Structural Statistical Software Testing with Active Learning in a Graph

Nicolas Baskiotis 1, 2 Michèle Sebag 1, 2
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : Structural Statistical Software Testing (SSST) exploits the control flow graph of the program being tested to construct test cases. Specifically, SSST exploits the feasible paths in the control flow graph, that is, paths which are actually exerted for some values of the program input; the limitation is that feasible paths are massively outnumbered by infeasible ones. Addressing this limitation, this paper presents an active learning algorithm aimed at sampling the feasible paths in the control flow graph. The difficulty comes from both the few feasible paths initially available and the nature of the feasible path concept, reflecting the long-range dependencies among the nodes of the control flow graph. The proposed approach is based on a frugal representation inspired from Parikh maps, and on the identification of the conjunctive subconcepts in the feasible path concept within a Disjunctive Version Space framework. Experimental validation on real-world and artificial problems demonstrates significant improvements compared to the state of the art.
Type de document :
Communication dans un congrès
17th Annual International Conference on Inductive Logic Programming, Jun 2007, Oregon, United States
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00171162
Contributeur : Nicolas Baskiotis <>
Soumis le : mardi 11 septembre 2007 - 17:17:03
Dernière modification le : vendredi 23 février 2018 - 13:42:57
Document(s) archivé(s) le : jeudi 8 avril 2010 - 20:23:10

Fichier

ilpS4T.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00171162, version 1

Collections

Citation

Nicolas Baskiotis, Michèle Sebag. Structural Statistical Software Testing with Active Learning in a Graph. 17th Annual International Conference on Inductive Logic Programming, Jun 2007, Oregon, United States. 〈inria-00171162〉

Partager

Métriques

Consultations de la notice

398

Téléchargements de fichiers

176