Bandwidth selection for kernel estimation in mixed multi-dimensional spaces

Aurelie Bugeau 1 Patrick Pérez 1
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Kernel estimation techniques, such as mean shift, suffer from one major drawback: the kernel bandwidth selection. The bandwidth can be fixed for all the data set or can vary at each points. Automatic bandwidth selection becomes a real challenge in case of multidimensional heterogeneous features. This paper presents a solution to this problem. It is an extension of \cite{Comaniciu03a} which was based on the fundamental property of normal distributions regarding the bias of the normalized density gradient. The selection is done iteratively for each type of features, by looking for the stability of local bandwidth estimates across a predefined range of bandwidths. A pseudo balloon mean shift filtering and partitioning are introduced. The validity of the method is demonstrated in the context of color image segmentation based on a 5-dimensional space.
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00171686
Contributeur : Rapport de Recherche Inria <>
Soumis le : vendredi 14 septembre 2007 - 10:34:56
Dernière modification le : vendredi 16 novembre 2018 - 01:30:44
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:25:28

Fichiers

RR-6286.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00171686, version 2
  • ARXIV : 0709.1920

Citation

Aurelie Bugeau, Patrick Pérez. Bandwidth selection for kernel estimation in mixed multi-dimensional spaces. [Research Report] RR-6286, INRIA. 2007. 〈inria-00171686v2〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

121