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Interest Point Detection

with Wavelet Maxima Lines

Christophe Damerval and Sylvain Meignen

Laboratoire Jean Kuntzmann, LJK, Grenoble, France

Abstract. In this paper, we propose a new approach in image processing
for interest point detection. Thanks to the link between linear scale-
space and wavelet decompositions, we are able to build a structure in
scale-space based on wavelet maxima lines. This framework allows robust
detection of objects (or blob-like structures) present in the image, and
the computation of their characteristic scale. Eventually the estimation
of their shape can be performed.
Keywords: scale-space representation, maxima lines of wavelet decompo-
sition, blob detection, scale selection.

1 Introduction

Interest point detection is an important low-level operation in computer vision,
since it is a first step towards more complex tasks such as the determination of
local deformations in images, the extraction of scale-invariant interest points or
the computation of local descriptors ([4] [6] [8]). So this paper is organized as
follows: first, we present the framework of the linear scale-space put forward by
Lindeberg in [5] (section 2) ; we also highlight the link with wavelet decomposi-
tions, especially with wavelet maxima lines (ML), and explain how scale selection
can be performed on the basis of these ML. Then we detail the different steps
of our method (section 3), laying the emphasis on ML construction. Besides,
we will see how ML can be used to estimate the shape of the detected objects
(section 4). Eventually, we will see some applications on geometric images and
on natural scenes and also some results on the influence of noise (section 5).

2 Linear Scale Space and Wavelet Maxima Lines

2.1 Linear Scale Space

We first recall the definition of linear scale-space in the one-dimensional case.
Linear scale-space representation consists of convolutions with Gaussian kernels

at different scales. If we put g(x) = 1√
2π

exp(−x2

2 ) and gt(x) = 1√
t
g( x√

t
), we

define as in [5] the linear-scale space by:

L(x, t) = gt ∗ f(x) =

∫

R

1√
t
g(

x − u√
t

)f(u)du.



Scale selection is then carried out through the study of the appropriately nor-
malized derivatives of L. Lindeberg [4] suggests to normalize the derivatives as

follows : ∂m
x,γnormL(x, t) = t

γm

2 ∂m
x L(x, t) =

∫
R

t
γm

2
1√
t
g

(
u√
t

)
f (m)(x − u)du

= t
γm

2 f (m) ∗ gt(x). In a bidimensional context, the study is very similar to that

done in one dimension. We now put g(x1, x2) = 1
2π

exp(−x2

1
+x2

2

2 ) and gt(x1, x2) =
1
t
g( x1√

t
, x2√

t
). The bidimensional linear scale-space definition is identical to its one

dimensional counterpart. Let us define ∂xαL = Lxα = ∂x
α1

1
x

α2

2

L = Lx
α1

1
x

α2

2

, with

α = (α1, α2), we consider differentiations of the linear scale-space of the form:

DL =
∑I

i=1 ciLxαi where |αi| = αi
1 + αi

2 = M is independent on i. For such a
definition of the linear scale-space, the appropriate normalization of the opera-

tor D is given by [4]: Dx,γnormL = t
Mγ

2 DL. The Hessian matrix of L defined by

H =

(
Lx1x1

Lx1x2

Lx2x1
Lx2x2

)
is a basic tool for the analysis of the characteristic scale of

objects in images [8][4]. A simple normalized feature is usually extracted from
this matrix and is: trace (Hγnorm) = tγ∆L. Now, when γ = 1, it is interesting
to draw a parallel with wavelet decompositions. Using two integrations by part
and because of the fast decay of the Gaussian function and of its derivatives, we
get: trace(Hγnorm) = f ∗ (∆g)t so that as ∆g is even, this quantity is exactly
the L1-normalized wavelet decomposition using the ∆g wavelet at scale

√
t.

2.2 Wavelet Decompositions and Maxima Lines

The normalized Laplacian used in our framework can be written as the L1-
normalized bidimensional continuous wavelet transform (CWT) of the image f

using the wavelet ∆g, ∆g(x, y) = 1
2π

(
−2 + (x2

1 + x2
2)

)
exp(−x2

1
+x2

2

2 ) :

∀(x, y) ∈ R
2,∀s ∈ R

∗
+,Wf(x, y, s) =

1

s2

∫

R2

f(u, v)∆g(
u − x

s
,
v − y

s
)dudv

Since the wavelet ∆g can be expressed analytically in the Fourier domain,
the computation of the CWT can be done as follows: first, compute ∆̂g times the
discrete Fourier transform of the image (using a FFT), and then obtain the CWT
by the inverse Fourier transform. Note that the cost of this step is O(NLog2N)
(where N is the size of the data), thus providing an efficient computation. Given
a certain scale s ∈ R

∗
+, modulus maxima are defined as local maxima in space

of the modulus of the CWT of the image |Wf(., ., s)|. Let us recall that the
absolute value of the CWT has the property of low response where the image is
smooth, whereas it has a high response where there are singularities (boundaries,
edges, corners or isolated peaks). So the point of studying modulus maxima is
that they are related to singularities present in the image. Note that at the finest
scales, modulus maxima arise from isolated singularities, while at coarser scales,
modulus maxima result from several singularities since the translated-dilated
wavelet ∆g( .−x

s
, .−y

s
) covers a wider area. In particular, as we will see, a modulus

maxima at a certain scale can be related to the presence of a significant structure.



In our context, the maximum principle (see [9] [1]) ensures that modulus maxima
propagate towards finer scales, thus making connected curves in scale-space,
called maxima lines (ML). The construction of these ML on the basis of the
modulus maxima at each scale is detailed in the next section. So a ML can
be viewed as a path in scale-space which does not interrupt when the scale
decreases. As the scale s increases, (xl, yl) gives the spatial drift of the ML while
|Wf((xl, yl, s)| gives the evolution of the response. Denoting sint the scale at

which the ML is interrupted (sint ∈ R
∗
+), one maxima line Ll(l ∈ N) is denoted

as:
Ll = {(xl(s), yl(s), s,Wf(x, y, s))s∈]0,sint[,

∀s ∈]0, sint[, (xl(s), yl(s)) local maximum of |Wf(., ., s)|}

2.3 Scale Selection

As pointed out by Lindeberg in [5], stable features (robust to noise or to slight
deformations) can be obtained by considering the extrema of the image decompo-
sition using an appropriate operator. In particular, when normalized derivatives
of the linear scale-space are used, such features can be related to the actual
position and size of the objects appearing in the image. Mainly, our approach
differs from classical scale space selection to the extent that instead of determin-
ing local maxima in the 3D scale space (denoted Max3D) we build a structure
(the skeleton of the maxima lines) made of chains of modulus maxima, and take
a certain maximum along some of them (the resulting set is noted MaxML). So
as to see the link between these two sets which are subsets of the scale-space
S3D = R

2 × R
∗
+, let us define:

V(x∗, y∗, s∗) = { cube of S3D centered at (x∗, y∗, s∗) of size η × η × η(η > 0)}
Max3D = {(x∗, y∗, s∗) ∈ S3D, for a given V ∈ V(x∗, y∗, s∗),

∀(x, y, s) ∈ V, |Wf(x∗, y∗, s∗)| ≥ |Wf(x, y, s)|}
MaxML = {(x∗, y∗, s∗) ∈ S3D, there exists a ML Ll containing (x∗, y∗, s∗)

such that the response attains a local maximum along Ll :
∃V ∈ V(x∗, y∗, s∗),∀(xl(s), yl(s), s) ∈ Ll ∩ V,
|Wf(x∗, y∗, s∗)| ≥ |Wf(xl(s), yl(s), s)|}

Given (x∗, y∗, s∗) ∈ Max3D, we note that it is a modulus maximum at scale
s∗, which belongs to a certain ML, denoted Ll (modulus maxima propagate to-
wards finer scales), so we have (x∗, y∗, s∗) = (xl(s

∗), yl(s
∗), s∗). According to the

definition of Max3D, we get : ∀(xl(s), yl(s), s) ∈ Ll ∩ V,
|Wf(xl(s

∗), yl(s
∗), s∗)| = |Wf(x∗, y∗, s∗)| ≥ |Wf(xl(s), yl(s), s)|. So a local

maximum in 3D scale-space is also a local maximum along a certain ML. Con-
versely, let us consider (x∗, y∗, s∗) ∈ MaxML: ∃V1 ∈ V(x∗, y∗, s∗),
∀(xl(s), yl(s), s) ∈ Ll ∩ V1, |Wf(xl(s

∗), yl(s
∗), s∗)| ≥ |Wf(xl(s), yl(s), s)|. We

can distinguish between two cases: isolated and non-isolated. First, considering
a ML Ll that is isolated in scale-space at scale s∗, there exists V0 ∈ V(x∗, y∗, s∗)
such that Ll is the unique ML intersecting V0 ; taking V = V0 ∩ V1, we obtain
that (x∗, y∗, s∗) ∈ Max3D.



The case of non-isolated ML corresponds to the junction of some ML (Lj)j∈J

which merge at scale s∗, and in general, we cannot say that (x∗, y∗, s∗) ∈ Max3D.
Indeed, let us consider the example of two ML L1 and L2 merging at (x∗, y∗, s∗)
and assume that the response (i.e., the modulus of the wavelet coefficient) at-
tains a local maximum at s∗ while it decreases along L2: (x∗, y∗, s∗) /∈ Max3D.
In practice, we observe that when the response along L2 decreases, the latter cor-
responds either to noise fluctuations – and L1 is not significant (lower response
than noise) – or to a ML which has attained a local maximum at a previous
scale – so L1 does not correspond to a significant structure compared to that
associated to L2.

Eventually, given the ML (Lj)j∈J involved in the junction, and assuming the
response attains a local maximum along each of these ML, we can consider the
dominating ML, denoted by Lk, defined as the one which gives the maximum re-
sponse at scales preceding s∗. Also note that the response along Lk is also larger
at scales following s∗ since these ML merge. Thus there exists V ∈ V(x∗, y∗, s∗)
such that the response along Lk ∩ V is larger than along (Lj ∩ V )j 6=k at each
considered scale, and therefore higher than any modulus of wavelet coefficient
in V . Since (x∗, y∗, s∗) is a local maximum along Lk, it belongs to Max3D. In
the following sections, we make the assumption that if a ML attains a maxi-
mum at (x∗, y∗, s∗) and merge with some other ML also attaining a maximum
at (x∗, y∗, s∗) (there is a junction of ML at this scale-space location), it corre-
sponds to a local maximum at s∗ along each of the ML involved in that junction.
With this hypothesis, the elements of MaxML of interest are all in Max3D ; a
theoretical study should be carried out to settle to what extent this assumption
is valid.

3 Local Features Extraction from Wavelet Maxima Lines

3.1 Modulus Maxima at Each Scale

As shown before, the linear scale space representation of a bidimensional signal f
can be viewed as a continuous wavelet transform of this signal, using the wavelet
∆g and the L1 normalization. In practice, we use integer scales s = 1, 2, ..., smax

(the choice of smax depends on the size of the sought objects). Once the CWT
has been computed for all desired scales, we consider its modulus maxima :
for each scale s (1 ≤ s ≤ smax), we compute the local maxima of |Wf(., ., s)|
(using a 3x3 neighborhood) and we keep the wavelet coefficient Wf(x, y, s) as a
relevant information: its modulus quantifies the importance of the response and
its sign indicates the type of singularity. So a modulus maxima is characterized
by (x, y, s, v), where (x, y) is its location, s the associated scale and v the value
of Wf(x, y, s).

3.2 Construction of Wavelet Maxima Lines

In this section, we present a method for the effective construction of ML. In the
present context, the maximum principle ensures there is no interruption of the



ML when the scale decreases ([9]), while some ML may be interrupted when
the scale increases. When dealing with discrete data and increasing scales, a
technical difficulty may arise when some modulus maxima drift spatially by a
large amount between two integer scales ; for instance, this is the case when two
singularities with opposite signs interfere. In such a case, as the ML still exists
at this scale, the corresponding modulus maxima should be chained. An option
may consist of refining the scale discretization so that the spatial drift between
two successive scales is at most one pixel ; but this would entail an extremely
fine discretization in scale, and therefore a prohibitive algorithmic cost. That is
why we keep integer scales and propose an alternative rule.

Once modulus maxima are known at each scale, we chain them from scale s
to scale s + 1 (starting from the finest scale s = 1). At this step, one must give
rules for connecting a modulus maxima given by (x, y, s, v) to another at scale
s + 1. We first consider the 3x3 neighborhood of (x, y) at scale s + 1 ; if there
is one modulus maxima of the same sign in this neighborhood, we make the
connection (in case of several modulus maxima, we take the one with the larger
modulus). Otherwise, if the scale is sufficiently large (s > 3), we allow to connect
this modulus maxima to the closest modulus maxima of the same sign, provided
there is no modulus maxima of opposite sign between them ; for example, if
(x, y, s) and (x′, y,′ , s+1) are positive modulus maxima there should not be any
negative modulus maxima at scale s + 1 in the rectangle defined by the corners
(x, y) and (x′, y′). These rules ensure that a ML will not cross another ML with
opposite sign. So we obtain a set of ML which are chains of modulus maxima
{(x(s), y(s), s,Wf(x, y, s)), 1 ≤ s ≤ min(sint, smax)}.

3.3 Selection of Relevant Maxima Lines for Interest Point Detection

Among all ML (Lk)1≤k≤NML
(NML is the number of modulus maxima at the

finest scale), only few will be relevant. First, it is proved in [7] that for a white
noise, the number of modulus maxima decreases by a factor of 2 when the scale
increases by 2 on average. So in order to obtain a set of maxima lines of interest,
a basic condition is that these ML should persist until a sufficiently large scale
(s = 5). We also eliminate the ML on which the modulus of wavelet coefficient
is strictly increasing with scale since this will not correspond to a structure with
characteristic scale smaller than smax. Besides, as pointed out by Mallat in [7],
along the ML due to noise fluctuations, the modulus of wavelet coefficients de-
creases on average with scale (see Fig. 1 (B’)) so these are discarded. In the
framework proposed in [1], a rule based on the spatial stability of the ML has
been proposed for scale selection. Note that this criterion is valid in the case of
an isolated blob (no interference with other singularities). However, in a natural
scene, this criterion may lead to evidence only few structures, whereas appli-
cations in computer vision require a large number of features so as to lead to
satisfactory results. So there is a need for an alternative criterion to select the
scales of interest.



3.4 Characteristic Scale Computation – Junction of Maxima Lines

Given a relevant ML, it is possible to follow the evolution of the response along
this ML with respect to the scale s 7→ |Wf(x(s), y(s), s)|. We compute s∗ > srel

as the scale corresponding to the first local maximum of the modulus of wavelet
coefficients along this ML (in practice, the choice of srel = 4 avoids spurious
maxima due to noise). So, we obtain a potential interest point (x∗, y∗, s∗, v∗) for
each relevant ML, which is the first local maximum that is beyond the noise level.
Since we use an appropriate normalization, s∗ can be viewed as a characteristic
scale of the object, while (x∗, y∗) corresponds to its localization. As we will see
in the following section, this can be refined in a more precise estimation of the
object shape. In order to group some ML corresponding to the same object, the
criterion we propose here is based on the junction of ML : we group the ML
for which the values (x∗, y∗, s∗) computed previously are identical (in practice,
so as to avoid numerical approximation errors, we group ML whose values of
(x∗, y∗, s∗) are very close). So our method selects some points in scale-space
(x∗, y∗, s∗) where there is a junction of ML, and for which some ML involved in
that junction give a maximum response ; in practice, we note that this is valid
for all ML involved in the junction (nevertheless, this point should by studied
theoretically).

Now, let us see some examples of ML which simultaneously merge in scale-
space and for which the response attains a maximum along them. First, let us
take a one-dimensional example : we perform a 1D-CWT using the Sombrero
wavelet on the signal represented on the Fig. 1 (A) ; the skeleton of the ML
is shown on the Fig. 1 (A’). Note that the junction of ML evidences the main
structures in the signal and that the left structure gives rise to ML which merge
at a certain scale s but which are not spatially stable between scales s and s+2.
Furthermore, if we denote L1 the ML drifting from t = 448 to t = 512 and L2

the ML drifting from t = 576 to t = 512, we note that L1 and L2 merge at a
certain scale sj (on the basis of the skeleton of the ML). Then we retain the first
maximum (beyond the noise level) of the response along L1 and L2, attained
at the scale s∗, and observe that s∗ = sj (see Fig. 1 (A”)). So these two ML
of opposite signs have similar behaviors: spatially, each drifts one towards the
other, merge at s∗, and both give a maximum response at the scale of junction s∗.
In this regard, note that at the finest scales, each modulus maxima is associated
with a step singularity whereas at the scale sj where ML join, the associated
modulus maxima corresponds to a crenel singularity (made of two steps), thus
leading to a higher response.

Secondly, in a two-dimensional context, let us take a disk to which a Gaussian
white noise has been added (SNR = −1dB). Our method allows to follow the
spatial drift of the ML from the boundaries to the center of the object (see
Fig. 1 (B)). Along a ML corresponding to noise fluctuations (see Fig. 1 (B’)),
the response decreases rapidly as the scale increases. Along a ML associated
to a significant structure (see Fig. 1 (B”), considering scales sufficiently large
(beyond the noise level), we note that the first maximum corresponds to the
junction of all the ML associated to the object. In this case, the object gives



rise to different ML which merge progressively as the scale increases. Note also
that when some ML merge at a scale s1, it may not correspond to a maximum
of the response (the response may also increase after s1) ; in particular, the first
junction of ML tend to increase the response when it involves some ML whose
wavelet coefficients are of the same sign (at the scale of junction).
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Fig. 1. (A): 1d example of two blobs ; (A′): skeleton of ML ; (A′′): response along
a relevant ML ; (B): noisy disk and spatial drift (the junction is at (x∗, y∗, s∗) =
(64, 64, 18)); (B′): evolution of the response along a ML due to noise (focusing on finer
scales); (B′′): evolution of the response along a ML of interest.

3.5 Global Complexity

If we note N the size of the data and assuming smax << N , the computation of
the CWT takes O(Nlog2N) operations, thanks to the fast Fourier Transform,
and the computation of the local modulus maxima is done with O(N) operations.
If we note N1 the number of modulus maxima at the finest scale s = 1 (N1 < N)
the construction of the maxima lines is achieved with O(N1) operations (this step
is in fact time-consuming due to the complexity of the construction of each ML).
The following steps (selection of the ML, computation of the characteristic scale,
shape estimation) require O(N1) operations. Finally, the global computation cost
is O(Nlog2N).



4 Interest Point Determination and Shape Estimation

The proposed method based on maxima lines evidences a set of different objects
present in the image, more or less complex, called blob-like structures. Thanks to
the junction criterion, a blob-like structure can be represented by its associated
maxima lines (Li)i∈I . For each Li, we can follow the spatial drift (xi(s), yi(s))
and the evolution of the modulus of the wavelet coefficient |Wf(xi(s), yi(s), s)|
along Li with respect to the scale s. According to the junction criterion, we get
∀i ∈ I, (xi(s

∗
i ), yi(s

∗
i ), s

∗
i ) = (x∗, y∗, s∗). The drift of the ML (Li)i∈I from s = 1

to s = s∗ gives some geometric information on the structure, which allows an
estimation of its shape on the basis of the different origins of the ML (x0

i , y
0
i )i∈I

and their common peak (x∗, y∗, s∗).
Basically, we can see (x∗, y∗, s∗) as an interest point, the associated region

of interest being a circle centered at (x∗, y∗) and whose radius equals s∗. Alter-
natively, a geometrically based rule can be applied: for each ML Li, we com-
pute the distance between the peak localization (x∗, y∗) (i.e., the center of the
structure) and the origin of the ML (x0

i , y
0
i ) (i.e., the border of the structure),

defined as S∗
i =

√
(x∗ − x0

i )
2 + (y∗ − y0

i )2 ; then we define the interest point as
(X∗, Y ∗, S∗) = (x∗, y∗,median{S∗

i }). This new characteristic scale gives a ro-
bust estimation of the size of the structure (see [1]). Let us note that the convex
hull of the points {(x0

i , y
0
i )i ∈ I} is fully determined by {(x0

i , y
0
i )i ∈ K}, where

K is a subset of I, and that the polygon defined by this convex hull gives an
approximate shape of the structure. A smoother shape can also be obtained by
considering (x0

i , y
0
i )i∈K as the knots of a cubic spline curves ; nevertheless, one

should be careful, since very closed points may lead to distorted or inappropriate
shapes. Besides, note that this approach assumes that the structure is associated
to a sufficiently large number of ML ; otherwise, in the case of very few ML, the
shape estimation could be irrelevant.

A particular case is when we are looking for some ellipse-shaped regions,
which is linked to the detection of affine-invariant interest points. Lindeberg put
forward a method for the estimation of local deformations, based on a fixed-point
problem, which involves the second moment matrix defined in [4]. We propose
here to estimate directly this shape. The estimation of this ellipse can be written
as an optimization problem. Let α = (αi)1≤p≤6 ∈ R

6, we define Fα : R
2 −→ R by

Fα(x, y) = α1x
2 +α2y

2 +α3xy+α4x+α5y +α6, and then solve the least-square

problem : min
α

∑
k∈K

Fα(x0
k, y0

k)
2

(note that only the points that define the convex

hull are taken into account). Then, given an estimation α̂ of α the equation
of the sought ellipse is then Fα̂(x) = 0. A simplification can be obtained by
setting the center of the ellipse, for instance as (xc, yc) = (x∗, y∗). The equation
of this ellipse in the plane can be written as ZT AZ = 1, where Z is the vector
of centered coordinates and A a semi-definite positive matrix. We then compute
the matrix A and thus obtain the ellipse centered at (xc, yc) which fits at best
(in the least square sense) the points (x0

k, y0
k)k∈K . This choice is motivated by

the reduction of the number of parameters and the fact that (x∗, y∗) should be
close to the center of the ellipse (see results in the following section).
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Fig. 2. Basic examples of shape estimation. (A) and (A′): two nested blobs, and shape
estimation by the ellipse centered at (x∗, y∗) ; (B): interest points based on the peak
(x∗, y∗, s∗); (B′): interest points (x∗, y∗, S∗) (S∗ obtained by the rule of the median);
(C): convex hull of the origins of the ML (x0

i , y
0

i ) ; (C′): shape estimation by ellipses
based on (x0

k, y0

k)k∈K (K: convex hull).

5 Results

For a given image, we carry out an interest point detection by following the
different steps of our method. Once all ML are constructed, we select them on
the different criteria explained previously ; in this regard, note that most of the
rejected ML correspond to noise (see Tab. 1). Given the set of remaining ML,
the objects present in the image are then evidenced on the basis of the junction
criterion. Eventually, a slight thresholding on the modulus wavelet coefficient
should be performed, since low-response singularities may lead to non-significant
structures. Note that in the presence of noise, singularities at the finest scale
disappear as the noise level increases. So the construction of ML leads to a
much larger number of ML : most of them are due to noise, and only some of
them correspond to the sought objects. Besides, for a given object, there are
less relevant ML in the noisy case than in the original one (some of these are
destructed by the noise). Globally, in presence of noise, the selection step leads to
retain less than 1% of all ML on a geometric image, and about 20% on a natural
scene example and so our approach still applies in a noisy context. Moreover, we
observe that the junction criterion presented here leads to a satisfying number
of ML for each detected object.

Now, let us consider geometric images containing some objects known a

priori. First, considering two nested blobs (see Fig. 2(A)), we observe that
c∗ = (x∗, y∗) corresponds exactly to the actual center c. In the case of a main



Table 1. Numerical examples of our method applied to a geometric image (a disk
centered at (256, 256)) and a natural scene (classical image Barbara). In the noisy
case, a Gaussian white noise (SNR = −1dB) was added to the original image.

Image 512x512 Disk Noisy Disk Barbara Noisy Barbara

ML constructed 166 9769 4907 6592
ML due to noise 0 9694 3150 5253
Relevant ML 166 75 1736 1324
Objects 1 1 136 129

blob (denoted by 1) containing another blob (denoted by 2), we observe that if
c1 6= c2, the location of c∗1 does not correspond to its actual center c1 because of
the influence of the smaller blob 2 (see Fig. 2(A′)). Nevertheless, we note they
remain close (||c∗1 − c1|| = 6.4 pixels for an image of size 256x256). Secondly,
we apply our method on an image containing different ellipses. We observe that
the characteristic scale S∗ (based on an Euclidean distance – see section 4) ap-
proximately equals 2s∗ (see Fig. 2 (B) and (B′)) and the convex hull and the
fitted ellipse computed on the basis of the origins of the ML corresponding to
an object are very similar (see Fig. 2 (C) and (C ′)).

Thirdly, we consider an image of size 128x128 representing a disk with added
Gaussian white noise, and we apply our method to the image for different
noise levels. (for each noise level, we performed 100 simulations of images of
size 128x128). On the basis of the ML evidenced by our method, we are able
to compute a potential center cp by choosing either the coordinates of the
interest point c∗ = (x∗, y∗), either the barycenter of the origins of the ML
cb = (xb, yb) =

∑
k∈K wk(x0

k, y0
k) (where K is the convex hull and wk = 1

|K| )

or alternatively the center ce given by the direct estimation of the ellipse. Then
it is possible to compute the Euclidean distance between the actual center c of
the object and the potential center cp (cp = c∗, cb or ce) for each noise level. As
the noise level increases, c∗ appears as more stable than the barycenter cb (see
Fig. 3 (B)). This is mainly due to the fact that the noise destroys too many
relevant ML for a correct estimation of the barycenter (see Fig. 3 (A)). Further-
more, denoting A the area covered by the known object, and Ae the area of a
fitted ellipse, we are able to compute an overlap value, defined as Ae

A
∈ [0, 1].

Results are shown on Fig. 3 (C), for the different methods of ellipse fitting ex-
plained before. We observe that the best results are obtained when the center of
the ellipse is not fixed ; this shape estimation method being efficient provided
the points (x0

k, y0
k)k∈K allow a correct estimation of all the parameters of this

ellipse (which is the case for a geometric image). Nevertheless, note that the
objects detected in a natural scene image may be associated to few ML. So a
more efficient approach could be obtained by combining both (x∗, y∗) – stable
feature – and (x0

k, y0
k)k∈K – which gives a correct estimation of the ellipse in our

geometric image example.
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Fig. 3. Influence of noise on object shape estimation ; as the level of noise increases,
we represent (A) : Evolution of the number of ML (B) : Distance to the actual center,
(C) : Overlap between the object and the fitted ellipse using different approaches.

On natural scenes (see Fig. 4), we observe that some detected regions are
consistent with the visual content of the image. However, this is not the case
for all regions ; in particular, we note that in some cases, the origins of the ML
are almost collinear: this corresponds to some boundaries (edges, corners) which
give rise to some ML that join at a certain scale-space location (x∗, y∗, s∗). So
(x∗, y∗) is a stable feature, but it may be difficult to interpret it as the center
of an object, whereas the origins of the ML (x0

i , y
0
i )i∈I can be related to some

boundaries. Therefore future work should put forward some rules so as to set up
which geometry should be associated to these detected points.

6 Conclusion

In this paper we have presented a new method, which exploits the particular
structure of the linear scale-space. Starting from the singularities at the finest
scale, we build maxima lines in scale space. Their analysis leads to evidence dif-
ferent objects present in the image. We then obtain an interest point detector by
taking a certain maximum along these maxima lines. Eventually, an object shape
estimation can be performed, in addition to the computation of the localization
in scale-space.

Future work will be carried out in different directions. First, a theoretical
study should establish to what extent a junction of ML corresponds to a local
maxima of the response along these ML. Then, we will deal with affine trans-
formations, and lay the emphasis on repeatability tests (see [8]). Eventually we
will see how other operators than the Laplacian may be used, in particular the
rules that should be applied to construct empirically some extremum paths, and
the conditions that ensure their continuity from a theoretic point of view.
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Fig. 4. Natural Scenes Examples (image of sunflower and classical image Barbara);
(A) and (B): Interest point detection based on (x∗, y∗, s∗) ; (A) and (A’): Shape esti-
mation by performed on ellipses centered at (x∗, y∗) and estimated by (x0

k, y0

k)k∈K .
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