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Abstract : This paper is concerned with relational Support Vector Maes, at
the intersection of Support Vector Machines (SVM) and fetel learning or In-
ductive Logic Programming (ILP). The so-called phase fitanrsframework, pri-
marily developed for constraint satisfaction problemsRE$ias been extended
to ILP, providing relevant insights into the limitationsdadifficulties thereof.
The goal of this paper is to examine relational SVMs and sigadly Multiple
Instance-SVMs in the phase transition perspective. lntod) a relaxed CSP
formalization of MI-SVMs, we first derive dower boundon the MI-SVM gen-
eralization error in terms of the CSP satisfiability proligbi Further, ample
empirical evidence based on systematic experimentatiemodstrates the exis-
tence of a unsatisfiability region, entailing the failureif SVM approaches.

Key-words : Phase Transition, Multiple Instance Learning, Relatidfeinels,
MI-Support Vector Machine

1 Introduction

version 1 - 12 Sep 2007

This paper is concerned with Relational Support Vector Ntaed at the intersection of
dSupport Vector Machines (SV_ iE 98) and Inductiwagic Programming or
O Relational Learninf Muggleton & De Rapdt (1994). After thecalled kernel trick, the
<} extension of SVMs to relational representations relieshendesign of specific kernels
«— (seg{Lodhet all (000);{Gartneet all (2002)).

N~ Relational kernels thus achieve a particular type of pritipomlization[Krameet al|
— (), mapping every relational example in the problem aiaronto a propositional
space defined after the training examples. However, relati@presentations intrinsi-

cally embed constrained satisfaction problems; the coyeeist commonly usedinILP,
CU referred to as Plotkin’§-subsumption test, is equivalent to a JSP Bettal] (2003).

=
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The fact that relational learning involves the resolutidrC&Ps as a core routine
has far-fetched consequences besides exponential (eass}-complexity, the study of
which is at the core of the recent Phase Transition (PT) jpgmath Machine Learning

[Cheesemast all (£1991){Hogget al} (996)]Giordana & Saiitd (2000) (more on this in
section P).

The question investigated in this paper is whether relati®&vMs avoid the limita-
tions of relational learners which has been uncovered intBdies| Giordana & Saifta
(ROOD);|Bottaet all (003). Specifically, it was found that a large class of ietwl
learning problems are intrinsically hard to solve. Espégithere are problems for
which the learned concepts appearing to perform well angatigtvery remotely re-
lated to the target concepts. This question is examinedwetea particular relational
setting, known as the multiple instance (MI) problem Diette et al} (L997); Mahé
et al. (2006).

This paper presents three contributions. Firstly, a relaomstraint satisfaction prob-
lem formalizing the MI-SVM learning search is presented] ara lower bound on the
MI-SVM generalization error is established with respedhie CSP satisfiability prob-
ability. Secondly, a set of order parameters is proposedsoribe the critical factors of
difficulty for multiple instance learning. Thirdly, exteme and principled experiments
show the existence of an unsatisfiability region condittbhg the value of some order
parameters, where MI-SVM approaches are doomed to fail.

The paper is organized as follows. For the sake of self-coatimess, the phase tran-
sition framework is briefly introduced in SectiEh 2 togethath MI kernels. Section
E rewrites the MI-SVM setting as a constrained satisfacfiomblem, and relates the
satisfiability of this CSP to the generalization error of MieSVM problem. Sectiorﬂ4
reports on the experimental evidence gathered and the pagsiwith some perspective
for further research.

2 Stateof theArt

It is widely acknowledged that there is a huge gap betweesrigrical and the worst
case complexity analysis for CS|Ps Cheeseatat ([L991). This remark led to develop-
ing the so-calleghase transition frameworPT) (1996), which considers
the satisfiability and the resolution complexity of CSP am&tes as random variables
depending on order parameters of the problem instance (mgstraint density and
tightness).

The phase transition paradigm has been transported t@oredhtnachine learning
and inductive logic programming (ILP) by Giordana & Sai@800), based on the fact
that the relational covering test, akasubsumption test, is equivalent to a CSP. fg. 1,
left, shows the probability for claugkto cover examplé” conditioned by the number
m of predicates irC and the numbeL of constants inF, for constant values of the
numbern of variables inC and the numbeN of literals per predicate symbols ifi
(n = 4, N = 100). Typically, the covering probability is close to 1 whenwsaC is
general relatively to example (for small values ofn and L), and close to 0 whed
is specific relatively taF. The covering probability drops abruptly in a narrow region
referred to as phase transition.
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The phase transition phenomenon has been further invedigarelationship with
the success of relational learning, considering the prentiROIL (relational decision
tree) algorithm and other learndrs Bogtzall (2003). Artificial learning problems were
generated; extensive and principled experimentations shat FOIL and other algo-
rithms fail to learn, that is, they produce hypotheses vést error close to 1/2 when the
parameters of the target concept and the training exampdesl@se to the PT region
(Fig. [1, right).

Comparable results have been obtained in the field of graivah@iference Pernot
et al. (200%), raising the question of whether the PT-relatedifaibhenomenon can be
avoided in relational learning settings.

(a) Probability that a random clause (b) FOIL competence map in plane
C covers a random examplg, aver- (m, L): success (legend '+') and fail-
aged over one thousand paif§, F) ure (legend '.") regions. Dashed curves
for each(m, L) point. indicates the phase transition region.

Figure 1: Relational Learning: Phase transition of the dogetest, and failure region
of the FOIL algorithm in planém, L), wherem stands for the number of predicates in
the clause/target concept, ahdor the number of constants in the (training) examples.
See text for more details.

This question is investigated in this paper consideringtitealled Multiple Instance
Learning setting defined Hy Dietterig all (1997), which is viewed as intermediate
between relational and propositional settings. In the Miirsg, each example; is a
bag of N; propositional instances; 1, . .., x; n,, Wherex; is positive iff some of its
instances satisfy the (propositional) target concept.

Besides early approachps Dietteratall (1997), specific kernels were designed for
MI problems|Gartneet all (002);[Mahéet al| (2006);[Kwok & Cheung|(2007), ba-
sically defining the kernek’ of two bags of instances as the average of the kernels
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between their instancks

1 L
%) = (i 1 1

where f,,.rm IS @ normalization function, €.9f.orm(xi) = 1, frnorm(xi) = N; oOr
fnorm(xi) — K(Xiaxi)-

After Gartneret al] (2002), the approach is efficient under the so-called linear
assumption, that is, the fact that an example is positivé ifbntains (at least) one
instance pertaining to the target concept.

3 Overview

After the above remarks, Ml kernels characterize the shibjl@f two examples (i.e.
two bags of instances) as the average similarity betweenitistances. The question
examined in this paper is to which extent this average siityjilés sufficient to recon-
struct the existential relational information (do someanses of any example satisfy
the target concept) when the linearity assumption doesaidt h

Indeed, for quite a few applications formalized as Ml protide such as chemometry
Mahéet all (200§), it might be doubted whether the linearity assunmpliolds: the
bioactivity of a molecule might result from the joint effeaft several fragments in the
molecule.

3.1 When MI learning meets CSPs

In order to investigate the above question, one standamdroe is to generate artificial
problems, where each problem is made of a training set arstl see and to compute the
test error of the hypothesis learned from the training ske {€st error, averaged over a
sample of artificial problems generated after a set of pat@melues, indeed measures
the competence of the algorithm conditionally to these matar value$ Bottat all
(2003).

A different approach is followed in the present paper, fer fillowing reason. Our
goal is to examine how kernel tricks can be used to alleviaespecific difficulties
of relational learning; in other words, the question is attbe quality of the propo-
sitionalization achieved through relational kernels. thes words, the focus is on the
representation (the capacity of the hypothesis searclesiefmed after the Ml kernel)
instead of a particular algorithm (the quality of the bespdiyesis retrieved by this
algorithm in this search space).

Accordingly, the methodology we followed is based on theegation of artificial
problems composed of a training sét= {(x1,%1),--.,(Xn,ys)} and a test sel”
={(x'1,91), ..., (%'n,y,,)}. Thetraining seL induces a propositionalization of the
domain space, mapping every Ml examglen then-dimensional real vecteb - (x) =

IMore sophisticated kernels compare the instance disiitmiin both bags Cuturi & Vq r4). We

shall return to this point in sectighn 5.




A PT-based Perspective on MI-Kernels

(K(x1,x),...,K(xn,x)). Let R, denote this propositional representation based on
the training ser.

The novelty of the proposed methodology is to rewrite the3WIM learning problem
as a constraint satisfaction problem in fRe representation.

Specifically, the question is: does there exist a separatpgrplane in the proposi-
tionalized representatioR ;. defined from the training set, which belongs to the search
space of MI-SVMs and which correctly classifies the test gaeétion QC, 7)), as
opposed to, does the separating hyperplane which wouldbeeme learned using M-
SVM algorithms from the training set, correctly classife tiest set (question Q(, 7)).

y'- (< &,@E(X/j) >+b) >1 j= 1...n/
a; >0 i1, Q&7

JaeR”, be]Rs.t.{
Clearly, Q(,7T) is much less constrained than Q.(7), as Q{,7) is allowed to

use thetestexamples (i.e. cheat...) in order to find the coefficients. The claim
is that Q(, 7) gives deep insights into the quality of propositionaii@atR ., while
Q'(L,7T) additionally depends on the quality of a particular algori operating on
R .. Formally, with inspiration fronf Kearns & |.{(1993), we shahat the percentage
of times Q(, 7)) succeeds induces a lower bound on the generalizationreaohable
in representatiof® ..
Proposition
Within a MI-SVM setting, let£ be a training set of size, R the associate proposi-
tionalization andy . the generalization error of the optimal linear classifigrdefined
onNR,.
LetE,[p.] denote the expectation pf conditionally to|£| = n.
Let MI-SVM problems(£;,7;),i = 1... N be drawn independently, where the size of
L; and7; respectively is: andn’. Let7,, ,,» denote the fraction of CSPs Qf, 7;) that
are satisfiable.
Then for anyp > 0, with probability at least — exp(—2n N),

1
7

]En[pﬁ] >1- (%n,n’ + 77)" .

Pr oof

Let the MI-SVM problem andC be fixed; by construction, the probability for a test
datasef of sizen’ to include no example misclassified by is (1 — pz)" .

It is straightforward to see that if does not contain examples that are misclassified
by h%, Q(L,T) is satisfiable. Therefore the probability for Q(7) to be satisfiable
conditionally toZ is greater thaiil — p. )" :

E |71 Q(L, T) satisfiable > (1 —pc)™
Taking the expectation of the above w.{£| = n, it comes:
B 71—, 12)—nl Q(L, T) satisfiable > Bz _,[(1— pe)”] > (1 — Enlpe))”  (2)

where the right inequality follows from Jensen’s inequalit
Next step is to bound the left term from its empirical estiegt,,/, using Hoeffding’s
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bound. With probability at least — exp(—2n?N),
]E\T\:n’, |£|:n[ Q(L, T) satisfiablé < Ton +1 3)
¢From[R) and3) it comes that with probability at lehst exp(—212N)

(1 -E, [pll])n/ < T + 1

which concludes the proof. O

3.2 TheOrder Parameters

Following the standard PT methodology, problems are umifpgenerated after order
parameters conditioning the description of instanceangas and target concept.

At the instancelevel, each instancé = (a, ¥) is formed of a symbdla drawn in
some alphabeX, and ad-dimensional real-valued vectat,in [0,1]¢. By definition,
thee ball of an instancd denoted5. (I) includes all instanceE = (a’,¢") such thatl
andI’ bear the same symbel= o’ and for eacl coordinatek = 1...d, the absolute
difference|vi, — 7| is less thar.

At the concept levelthe target concept is characterized as the conjunctioR of
elementary concepts;, whereC; is thee ball centered on some target instange
uniformly drawn in[0, 1]¢.

At the example levela positive (respectively negative) examgleis characterized
as a set ofV*t (resp. N ™) instances; example; is positive iff eachC; in the target
concept contains at least one instancecpf The N+ instances ofositive examples
are drawn as follows (Fid] 2)P,. instances are drawn in the elementary concépts
ensuring that at least one instance is drawn in e¢&r¢P;. > P). Likewise, theN~
instances ohegative exampléavolve N;. instances drawn in the elementary concepts
C;, ensuring thatm (near-missy’; are not visited§m > 1).

ﬁ + D * P=3 targets concepts.

+ 7+ N*=10 instances of a positive
o + : example, among whichP =5
— are in the target concept.

— ' example, among whichP =4
are in the target concept.

N
7+ *+ . N =9 instances of a negative
+

Figure 2: Values of instances of 2 examples in a space of dilmed = 2, with an
alphabet of size|X| = 1 andnm = 1.

Instances which do not belong to the target concept ballslieen either (i) uni-
formly in [0, 1]¢ (uniform default instances); or (ii) among; balls forming theUni-
verse concepilintroduced to model the fact that example instances aremiédrm in

2This formulation generalizes the case of categorical otisoaus instance spaces.



A PT-based Perspective on MI-Kernels

real-world problems (universe default instances). In #teet setting, the Universe con-
cept is made ofP; balls with radiuss, and it is similarly required that not all balls
of the Universe be visited by an example; the number of Usidalls not visited by
positive examples is set tan.

4 Experiments

After describing the experimental setting, this sectigoorés on the results. All first
experiments use uniform default instances; the case oftsevdefault instances is
discussed in sectidn }.6.

4.1 Experimental setting

Unless otherwise specified, the order parameter valuesakdi vary in the intervals
as described in Tab[ 1. These values were chosen sucheharetsented effects could
be easier to see.

b Size of the alphabet 15
d Dimension of the instancesx; € [0, 1]¢ 30
P Number of balls in the target concept 30
€ Radius of a ball (elementary concept) .15
n Number of training examples 60 (30,30-)
n' Number of test examples 200 (169 100-)
NT, N~ Number of instances in pos./neg. example 100
Py Number of instances it for a positive ex. [30,100]
N; Number of instances itr for a negative ex. [0, 100]
nm Number of target balls not visited by neg. ex. 20
Py Number of balls of the universe concept 30
nmy Number of universe balls not visited by pos. ex. 15

Table 1: Order parameters for CSPQ{) and range of variations

For each set of order parameter values, 40 MI-SVM problerascanstructed by
independently drawing the target concept, the trainingsatd the test sef. The bag
kernel is defined as in eq[| (1), where the instance kernel iaws§an kernel and the
normalization factor is set to the number of instances inetteample. Similar results,
omitted due to lack of space, are obtained using polynoneiaidds (linear, quadratic
and of degree 4).

Based onZ and7, the constraint satisfaction problem Q() is defined (section
E), involvingn’ = 200 constraints ana + 1 = 61 variables, and solved using the
GLPK package. The average satisfiability of8Q7") for a set of parameter values is
monitored, and displayed in the 2-dimensional plahe N;.; the color code is black
(resp. white) if the fraction of satisfiable CSPs is 0 (re€j0%). It is expected that for
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P,. = N,., Q(L£, T) might be unsatisfiable; as the Ml kernel only describes teeaae
instance similarity, positive and negative examples sthbale similar distributions in

representatiofR .

4.2 Sensitivity analysisw.r.t. Near-miss

Let us first examine the influence of the near-miss parameterruling the number
of elementary concepts which are not visited by instanceseghtive examples. As
expected, a failure region centered on the diagéhak N;. can be observed; further-
more the failure region increases as the near-miss parameteases (Fid] 3).

o o o o
30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100
Pic Pic Pic

[ R T
3 40 S0 60 70 80 90 100

Figure 3: Fraction of satisfiable @Q(7) in planeP;., N,. out of 40 runs. Influence of
the near-miss parametereft: nm = 10. Center: nm = 20. Right: nm = 25.

These results are explained as follows. The MI-SVM propmsdlization maps every
examplex onto then-dimensional vecto® . (x) = (K (x1,x%),- -+, K(Xp,x)). The
distribution of propositionalized examples, in the 2D pigfined from a positive and a
negative training example, is displayed on Fﬂg. 4.

Kb(Xneg,X)

)
Kb(Xpos,X)

Figure 4: Distribution of® . (x) for x positive (legendt) andx negative (legenck),
whereP = 30, nm = 20, P,. = 50, N;. = 30. The first (resp. second) axis is derived
from a positive (resp. negative) training example.

Let C (resp.c) denote the mean value bfI, I’) for two instanced andI’ belonging
to the same elementary concept (resp. drawn uniformly irirtsiance space). These
values depend on both the instance kernel and the instadeearameterg and|%|,
which are constant in the experiments.

With no difficulty, it is shown that wher; andx are positive, the expectation of

K(x;,x) is 5(£i£)2(C — ¢) + c. Likewise, if both examples are negative, the expec-
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tation of K (x;,x) is & (8)?(C — ¢) + c. Last, if both examples belong to different
classes, the expectation Bf(x;, x) is &L= Xie (C' — ¢) + c.

Therefore, wherP;,. = N;.(3), the distribution ofK (x;,x) does not depend on the
class ofx, which clearly hinders the linear discrimination task.

In the general case (whdf. # N,.), both distributions differ by their average value
and by their variance. Still, as the distributions of pesithnd negative test examples
in the propositionalized representatiBy overlap, their linear separation is only made
possible as the number of training examples increases.

Note that although the near-miss parameterhas no effect on the center of both dis-
tributions, the variance of the propositionalization eeses witmm. The larger disper-
sion of the propositional examples thus adversely afféwssatisfiability of QC, 7),
as shown on Fig]] 3.

1
80 08 & 08 & - // E
06 06 _
o © S 60 4 60 | - Bl
z z z
a0 0 0 o w0l il
20 20 20 4
o o T R !
30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100
Pic Pic Pic

(a) Influence of the size of the training sdteft: n = 20. Center: n = 60. Right:
n = 180.

30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100
Pic Pic Pic

(b) Influence of the size of the test seteft: n’ = 100Center: n/ = 200. Right:
n’ = 400.

Figure 5: Fraction of satisfiable @(7) in planeP;., N,. out of 40 runs.

4.3 Sizeof thetraining and test sets

As could have been expected, increasing the number oftigagiamples makes the

failure region to decrease (Fi. 5.a); the learning taslasez as more training exam-
ples are available. On one handyrovided thatV,. # P;. —, the distance between the
centers of the propositionalized positive and negativengta distributions increases

SActually, the failure region corresponds%ﬁ = % The distinction is not made as for experiments
Nt =N—.
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proportionally to\/n, wheren is the number of training examples. On the other hand,
the more training examples, the more likely one of them wdfice a propositional
attribute with good discrimination power.

In contrast, the size of the failure region increases withdize of the test set (Fig.
.b); clearly, the more constraints in Q(7), the lower its probability of satisfiability
is.

4.4 Sensitivity analysisw.r.t. P,. and ;.

The influence of the dispersion @f,. and N,. is examined as follows. Firstly, the
number of instances in positive (respectively, negatirahing examples is uniformly
drawn in[P;. — A, P;. + A] (resp.[N;. — A, N;. + A]), with A varying in [0,10] while
the number of instances in test examples is kept fixed.

% % %

0 0
20 30 30
20 20 20
10 ' ' ' ' 10 ' ' ' ' 10 ' ' ' '

(c) Variation for both training and test examples.

Figure 6: Fraction of satisfiable @Q(7) in planeP;., N,. out of 40 runs. Influence of
the variabilityA on P;. andN,.. Left: A =0. Center: A =5. Right: A =10.
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When A increases, the size of the failure region decreases (]HZ'@); iBdeed, the
higher variance among the training examples makes it mioelylthat one of them will
derive a propositional attribute with good discriminatfmower.

Secondly, the number of instances for training examplexéifivhile the number
of instances in positive (respectively, negative) testngxas is uniformly drawn in
[Pie — A, Pie + A] (resp. [Nic — A, N, + A]), with A varying in [0,10]. Here, the
failure region increases withh (Fig. [§.b); the higher variance of the test examples
makes it more likely to generate inconsistent constraints.

Finally, if the number of instances varies for both trainemgd test examples, the
overall effect is to increase the failure region: even thothgere are propositional at-
tributes with better discriminant power, there are moreirgistent constraints too, and
the percentage of satisfiable problems decreases.

45 Sensitivity Analysisw.r.t. Example size

The impact of default instances (not belonging to any eldargrtarget concept) is
studied through increasing the example s\vé and N —. Experimentally, the failure
region increases withh ~ and N ~ (Fig. ﬂ). The interpretation proposed for this finding
goes as follows.

0 o 0
30 4 50 60 70 8 90 100 30 4 50 60 70 8 9 100 30 4 50 60 70 80 90 100
Pic Pic Pic

Figure 7: Fraction of satisfiable @(7) in planeP;., N;. out of 40 runs. Influence of
the size of the example&.eft: N* = N— =100Center: N* = N~ = 200. Right:
Nt =N~ = 400.

On one hand, the distance between positive and negativepdatistributions is
increasingly due to the influence of default instancegvVadsand N~ increase. On
the other hand, the instances in positive and negative elesnape in majority default
ones whenV+ andN ~ increase; therefore the ratio signal to noise in the prdioosil
representation decreases and the failure region increases

On the other hand, the effect of default instances is limasdhey are far away
from each other (in the uniform default instance settingynparatively to instances
belonging to concept balls. Therefore increasing the nurabdefault instances does
not much modifyK (x, x’) on average, which explains why the effectéf- and N~
appears to be moderate.

4.6 Sensitivity Analysisw.r.t. the Univer se Concept

This section examines the sensitivity of the results whdaudeinstances are drawn in
the Universe concept (sectipn]3.2).
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4.6.1 Effect of the size of the Universe (Py balls).

The impact of the Universe Concept can be expressed aralytiexamining the distri-
butions of positive and negative examples in the propasitiaed representation. The
largest failure region is observed By, = N;. ~ NTZP.

Accordingly, the failure region is very thin for small vakief Py (Fig. |§§); for large
values of Py, the failure region is similar to the non-Universe case. iRtermediate
values ofPy, the failure region is larger than for the non-Universeisgtt

Lo

[ R T o o o o
30 4 S0 60 70 8 90 100 30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100
Pic Pic Pic

Figure 8: Fraction of satisfiable @Q(7) in planeP;., N,. out of 40 runs. Influence of
the sizePy of the Universe whemmy = 0. Left: Py = 5. Center: Py = 30. Right:
Py =1000.

4.6.2 Effect of the near miss factor of the Universe.

The number of near-missm (number of concept balls not visited by the negative in-
stances) and the numberm; (number of Universe balls not visited by positive exam-
ples) have similar effects : the variance®f (x) increases witlhm andnm¢;, and the
satisfiability probability of QC, 7") decreases accordingly.

Note however that the impact afn is maximal for large value oP;. and N, (Fig.
B), while the opposite holds form; (Fig. @). This is explained asm influences the
distribution of theP;.. (resp.N;.) instances in the target concept while:y; influences
the distribution of theV*™ — P;. (resp.N~ — N,.) instances drawn in the universe.

o
30 4 50 60 70 8 90 100 30 4 50 60 70 8 9 100 30 4 50 60 70 8 9 100
Pic Pic Pic

Figure 9: Fraction of satisfiable @(7) in planeP;., N;. out of 40 runs. Influence of
the size of the near-miss factor of the Univerkeft: nmy = 0. Center: nmy = 15.
Right: nmy = 25.

Overall, the Universe is shown to amplify the variations tu¢he example size, as
the default instances (not related to the target concept)influence the variance of
the propositionalized distribution (FiElO).



A PT-based Perspective on MI-Kernels

oL o o [ T
30 4 S0 60 70 8 90 100 30 4 50 60 70 8 9 100 30 4 S0 60 70 8 90 100
Pic Pic Pic

ol

Figure 10: Fraction of satisfiable Q(7) in planeP;., N;. out of 40 runs. Influence of
the size of the example using a Universeft: N* = N~ =100.Center: N* = N~
=200.Right: N* = N~ =400.

5 Discussion and Per spectives

The main contribution of this paper is to evidence some Pheaesition-related lim-
itations of Ml kernels. The presented approach is based owerlbound of the gen-
eralization error, expressed in terms of the satisfactimbability of a CSP on the
propositionalized representation induced by a Ml kernel.

Clearly, some care must be exercised to interpret the liiita of the well-founded
MI-SVM algorithms suggested by our experiments on artifigiablems. In particular,
more sophisticated kernels proceed by comparing the iostdistributions in the ex-
amples at hand Cuturi & Vet (2004); further work is needeeidtamine their behaviour
in PT-related settings.

Still, the question of whether Multiple Instance Kernelakele to characterizexisten-
tial properties as opposedaverageproperties makes sense in a relational perspective.
Actually, in some domains where the number and/or the diyeo$ the available ex-
amples are limited, as in the domain of chemomptry Mette] (2006), one might learn
average properties, these might do well on the test set,tdinoespoorly related to the
target concept; some evidence for the possibility of suchempmenon was presented
in Eotta et al ), where the test error could be 2% or lower althougtctreept
learned was a gross overgeneralization of the true targeq.

A further research perspective opened by this work is basedtighter coupling be-
tween the CSP resolution and the Multiple Instance Keraskld propositionalisation,

in the line of dynamic propositionalizati¢n Blockeslall (R00%).
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