H. Bensusan and A. Kalousis, Estimating the Predictive Accuracy of a Classifier, Proc. ECML, pp.25-36, 2001.
DOI : 10.1007/3-540-44795-4_3

M. Botta, A. Giordana, L. Saitta, and M. Sebag, Relational learning as search in a critical region, Journal of Machine Learning Research, vol.4, pp.431-463, 2003.

P. Brazdil, J. Gama, and B. Henery, Characterizing the applicability of classification algorithms using metalevel learning, Proc. ECML, pp.83-102, 1994.

O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, Vicinal risk minimization, NIPS, pp.416-422, 2000.

P. Cheeseman, B. Kanefsky, and W. Taylor, Where the really hard problems are, Proc. IJCAI, pp.331-337, 1991.

L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition, 1996.
DOI : 10.1007/978-1-4612-0711-5

J. Furnkranz and P. Flach, An analysis of rule evaluation metrics, Proc. ICML 2003, pp.202-209, 2003.

A. Giordana and L. Saitta, Phase transitions in relational learning, Machine Learning, pp.217-251, 2000.

T. Hogg and B. Huberman, Artificial intelligence: Special issue on frontiers in problem solving: Phase transitions and complexity, 1996.

R. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning, pp.63-90, 1993.

R. Holte, L. Acker, and B. Porter, Concept learning and the problem of small disjuncts, Proc. IJCAI, pp.813-818, 1989.

A. Kalousis, Algorithm selection via meta-learning. Doctoral dissertation, 2002.

M. Kearns and U. Vazirani, An introduction to computational learning theory, 1994.

T. Lim, W. Loh, and Y. Shih, A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms, Machine Learning, pp.203-228, 2000.

J. Quinlan, C4.5: Programs for Machine Learning, 1993.

U. Rückert, S. Kramer, and L. De-raedt, Phase Transitions and Stochastic Local Search in k-Term DNF Learning, Proc. ECML, pp.405-417, 2002.
DOI : 10.1007/3-540-36755-1_34

R. Schapire, The strength of weak learnability, Machine Learning, 0197.

B. Schölkopf, C. Burges, and A. Smola, Advances in kernel methods: Support vector machines, 1998.

H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, Ranking a random feature for variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1399-1414, 2003.

L. Valiant, A theory of the learnable, Communications of the ACM, vol.27, issue.11, pp.1134-1142, 1984.
DOI : 10.1145/1968.1972

V. N. Vapnik, Statistical learning theory, 1998.

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 1999.
DOI : 10.1145/507338.507355

D. Wolpert and W. Macready, No free lunch theorems for search, 1995.