we aim at tracking an iso-temperature curve. To demonstrate the
robustness of our technique, we assume that this observation is missing at some instant of
the sequence. The results and the observed curves are given in figure @l The obtained results
illustrate that the proposed technique keeps the adaptive topology property of level set methods,
and in the same time, despite missing measurements, maintains a temporal consistency of

the curves extracted.

INITIALIZATION OBSERVATION t, OBSERVATION t, NO OBSERVATION

ol TN 2

to to ty ts

OBSERVATION 't OBSERVATION tg NO OBSERVATION OBSERVATION t;,

d‘ﬁ. 0*425 0%
ﬁ

7 ty 1o t12
Figure 2: Clouds sequence. Top row: Sample of observed curves. Bottom row: Recovered results

superimposed on the corresponding image

To demonstrate the interest of the second observation model based on the local probability

density, we applied our assimilation technique with such measurements for the tracking of
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a car in the Hamburg taxi sequence. For this example, the initial curve is still given by a
threshold technique. The results are presented on figure Bl They show that the proposed
system enables to track accurately and in continuous way the changing shape of an object of

interest.

Figure 3: Hamburg taxi. Result of the assimilation technique with the photometric measurement

model based on local probability density.

We also tracked a curve delineating alphabetic letters, to further illustrate the interest
of the proposed technique. The measurements consist of a set of four binary letters images,
as shown on figure @l On the same figure, we plotted the results obtained at intermediate
instants. This toy example illustrates that the method provides a consistent continuous se-
quence of curves (with respect to a given dynamics) and how the curve moves progressively

between two distinct shapes.

AR B B||B|C

UHRYS

— — 1 _ 2 — 3 — _ 6 7
t=0 t=1 t=2 t=32 t t=1 t=2 t=1
_ 8 _ 9 _ _ 11 __ 12 __ 13 __ 14 _
t=2 t=2 t=2 t=14 t=1 t=1L t=1L t=3

Figure 4: Letter sequence. Result of the assimilation process with measurement model based
on local probability density. The curve is superimposed on the observed letter images at times

t=0,1,2,3.

We then applied the technique to the tracking of a running tiger. This noisy sequence
is composed of 27 frames and exhibits motion blur at some places. The measurements are
provided here by local photometric histograms. The initial curve that determines probability
density functions of the tiger and the background has been obtained with a simple threshold

technique. The results obtained are shown on figure For this sequence we also plotted
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on figure [ a set of segmentation obtained through a Chan and Vese segmentation process
[9) based on the same data model than our measurements model (eq. BGHET) together with

an additional penalization term on the curve length. As can be observed from figure Bl the

Figure 5: Tiger sequence. Result of the assimilation technique with the photometric measurement

model based on local probability density.

masks obtained with this spatial segmentation technique are of good quality for some frames.
They nevertheless appear to be unstable along time and would require a delicate tuning of
the parameter to obtained a consistent sequence of curves. At the opposite, the curves
provided by the proposed technique are more stable in time and consistent with respect to
the object shape and its deformation. Compared to traditional segmentation techniques the
assimilation techniques provides results which reflect in a more coherent way the topology and
the deformation of the target object along time. Due to the bad quality of the image sequence
and to the corresponding velocity fields, we can observe that it is nevertheless difficult for the
curve to fit precisely and in a continuous way to the photometric boundaries of the object.
To further illustrate the differences between the results obtained through assimilation
and successive photometric segmentations we finally run our method on a cardiac magnetic
resonance imaging sequence '. The purpose is here to track the left ventricle. The result of
the method are presented on figure[d As can be observed the target region approximatively
delineated in the first image by the user is well tracked. The successive deformations of the
region are recovered in a coherent continuous way. The sequence of curve delineates well the
evolution of a target region of interest specified at the initialization stage. In comparison,
the results obtained from the same initialization with the Chan and Vese techniques show

an immediate expansion of the target region to other regions of the image characterized by

Thttp://mrel.usc.edu/class/preview.html
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Figure 6: Tiger sequence. Successive segmentations obtained through a Chan and Vese level-set

techniques with a data model based on local probability density measurement and a Bhattacharya

distance (eq. BOHED).

the same photometric distribution (see figure B). Incoherent merging or splitting of regions
regarding the effective deformations of an object shape is maybe one of the main problems
met when running spatio-temporal analysis on the basis of consecutive single spatial analysis
(even chained together through their initializations). As for the computational cost of the
method, it appears to be similar to standard level set segmentation. For instance, for a 512
image sequence of 20 frames the technique takes around two minutes of computation on a
standard PC.

All the results shown here have been obtained considering as reliable external inputs
a sequences of velocity fields describing the motion of a region of interest. In complex
cases involving for instance occlusions, or situations for which the motion measurements
are erroneous, this first assimilation system would not give satisfying results. During an
occlusion, it is mandatory that the unobserved curve’s motion fields are inferred on the basis
of some evolution law. In other words, the curve’s motion field must also be tracked. To
that end, an extended state vector gathering both a motion field and a curve representation
we be must considered. These coupled variables have to be assimilated. This is the topics of

the following part of the paper.

4 Joint assimilation of motions and curves

The goal of this section is to show how the previous assimilation system can be enriched to

handle the coupled tracking of a target curve and its motion. The idea consists in augment-
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Figure 7: Cardiac magnetic resonance imaging sequence. Result of the assimilation technique
with the photometric measurement model based on local probability density. The initial target region

is shown in the first image of the top row.

Figure 8: Cardiac magnetic resonance imaging sequence. Successive segmentations obtained
through a Chan and Vese level-set techniques with a data model based on local probability density
measurement and a Bhattacharya distance (eq. BGHBZ). The initial target region is shown in the first

image of the top row.

ing the state variable with a motion representation. To that end, an appropriate motion
conservation law and motion measurements must also be added to the overall system. Two

very different cases can be distinguished: fluid motions and natural objects motions. As a
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matter of fact, fluid motions are ruled by known and precise dynamical law and concerns sit-
uations for which the tracked curve does not delineate a specific object with its own motion.
Fluid motion is a global entity that is almost independent from the curve location. This
case corresponds therefore to a weakly coupled assimilation problem. The case of motions
of natural objects in video is completely different. In this case, trajectories may changed
abruptly and the object’s dynamics cannot be described by generic physical models. As the
scene background and the object to track have their own motions, the curve delineating the
target object is usually the place of strong motion discontinuities. A good estimation of the
object motion or of the background motion is — at least in the vicinity of the object frontier—
essential. The quality of such estimation highly depends on the curve location. In this second
case we thus have to tackle a tightly coupled assimilation problem.

These two cases will be studied separately. In the following section, we will first focus on

the fluid motion case.

4.1 Fluid motion images

In several domains, the analysis of image sequences involving fluid phenomenon is of the
highest importance. Such analysis is particularly meaningful as image sensors have the
advantage to be non invasive and provide almost dense spatio-temporal observation of the
flow. Satellite images of the atmosphere and oceans are of particular interest in geophysical
sciences such as meteorology and oceanography where one wants to track cloud systems,
estimate ocean streams or monitor the drift of passive entities such as icebergs or pollutant
sheets. The analysis of fluid flow images is also crucial in several domain of experimental fluid
mechanics for the analysis of peculiar experimental flows or for flow control purpose. For all
the kinds of aforementioned applications and domains, it is of major interest to track features
transported by the flow along time. Such a tracking which remains to estimate Lagrangian
drifters for the structures of interest may be obtained from deterministic integration methods
such as the Euler method or the Runge and Kutta integration technique. These numerical
integration approaches rely on a continuous spatio-temporal vector field description and thus
require the use of interpolation scheme over the whole spatial and temporal domain of interest.
As a consequence, they are quite sensitive to local errors measurements or to inaccurate
motion estimates. When the images are noisy or if the flow velocities are of high magnitude
and chaotic as in the case of turbulent flows, motion estimation tends to be quite difficult
and prone to errors. Another source of error is inherent to motion estimation techniques (see
for instance [2] for an extended review on motion estimation techniques). As a matter of
fact, most of the motion estimation approaches use only a small set of images (usually two
consecutive images of a sequence) and thus may suffer from a temporal inconsistency from
frame to frame. The extension of spatial regularizers to spatio-temporal regularizers [, KT,

E9) or the introduction of simple dynamical constraint in motion segmentation techniques
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relies mainly on crude stationary assumptions. Dedicated fluid motion estimators introduce
adequate data terms [I0], relevant basis functions [I4] [T6] or higher order regularizers [I0,
22, B4), in order to accurately estimate motion flows. However, these approaches do not
include any dynamical constraint encouraging the preservation of conservation laws. Nothing
warrants the solutions from being inconsistent with respect to the physical dynamical laws
that the flow must obey.

As we will show it in the following section, the inclusion within the variational assimilation
framework of some conservation laws combined with crude motion observation enables to

improve notably the quality of the recovered dense motion fields.

Basic definitions and relations For fluid flows, the Navier-Stokes equation provides a
universal general law for predicting the evolution of the flow. In this work, the formulation

of the Navier-Stokes on which we will rely on, uses the vorticity ¢ and the divergence ( of a

motion field w = [u,v]T:
gzvi.w:@_@’
dr Oy (39)
g—V.w— @J’_@
N Oz Oy’

The vorticity is related to the presence of a rotating motion, whereas the divergence is related
to the presence of sinks and sources in a flow. Assuming that w vanishes at infinity?, the
vector field is decomposed using the orthogonal Helmholtz decomposition, as a sum of two

potential functions gradient:
w=VU4+ Vo, (39)

The stream function ¥ and the velocity potential ® respectively correspond to the solenoidal
and the irrotational part of the vector field w. They are linked to the divergence and vorticity
maps through two Poisson Equations: £ = AV, ¢ = A®. Expressing the solution of both

equations as a convolution product with the Green kernel associated to the 2D Laplacian

operator:
U=_G=x*E
(40)
d=Gx«(,
the whole velocity field can be recovered knowing its divergence and vorticity:
w=V"Gx{+VGx(=Ha(( () (41)

This computation can be very efficiently implemented in the Fourier domain.

2In order to restrict the computation to the image domain, a divergence and curl free global transportation
component is removed from the vector field. This field is estimated on the basis of a Horn and Schunck

estimator associated to a high smoothing penalty [I].
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Fluid motion evolution equation In order to consider a tractable expression of the
Navier-Stokes equation for the tracking problem, we rely in this work on the incompressible

vorticity-velocity formulation of the Navier-Stokes equation:
O +w - VE=v:AL. (42)

This formulation states that the vorticity is transported by the velocity field and diffuses
along time. For the divergence map, it is more difficult to exhibit any conservation law. We
will assume that it behave like a noise. More precisely we will assume that the divergence
map is a function of a Gaussian random variable, X, with stationary increments (a Brownian
motion) starting at points, x, of the grid where the initial velocity field admits a non null
divergence. It can be shown through Ito formula and Kolmogorov’s backward equation, that

the expectation at time ¢ of such a function, u(t,z) = E[¢(X )| X ] obeys to a heat equation
B3:
Oru — veAu =0,

(43)
u(0, ) = ((x).

According to this equation, we indeed make the assumption that the expectation of the di-
vergence at any time of the sequence is a solution of a heat equation (i.e. it can be recovered
from a smoothing of the initial motion field divergence map with a Gaussian function of
standard deviation 2,/v¢t ). The curl and divergence maps completely determine the under-
lying velocity field. Combining the motion equations @) and E3) with the curve evolution
law (B3]) proposed in the previous section leads to a complete dynamical model for the state

function X = [¢, &, (] gathering motions and curve descriptors, up to a control function v:

(b V¢ W — € (A¢ - VT¢5VV(;|T2V¢)
C 7I/<A§

The first component of this evolution law is discretized in the same way as before. The
vorticity-velocity equation is discretized following a total variation diminishing (TVD) scheme
proposed in [23, 24] and associated to a third order Runge-Kutta integration [6]. This
discretization is described in appendix [Al The divergence equation is integrated through a
stable implicit scheme. The motion field is updated at each time step in the Fourier domain
with equation (Il). Through this whole non-oscillatory scheme, the vorticity-velocity and

divergence equations can be efficiently simulated.

Fluid flows observations As fluid motions are assumed to be continuous and defined over
the whole image domain, we will assume that an observation motion field w,ps is available.

This motion field can be provided by any dense motion estimator. In this work, a dense
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motion field estimator dedicated to fluid flows is used [I0]. Referring to equation [{Il), the
observation operator for the motion components H(w) is defined as wops = Hg (¢, ). This
operator links the motion measurements wyps to the state variable x = [¢ ,f]T (where x
is the compact notation for the div-curl coordinates). The observation equation for the
motion components finally reads Y (x) = Ha(x). The observation operator is linear w.r.t
X, its linear tangent operator is itself. Nevertheless, as this operator is expressed through a
convolution product, the expression of its adjoint dy H¢; is not trivial. Following Appendix
it is defined as:
O H 5 (w) = —Ho (w).

The different covariance matrices corresponding to the motion components and involved
in the dynamic, in the initialization and in the observation equations have been fixed to
diagonal matrices with constant values (typically B = 0.1 and R = 10). As the dynamics is
assumed to be quite accurate, the model covariance has been fixed to a low value of @ = 0.005
for all the fluid image sequence. The computational cost of this process is smaller than the
optical flow computation on the whole sequence and it can be seen as a post-processing
of fluid dense motions. Otherwise, as the system we settled for the fluid motion case is
weakly coupled, the assimilation of the curve and motion components do not have to be done
simultaneously. Since the motion components do not depend on the curve components, they
are assimilated first. Once the sequence of velocity fields have been analyzed, the curve are

in turn assimilated.

4.2 Natural object tracking

As explained in the introduction of the previous section, the situation of natural objects
either rigid or deformable is completely different. Hence, the curve and its motion are tightly
coupled. We have here to deal with an interlaced problem which can only be solved in a joint
way.

No universal physical law can be stated for natural objects observed from videos. There-
fore, it is always a great difficulty in tracking applications to design a general law describing
their evolution with accuracy. General rough models such as constant velocity or constant
acceleration dynamic models are commonly used [20]. This work also relies on that type of
models. We consider two kinds of motion representation: a dense motion model related to

the whole image and an affine velocity directly linked to the trajectory of the tracked object.

4.2.1 Dense motion

Evolution law for dense motion field We will assume that the targeted object move

with a constant velocity along its trajectory, up to an additive control function. In differential
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form this reads:
dw

As w = [u, v]T, the evolution law for the dense motion fields is:

{ Ou+ Vu-w = 1y, (46)

v+ Vu-w = v,

where v, and v, are control function whose associated covariances are set to constant diagonal
matrices. As the dynamic is here very likely approximative we used on the different sequence
involved a value of Q, = @, = 0.5 for these coefficients. Combining the previous evolution
law of the curve component (B3]) and the motion dynamic ([HH) leads to a coupled evolution
model for the state function [¢, u,v]T:
T 2
¢ V¢~ws<A¢%¢lf’y¢>
O |u| + V- w =v. (47)

v Vov-w

To estimate the whole trajectory of the velocity field, it is necessary to define appropriate

motion measurements.

Dense motion observations Accurate dense motion observations may be provided by
optical flow technique at each frame of the sequence. Nevertheless, in case of occlusions,
these motion measurements do not describe the tracked object trajectory and must not be
taken into account. We describe in the following the mechanism on which we resort to
properly assimilate a complete trajectory of velocity fields. Assuming that the whole object
is visible on the two first frames, the initial velocity field estimated between these two frames
constitutes a good representation of the initial object’s motion. In the following frames, in
order to only consider velocity measurements related to the object of interest, it is necessary to
define informative values for the covariance matrix associated to the motion measurements.
High confidence values must be set at points where the object is visible (and low values
where it is hidden). To fix these values, two distinct cases depending on the kind of contours

observation we are dealing with must be considered separately.

- Noisy curve observations model: In such a measurements model B3], noisy or possi-
bly inaccurate curves are assumed to be available when the whole object or some part
of it is visible (i.e Yops(x,t) < 0). This provides area of the image where the object is
visible. The motion observation covariance matrices can then be defined through the

level set surfaces corresponding to these observed curves:

R(mv t) = Rmzn + (Rmaz - Rmin)lYobs(w,t)ZO-
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Hence, the dense motion observations are preponderantly considered only in regions
where the object is visible. In our applications, we systematically chose R, = 10 and
Ryar = 50.

- Image observation model: When the measurements model relies on image local his-
tograms ([B32), the situation is more problematic as no curves are directly observed.
We also want to avoid the use of an external segmentation process to infer occlusion sit-
uations. Considering the object and the background reference histograms (p, and py),
it is possible to define adequate confidence values for the motion observation covariance

matrix. We propose to fix them as:

R(m; t) = Rmzn+ (Rmam - Rmin)ldB (Vg P0)<dB(PVg ,0b)" (m (48)

Thus, low values (Ryn, = 5) are associated to points that likely belong to the back-

ground, whereas higher confidence values (R;,q. = 20) are related to the other points.

4.2.2 Affine velocity

In some cases, it is sometimes sufficient to rely on a reduced parametric representation of
the object’s motion. We now consider an affine velocity directly related to the target. In
the following, we will assume that the apparent motion over the area delineated by the curve

follows an affine parametric motion, i.e:
w(z,t) =Stz +T(t) Vee Qo(z) <0, (49)

where S(t) is the rotation, divergence and shear matrix and T'(¢) is a translation vector.

Evolution law for affine velocity Assuming that the targeted object move with a con-
stant velocity along its trajectory, up to a control function, as defined in equation [{EH), we
obtain:

(0:S(t) + S*(t)) x + O, T(t) + SH)T(t) = v Yz € Qg(z) <O. (50)

As this equation must be respected for all points inside the object, we get the following

system of equations:

{ 8, 8(t) + S%(t) = vs, 1)

OT(t) + S(t)T(t) = vr,
where vg and v are control functions with constant diagonal covariance matrices (we typi-
cally chose Qg = Qr = 0.01). If 8™ *(t) exists, then a closed form solution of the system of
equations ([BIl) exists:

{ S(t) = (57" (to) ~Id 1) 52)
ST (to)T (to)

S
—~
~
~—
I
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These solutions can be readily used for the forward integration of the motion components in
the assimilation process. Combining the curve evolution law (B3] and the previous motion
dynamical law (&) leads to a coupled evolution model for the state function [¢, S, T]T:
Vé-w—c(Ap_ Y 6926vs
¢ ¢-w 8( ¢~ “Tqvar )
Oy | S|+ S%(1) =v. (53)

r S(OT (1)

Let us explain now the different measurements Yg and Y7 associated to this evolution law.

Affine velocity observations As for the dense motion model, it is essential to have some
significant motion measurements at one’s disposal. Both measurement models should still be
distinguished.

- Noisy curve observations model: For the measurements model B3, the observed
contours enable to perform a robust parametric motion estimation inside the region of
interest. Such a process directly provides the components of the observation function,
Ys and Y7. The values of the least square residuals are used to fix the corresponding
covariance values [37]. When no curve are provided or if the area delineated is to small,
no motion estimations are considered and the corresponding values of the observation

covariance matrix are set to infinity.

- Image observation model: When the measurements model relies directly on image local
histograms ([B32), the only region available on which it is possible to get motion
estimates is the one specified at the initial time as the initial condition. This single
rough parametric motion measurement reveals to be generally unable to anticipate
sufficiently well the object’s trajectory on the whole sequence during the first forward
step. For such a measurement model, we have specifically considered a final condition
on the object contour as an additional equation of the assimilation system (see section
E3). Assuming that the object is visible (at least partially) both on the initial and final
image of the sequence, motion measurements associated to these two object locations
allow us to assimilate roughly as a first guess the object motion. Latter on, the current
sequence of curve estimates provides support to run a robust parametric estimation and
thus enables to refine the motion measurements. More precisely, the motion estimation
is run only on points of the support region associated to high confidence covariance
value. The covariance values are fixed in the same way as defined in EX). Such a

recipe avoids to perform motion estimation on occluded parts of the target.

Let us remark that the computational cost of the affine velocity assimilation is very small in
comparison with the dense motion case. Indeed, the motion state variables are only (2 x 2)
matrix and (1 x 2) vector, so the assimilation process for affine motion is instantaneous. As
for the computational cost of a dense velocity field assimilation it remains smaller than the

computation of the optical flow on the whole image sequence.
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4.3 Results

Fluid motion In order to assess the benefits of fluid motion assimilation we first applied
the motion assimilation without curve tracking on a synthetic sequence of particles images
of 2D turbulence obtained through a direct numerical simulation (DNS) of the Navier-Stokes
equation [8]. For this sequence composed of 50 images, we compare in figure [l the vorticity

map of respectively the actual, the observed and the assimilated motion fields.

c) t
— A3 N ¥ " A
-, - d - P\ S
. X ’ S SRS LSO T PO
a - . - N
. - - L
. A > D /- - NL
y s ™ .. ". '. i : . ’
o % ¢ . . ’ ~ -
- A
d) ) B LY '
t=10 t=30 t=50

Figure 9: 2D Direct Numerical Simulation .a) Particle images sequence. b) True vorticity. ¢)

Vorticity observed by optic flow estimator. d) Assimilated vorticity.

It can be observed that the assimilation not only denoises the observations, but also allows

to recover some small scales structures thanks to the vorticity-velocity dynamical model. The
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motion measurements have been provided by a dedicated optic flow estimator [I0]. To give
some quantitative evaluation results, we present in figure [l comparative errors between the
ground truth and the obtained results. On this example, the assimilation process enables to

significantly improve the quality of the recovered motion field (about 30%).
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Figure 10: Comparison of errors. The red curve outlines the mean square error of the vorticity
computed by the optic flow technique on the 50 images of the turbulent particles image sequence.
The green curve exhibits the error obtained at the end of the assimilation process. The assimilated

vorticity is then closer to the reality than the observed one.

To demonstrate the usefulness of the joint tracking of curve and fluid motion, we apply
the complete assimilation process on Infra-red meteorological sequences showing hurricanes.
The first sequence corresponds to a cyclone observed over the Indian Ocean. The second one
shows cyclone Vince observed over north Atlantic.

The figure [ shows for the cyclone over the Indian Ocean the curve location on the final
image of the sequence obtained considering respectively the motion fields as a deterministic
inputs of the system (as in the first part of this paper) and considering a joint assimilation

of fluid motion. As it can be observed from the location of the curve on the last image of the

Figure 11: Final position of the curve on the 19th frame. Left: Initialization at the first
frame. Middle: Final curve position without fluid motion assimilation. Right: Final curve position

with a joint fluid motion assimilation.

sequence, the joint curve and motion assimilations enables to recover a curve location that
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better fits the hurricane. The iso-temperature curve is much better tracked along time when
considering a coupled tracking.

Complete results in term of curves and vorticity maps are presented on figure [ for the
cyclone over the Indian Ocean. Column (a) shows the different photometric level lines used
as curve measurements, whereas column (b) exhibits the different vorticity maps of the initial

motion fields used as motion measurements. As it can be observed from the plotted vorticity

t=1
NO OBSERVATIONS

t=6

t=16
NO OBSERVATIONS

t=21

(a) (b)

Figure 12: Cyclone sequence. (a) Sample of observed curves. (b) Sample of observed vorticity

maps. (¢) Recovered curves. (d) Vorticity maps corresponding to the recovered motion fields.

maps, these measurements constitute very noisy motion observations for the system we want
to track. As we used a fast motion estimator, the motion observations present a lot of
temporal inconsistencies with non plausible discontinuities artifacts. The photometric level-
lines are also quite noisy. To further demonstrate the ability of the proposed method, these
photometric level lines have not been extracted for each images (these level lines have been
extracted only every three images along the sequence). The estimated curve superimposed

on the initial image sequence and the recovered vorticity maps are respectively shown on
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columns (c) and (d). We can notice that the motion fields recovered after assimilation are
much more coherent from a physical point of view.

The results presented in figure [[3 shows the final curves recovered for the Vince cyclone.
This sequence is composed of 19 images obtained the 9" of October 2005 from 00H15 to
4H45.We thank the Laboratoire de Météorologie Dynamique for providing us this sequence.
For this image sequence, we rely on the local photometric distributions measurement model.
That is to say we aim at tracking here a temperature distribution of reference defined from
an initial mask on the first image. The joint assimilation of motion and curve enables to

track perfectly the cyclone.

t=12 t=14 t=16 t=18
Figure 13: Vince cyclone infra-red sequence. Result of the assimilation technique with the

photometric measurement model based on local probability density.

Natural objects To demonstrate the potential benefit of a joint assimilation of closed
curves and their motions for natural video sequences, we show results on two sequences
exhibiting long term total occlusions.

As a first result we show the tracking of two curves representing the photometric level lines
of two cars in a video sequence of 27 frames. As can be observed, one of the car is occluded
by the other during a long time period. In this case, we rely on an affine parameterization to
describe the the objects motion. The motion measurements are given by motion estimates
within the areas delineated by the observed curves when they are available. The level lines
corresponding to the curve measurements are shown on the column (a) of the figure [l
Obviously, there is neither curve nor motion measurements corresponding to the white car
during its occlusion. Two level functions (one for each object) have been used in this example.
Column (b) of figure [ present the curves recovered for the two cars. As can be observed
these level lines are of bad quality and do not really described a precise boundary of the
objects of interest. Let us note that even if the white car does not have a constant velocity
during the occlusion, the assimilation process enables to predict quite well its photometric

level line.
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Figure 14: Car sequence 2. (a) Sample of observed photometric level lines. (b) Curves after

joint assimilation.

For the second experiments we present results obtained on a sequence of 22 frames showing
a surfer into a water pipeline. In this sequence, the surfer, our target object, disappears
into the pipeline during 15 images. The target is therefore not visible during 70% of the
sequence. For this sequence we have used the local photometric probability distribution
measurements. The reference distribution of the surfer is deduced from an initial curve
obtained through the selection of a given photometric level line. This first initial curve which
only describes inaccurately the surfers contours is presented on figure [ Dense motion
fields have computed through an optical flow estimator on each frame of the sequence. These
motion measurements have been assimilated with a constant velocity dynamical model and
image adapted covariance matrix as described in section ZZTl). The recovered curves are
presented in figure [A As can be observed, the joint tracking of a curve and of its motion
enables to recover a coherent position of the surfer during the whole sequence. This example
exhibits the ability of the proposed method to use the complete set of measurements to provide

a global reconstruction of the trajectory of a curve and of its motion.

5 Conclusion

In this paper, a new framework allowing a coupled tracking of curves and vector fields has

been presented. The proposed technique is related to variational data assimilation technique
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t=12 t=18

t=19 t=20 t=21

Figure 15: Surfer into a water pipeline. The only curve available is the initialization, shown on
the first image of the figure. The tracking results are presented for different frames of this 22 frames

sequence.
and enables to handle in batch mode the reconstruction of the trajectory of a features leaving

in spaces of very large dimension.

In a similar way to a stochastic smoothing the estimation is led considering the whole set of
the available measurements extracted from the image sequence. The technique is nevertheless
totally different. It consists in integrating two coupled pde’s representing the evolution of
a state function and of an adjoint variable respectively. The method incorporates only few
parameters. Similarly to Bayesian filtering techniques, these parameters mainly concern the
definition of the different error models involved in the considered system.

For the tracking of natural objects in video, the main trouble concerns the velocities. If
no coherent motion can be computed on the whole sequence as a first guess, the tracking
algorithm will fail. Actually, a solution could be to rely on particle filtering, in order to find
a first coherent motion. In fluid motion case, the proposed technique gives very good results.
It enables to enforce the motion field to respect some physical conservation and improve

consequently the consistency of the solution.
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Concerning applications, we believe it is of major interest when one aims at analyzing
the deformations along time of entities enclosed by a curve. For instance, such an analysis is
informative in environmental sciences for analyzing, representing or understanding complex
phenomena. These phenomena may be only partially observable and subject to occlusions.
In video analysis, such a framework could be interesting for video post-processing of moving
objects, such as object removal, object based video editing, off-line structuring, indexing of

video databases.
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A Vorticity-velocity formulation discretization

Discretizing the vorticity-velocity equation [#Z) requires a careful handling. In particular, the
advective term V& -w must be treated cautiously. A lot of non-oscillatory schemes based on
conservation laws have been developed to solve this problem [19, 24 B5]. Such schemes aim at
considering the cell average and discretizing the value of the advective term at the boundaries
of the cell with more accuracy than do classical finite difference schemes. Indeed, the gradients
of the transported quantity are computed with high orders reconstructions in order to limit
the slops and prevent from inappropriate numerical amplifications. The ENO (Essentially
non-oscillatory) or WENO (Weighted ENO) are the most used schemes for reconstruction
27, B6]. To discretize the advective scheme, the velocity must be considered according to its
local directions. The conservation laws are respected with the use of monotone flux; well-
known methods are Godunov and Lax-Friedricks flux. These techniques enable the scheme
to be Total Variation Diminishing (TVD). It means that the total energy of the transported
quantity can not increase along time. Hence, the TVD property prevents from numerical
explosions and also assures that the shocks will be preserved. All these methods are well
detailed in [6]. In our work, the reconstruction of the vorticity on the cell boundaries is
realized through a second order method [28] based on a Min-Mod limiter:

Az - Az
Eha, =Gy — 5 Gy and & =&+ (&)

: Y (Cij —&i-15) &iv15 —&i—15 o (Git1,5 — &ij)
with (£2):,; = Minmod (2 . , Az ,2 o ,

and Minmod(x1,- - ,xn) = sup;(z;) if z; <0 Vi
0 otherwise
The terms fjﬂ , and § .1 are computed in the same way. As the Mid-Mod limiter choose
JT Y WJT Y
the smallest slope, the reconstructed values of the vorticity on the cell boundaries limit the
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variation of the spatial gradients. To deal with the advective term, we use the following
semidiscrete central scheme [23], 24]:

95 Hﬁ%,j(t)_Hff%,j(t) sz%(t)_Hy' 1 (1)

1i—5
=— — D, 54
ot Az Ay t el (54)
with a numerical convection flux derived from the monotone Lax-Friedricks flux:

. “z’-o-%,j(t) " _ |ui+%,j(t)| i _

w050 vy -2 e e, )
v, . 1(t) [v; ;41 (1)]
Y _ hjtg + - 7 B+ 3 + —
1030 = =5 ey + ] - S~

This second order, semidiscrete central scheme is weakly dissipative and follows a TVD
property [23, 28]. The intermediate values of the velocities are computed with a fourth-order

averaging:
_ —igo (1) 4 uag 5 (8) + 9w (8) — wimn,5(t)
Uipdj (t)= 16
(56)
_ igra(t) + 9via (t) + v (8) — viy 1 (8)
Yij+3 (t) = 16 :
The linear viscosity A& is approximated by the fourth-order central differencing;:
D () = 625 () +168i41,(t) — 3085 (t) + 166i-1,(t) — &i—2,5(2)
V) (t) - 2
12Ax (57)
4 Z8igra(t) £ 168 541 (8) — 308:, () + 168 51 (1) — &ij—2(t)
12A42 ’

The time integration is realized with a third-order Runge Kutta scheme, which also respect
the TVD property [46].

B Fluid motion adjoint observation operator

In order to have more compact notations, let Z(x) = [¥(x), ®(x)]” denotes the potential
coordinates. These coordinates are linked to the div-curl coordinates, x(z) = [£(x),((z)]"
through relation (E0):
Z=Gxx. (58)
Besides, relation [{Il) reads immediately:
w=V*+-Z and v=V.Z. (59)

Similarly to what has been done before, the vector field Z may be written on the basis of the
Helmholtz decomposition as the sum of the gradient of two scalar functions. Relation (B3
allows us to write both motion components as solutions of two Poisson equations. Expressing

these solutions through Green kernel enables to write the vector field Z as:

Z=V"'Gxu+VGxv=Hcg(u,v). (60)
It can be can noticed that the same operator is involved in (@) and (). These last notations,
which link the stream function and the velocity potential to the vector field, will be useful in

the following.
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Property B.1 Let w? and w® be two vector fields belonging to C?(2) N L%(Q), where
is a bounded set of R? with border 0). Assuming that the components of both vector fields

admit Dirichlet boundaries conditions, i.e uB|sq = v4B |50 = 0,
then <wA,wB> =— <ZA,XB> =— <XA,ZB>.
Proof:

A, p D u?
(w?,w?) = l ] v.z"B

= u?(®F = U}) + 04 (@] + U2) (Integration by parts)

= 0B — u’;) — B (u + v;) + Boundary terms = 0

)

Using this property, the adjoint of the linear tangent operator can be found: -
(whw?) B (Holx), wP) = (o Hac), w”) < (o H(w?))
<wA,wB> Pr <XA,ZB>

by identifying the terms 0, Hiy(w?) = —ZP = —Hg(w?). Tt finally reads:

O H5(w) = —Hg(w). (61)
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