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ABSTRACT

The linearized Primitive Equations with vanishing viscosity are considered. Some new boundary
conditions (of transparent type) are introduced in the context of a modal expansion of the solution
which consist of an infinite sequence of integral equations. Applying the linear semi-group theory,
existence and uniqueness of solutions is established. The case with nonhomogeneous boundary
values, encountered in numerical simulations in limited domains, is also discussed.

INTRODUCTION

The Primitive Equations of the ocean and the atmosphere are fundamental equations of geo-
physical fluid mechanics ([14],[24],[20]). In the presence of viscosity, it has been shown, in various
contexts, that these equations are well-posed (see e.g. [9],[10], and the review article [23]).The vis-
cosity appearing in [9] is the usual second order dissipation term. Other viscosity terms have also
been considered as in the so-called §-PEs proposed with different motivations in [22] and [20]. It
has been shown in [15] and [22] that the mild vertical viscosity appearing in the §-PEs is sufficient
to guarantee well-posedness.

Tt is generally accepted that the viscosity terms do not affect numerical simulations (predictions)
in a limited domain, over a period of a few days, and these viscosities are generally not used, see
[25].

Now, for the PEs without viscosity, and to the best of our knowledge, no result of well-posedness
has ever been proven, since the negative result of Oliger and Sundstrom [12] showing that these
equations are ill-posed for any set of local boundary conditions (see also the analysis in [22]).
Whereas the analysis of the PEs with viscosity bears some similarity with that of the incompress-
ible Navier Stokes equations (see [9, 10, 23]), it is noteworthy that the result of [12] shows that the
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PEs without viscosity are definitely different from the Euler equations of fluid dynamics, and it is
expected that totally different boundary conditions of nonlocal type will be required.

In this article the full 2D-PEs, without viscosity, and linearized around a stratified state with
constant velocity are considered. The proposed boundary conditions are of a totally new type ;
they consist of nonlocal boundary conditions, defined mode by mode. The well-posedness of the
corresponding linearized PEs is established using the linear semi-group theory. Although the use
of the Hille-Yosida theorem in this context is classical, the verification of its hypotheses is not
straightforward.

Results concerning the linearized 3D-PEs will appear elsewhere. The additional difficulty in di-
mension three is that the verification of the hypotheses of the Hille-Yosida theorem necessitates the
solution of partial differential equations, whereas in space dimension two it involves the resolution
of ordinary differential equations.

A few words are in order about the nonlinear case which is our ultimate goal. Concerning well-
posedness, we are faced with boundary value problems for nonlinear hyperbolic systems of equations
in a limited domain, a subject not yet extensively studied (see however the important results of
[11, 4]). We believe and intend to prove that the appropriate boundary conditions for the nonlinear
PEs correspond in general to those of the corresponding linearized equations. In any case the study
of the well-posedness of the linear primitive equations is a necessary and important step for the
problem of well-posedness of the nonlinear PEs, and this fully justifies the attention devoted here
to the linearized PEs.

This article is organised as follows. In Section 1 we recall the PEs, describe the equations
linearized around the stratified flow, and perform the normal modes expansion, which evidences
as in [12, 22] the can not be well-posed for any problem when supplemented with a set of local
boundary conditions.

In Section 2 we introduce the boundary conditions which are distinct for the first set of modes
(called subcritical modes) and the remaining ones (called supercritical modes). The proposed
boundary conditions are furthermore of nonreflective (transparent) type (see e.g. [3, 6]), making
them appropriate for computations . This initial boundary value problem is then set as an abstract
linear evolution equation in a suitable Hilbert space (Section 2.1). The result of existence and
uniqueness of the solution is stated in Section 2.2, and Section 2.3 is devoted to the proof of the
hypotheses of the Hille-Yosida theorem. To conclude, we study in Section 2.4 the case, actually
encountered in numerical simulations, of nonhomogeneous boundary conditions.

1. ILL-POSEDNESS OF THE CLASSICAL PES

The Primitive Equations of the Ocean read :

ov . . _0v . _
(1.1) E+(V.V)v+w§+fk><v+Vp—F,
op .
1.2 -
(1.2) 5, ~ P9
(1.3) vv+@:0,
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(1.4) %—fﬂv.v)i‘wbg—f =Qr,
(1.5) p=po(l—a(l - Tp)).

In these equations v = (u,®) is the horizontal velocity, w the vertical velocity, p the pressure,
p the density, and T the temperature; g is the gravitational acceleration, and f the Coriolis
parameter. The horizontal gradient is denoted by V. Equation (1.5) is the equation of state of

the fluid, py and Ty are constant reference values of g and T', and a > 0; this equation of state is
linear.

Equation (1.2) is the so-called hydrostatic equation. The other equations correspond to the
Boussinesq approximation (see e.g. [14] and [20] for more details).

1.1. Reference flow and stratification.

We now consider a reference stratified flow with constant velocity vy = (Up,0) = Ug e, and
density, temperature and pressure of the form pg +p, To + T, po + P with dp/dz constant and thus

(1.6) T(z) = 2[—;2,

(17) P = maT()=- 22
(18) T = 2,

(1.9) P = -2

(1.10) Py = wotno

Here N is the buoyancy frequency, assumed to be constant.

We then decompose the unknown functions v, 5, T, p in the following way:

v = mez + V(337y=2=t)7
(1 11) ? = pO + E(Z) + p(w7y:z:t)7
' T = T + T(2) + T(z,y,z,t),
ﬁ = Do + p(z) + p($:y7z7t)'
Equations (1.2), (1.4) and (1.5) become
Ip
1.12 — =
(1.12) 5, ~ P9
(1.13) p=—poal,
T T N’
(1.14) aa_t + V)T +w g—z + oy w = Fr.

Restricting now to a 2D problem, we assume that all variables in (1.11) are independent of y
and we infer from (1.1)-(1.5) and (1.12),(1.13) the following equations for u, v, w, ¢ = p/pe and

3
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Y=¢.=agl:

ou — Ju ou ou ol
1.1 — -— - - _ -~ - F.
(1.15) 6t+U08m+u6m+w62 fu+ / ws
ov — Ov ov ov —
(1-16) E‘FUO%-FUE-F’LU&-FJCU = F‘v—on7

L R
(1.17) 8t+U08m+u8m+w82+Nw = Fy,
0
(1.18) e I
z Po
ou Ow
(1.19) mta = O

From equations (1.18) and (1.19)we find:

d¢ o, o
(1.20) o) = s [
0
(1.21) w(x,z) = (‘a—u(a:wz’)dz'7

., Oz

where ¢s(z,t) = ¢(x,z = 0,t) is the surface pressure, divided by pp, and ¢, its derivative with
respect to x.

The PEs (1.15)-(1.19), linearized around the stratified flow ¥y = Uy e,, 5, T, P, read:

0 — 0 0
(1.22) 6—7:+an—7;—}%+6—? - F,
ov — Ov _
(1.23) E-FU()%"‘J[U = F,— fUy,
oy o 2
(1'24) ot + Uy 6.’17+N = F,/M
0
(1.25) e I
z Po
ou Ow
(1.26) wta, O

We will consider the flow in the 2D domain M = (0, L) x (—Ls,0). Naturally, we supplement
equations (1.22)-(1.26) with the following top and bottom boundary conditions (just imposed by
kinematics):

(1.27) w(z,z = —L3,t) =w(z,z=0,t) =0, Vo € (0,L;),t > 0.

The aim of this article is to consider some lateral boundary conditions at z = 0 and =z = L,
that are both physically reasonable and computationnally satisfying' , and that lead to the well-
posedness of the problem (1.22)-(1.26).

1.2. Normal modes.

T Assuming that we are willing to pay the price of a nonlocal (mode by mode) boundary condition, for increased
accuracy; see [17] for an alternate solution and a discussion on this issue.
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We consider a normal mode decomposition of the solution of the following form (see [22] for the
details and the justifications):

(1.28) (,0,8) = > Un(2) (@b, B, bn) (. 1),
n>0

(1.29) (W, 1) = > Wa(2) (thn, Pn) (@, 1).
n>1

As explained in [22], for every n > 1 the functions U,, and W, are solutions of the following
eigenvalue problem:

Un

(1.30) () + Al = 0,
(1.31) Whn)z: + A2 N*W, = 0,
(1.32) U, = N’>Wycin,
(1.33) U = canWV,

. 1 Ci,n
1.34 A = = ——.
( ) " an Can

where ¢ p, 2., are appropriate constants and the A, the eigenvalues of these two-point boundary
value problems.
By (1.27) we should have:

(1.35) { U0) = U(-Ly) = 0

In a standard manner, we infer from (1.31) and the boundary conditions (1.35), that W, (z) =
Cp sin(A, N z) with
N? L3
7 2

(1.36) Ap =

and thus H,, =
N L gn

One of the constants ¢; ,, ¢2,, has not yet been imposed; we choose it by orthonormalization of
Wi, that is we set |[Wh||z2(~1,,0) = 1, and we find

(1.37) C, = \/ng’

so that C,, is in fact independent of n. The discussion above refers to the modes n > 1. For n = 0,
Ao = 0, so that W, vanishes identically, whereas U is constant. Finally we find:

1
(1.38) Uo(2) = v
and for n > 1:
Un(z) = %cos()\nNz) — Llcos(”'gz)
(1.39) 3 . ;
Wh(z) = ng sin(A\p, Nz) = ng Sm(nirgz)
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We notice that Vn > 1,m > 0, we have, as usual:

/ 0
[ th@Unrds = G,
J L
(1.40) / Upn(2) Wi(2)dz = 0,
JoL
3 Up(z) = =N A Wa(2),

L Wi(z) = N Un(2).

Remark 1.1. If we look for a solution “more general” than (1.28), (1.29), that is u = Zunan,
n>1

v = Z Vil , ¢ = Z ‘I>n<2>n, then (1.22) and (1.23) imply that U,,, V,,, ®,, are proportional, hence

n>1 n>1
they can be taken equal.

1.3. The modal equations for (ﬂmﬁmﬁ)n,@/}m({)n).

From now on and when no confusion can occur, we drop the hats and write (un, vy, Wy, ¥n, ¢n)

instead of (ty, 0n, Wp, U, g{)n) The constant mode in z (n=0) is different (simpler), and we post-
pone its study to Section 2.5 below. For every n > 1, since 9(z, z,t) = ¢.(z, z,t) we have:

(1.41) Un(@,) = — N Xn d(z, ).

We now introduce the expansion (1.28)-(1.29) into equations (1.22)-(1.26). We multiply (1.22)
(1.23) and (1.26) by U, (1.24) and (1.25) by W, and integrate on (—L3,0), and we find:

%Ltn + 70 %L;l? + f g = Fv,m
(1.42) %wf_" + m%w?a—" + NZ2uw, = Fyn,
_ 1
IS _N—)\nd)n’
w = 1 Ouy
L N, Oz
Taking into account the last two equations of (1.42) the first three become:
Ouy, 77 Ouy 1 O0Yn
o + Uy or fon - N, 9z Funs
(143) % + ﬁo%ia? + fun = Fv7n7
R AR y; T wiv; 73 = Fon

Let us now introduce the lateral boundary conditions which, for each n > 1, will supplement
this system.

1.4. Boundary conditions at x =0 and = = L;.

Looking at (1.43), we find that the characteristic values of this first order system are Uy — 1/,
Uy and Uy + 1/An; they are the eigenvalues of the matrix:
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o 0 len
A, = 0o T, 0
- Aﬂ 0o T,

n

Since Uy > 0, A, > 0, we always have at least two positive eigenvalues. But U, — 1/), can
either be positive or negative. We say that the corresponding mode is supercritical in the first case
and subcritical in the second case, it appears then that the subcritical modes require two boundary
values on the left of the domain (z = 0) and one boundary value on the right (x = L), whereas
the supercritical modes require three boundary values at z = 0. Based on this remark, Oliger
and Sundstrom concluded in [12] that the boundary value problem associated with (1.42)-(1.43)
is ill-posed for any set of local boundary conditions (see also [22]). Instead different boundary
conditions for the two types of modes must be provided and one of our aims in this article is to
show the well-posedness of the system consisting of (1.22)-(1.26) supplemented with an appropriate
set of boundary conditions.

Since A\, = nw/N Ly — 0o as n —» oo, there is only a finite number of subcritical modes, let
us say ne:

Definition 1.1. We denote by n. the number of subcritical modes, defined by:

Ne T 1 (ne+ )
N L; “ =T ot N L

In physical applications most of the modes are supercritical, but the few subcritical modes car-
rying most of the energy are particularly important.

The boundary conditions for the subcritical modes were discussed in [18, 17], they are recalled
below. The boundary conditions for the supercritical modes are less problematic, we now present
them. For n > n,, a set of natural boundary conditions for system (1.43) is:

un(0,t) =0,
(1.44) v (0,) = 0,
¥, (0,2) = 0.

In (1.44) and (1.46) we chose, for simplicity, homogeneous boundary conditions, but we discuss
in Section 2.4 below the case of nonzero boundary values.

For 1 < n < n., Uy — 1/A, < 0, and the corresponding eigenvector is 1,, = u, + ¥, /N. The
eigenvectors related to Uy and Uy + 1/, are respectively v,, and &, = u,, — ¥,/N. Thanks to
(1.41), we have, for n > 1, (&,,1n) = (Un + An O, Un — A Gn).

Using the variables &,, vy, 1, we rewrite (1.43) as follows:

aaftn + (Uo + P )85” — fuon = Fen,
(1'45) %}Tn + %’U_n + %f(fn +nn) = Fv7n7

Onn Onn

%oy wo b - b

Hence, for these subcritical modes (n < n.), a set of natural and nonreflective boundary condi-
tions is the following

£n(0,1)
(1.46) n (0, )

Nn(L1,t) =

0,
0,
0.
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In Section 2 of this article, we will prove the well-posedness of the linear Primitive Equations
(1.22)-(1.26) (equivalent mode by mode to (1.42)) with the modal boundary conditions (1.44) and
(1.46).

2. WELL-POSEDNESS OF THE LINEAR PRIMITIVE EQUATIONS WITH MODAL BOUNDARY
CONDITIONS

We aim to implement (1.44) and (1.46), and we first set the functional framework appropriate
to these boundary conditions.

2.1. Preliminary settings.

We aim to write the initial value problem under consideration as a functional evolution in an
appropriate Hilbert space H:

dt

Here A is an unbounded operator with domain D(A) C H, the forcing F' € H and the initial
data Uy € D(A) are given.
We define H by setting

(2.2) H =H, x H, x Hy,

dU + AU =F,
(2.1)

H, = {u € L*(M) / /OL u(z,z)dz =0 a.e. in (O,Ll)},

H,=Hy =L*(M),
where M is the 2D domain (0, L;) x (—L3,0). We endow H with the scalar product?

(2.3) (U,U)H:/M(uﬂ+vﬁ+%z/n/~1)d/\/l, Y(U,U) € H%

The space H, is clearly closed in L*(M), and H = H, x H, x Hy is a closed subspace of
(L*(M))3, which we endow with the scalar product and norm derived from (2.3) and equivalent
to those of (L2(M))3. We denote by P the orthogonal projector from L%(M) onto H,. For every
g € L*(M),

(2.4) P(9)(z.2) = g(0.5) - - [ g
(2.5) 1 -Pa)e) =7 [ gla)a

It is easily checked that Pg € H, and (I — P)g L Pg. Finally H;- is identical to L2(0,L;). In-
deed for g € H,-, (I—P) g = g, so that g does not depend on z and belongs to L2(0, L;). Conversely

if h € L2(0, Ly), then for every u € Hy, (u, h)r2(am) = le h(x) fELQ u(z,2)dzdr =0and h € H:.

0

2Tt is not surprising to have 1/N2 as a multiplicative coefficient in front of the last term of (U,U)g, since
fM u? 4+ v2dM represents the kinetic energy whereas 1/N?2 fM 1% dM is the available potential energy.
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We are now in position to define the operator A; its domain D(A) is defined by

(Ua, Vg, 15) € L*(M) }
(u,v,) verify (2.7) and (2.8)

Here and in the sequel u,,u, denote the partial derivatives du/0z, Ou/0z of a function wu.

(2.6) D(A) = {U = (u,0,0) € H |

The boundary conditions (2.7) and (2.8), identical to (1.44) and (1.46), are written in the
following form?:

([0 0
/ uw(0, 2) Un(z) dz — 1 (0, 2) Wi(2)dz =0,

s N J i,
(2.7) / v(0,2)Un(2)dz =0, V1< n<n,,
J-Ls Lo
[ uia@d+ g [ vt ez o,
\ J1; N J
and
( 0
/ w(0,2)Un(2)dz = 0,
~Ls
(2.8) v(0,2)Up(z)dz = 0, VYn > ne.
— Ly
0
/ (0,2) Wy, (z)dz = 0,
—Lg

For every U = (u,v,v) € D(A), AU is given by:

PlUou, — fv— /O Yy (z,2") d2']

Uy vy + fu
Ug by + N?w

where w = w(u) is given by (1.21).

(2.9) AU =

We now intend to prove, in the context of the linear semi-group theory ([26], [2], [1], [5], [7],

[13]), the well-posedness for equation (2.1), corresponding to the linearized PEs supplemented with
the boundary conditions (2.7) and (2.8).

2.2. The main result.

To prove the well-posedness of the initial value problem (2.1), we will use the following version
of the Hille-Yosida theorem borrowed from [1] (see also [2], [5],[7],[13],][26]):

3 3

Theorem 2.1. (Hille-Yosida Theorem) Let H be a Hilbert space and let A: D(A) — H be a
linear unbounded operator, with domain D(A) C H. Assume the following :

(i) D(A) is dense in H and A is closed,

(ii) A is > 0, i.e. (AU,U)g >0, VU € D(A),

(1) g > 0, such that A+ pol is onto.

3We note that the boundary conditions on v do not depend on the modes (see also the boundary condition on
the constant mode vg in Section 2.5 below), hence they could be written in the form »(0,2) = 0, Vz € (—Ls,0).
However we keep the modal notation by analogy with the other functions u and v, and because this is the way this
boundary condition is actually implemented in numerical simulations [19].
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Then —A is infinitesimal generator of a semigroup of contractions {S(t)}+>0 in H, and for every
Uo € H and F € L*(0,T; H), there exists a unique solution U € C([0,T]; H) of (2.1),

t
(2.10) U(t) =S(t) Uy + / S(t—s) F(s)ds.
Jo
If furthermore Uy € D(A) and F' = dF/dt € L'(0,T; H) then U satisfies (2.1) and

(2.11) U € (0, T); H) N L=(0,T; D(A)), ‘Z—If € L0, T; H).

The hypotheses of Theorem 2.1 being proved in Section 2.3, Theorem 2.1 readily implies our
main result for the homogeneous boundary conditions:

Theorem 2.2. Let H be the Hilbert space defined in (2.2) and A be the linear operator defined in
(2.9) corresponding to the linearized Primitive Equations with vanishing viscosity and homogeneous
modal boundary conditions.

Then the initial value problem (2.1), corresponding to equations (1.22)-(1.26) supplemented with
the boundary conditions (2.7) and (2.8) is well-posed, that is for every initial data Uy € D(A) and
forcing F € L*(0,T; H), there exists a unique solution U € C([0,T]; H) of (2.1).

2.3. Proof of Theorem 2.2.

We now want to apply Theorem 2.1 to equation (2.1). To this aim we verify the hypotheses (i),
(74) and (7i7) of the Hille-Yosida theorem (Theorem 2.1); we start with (ii) and (ii7), and postpone
the proof of (i) to Lemma 2.3 below. We start with the proof of (i7):

Lemma 2.1. For every U € D(A),(AU,U)g > 0.

Proof. For any U € H, let us compute the scalar product (AU, U)g:

0
(AU, U)g = / P(mumffvf/ Y (x, 2" d2") udM
Jm J=

+/M (ﬁng—l—fu)vd/\/l—l—/M (ﬁoww—l—NQw)%dM.

Since u € H,, we have, using (1.21):

0
(AU, U)y = /(ﬁoum—fv—/ Yz, 2') d2") udM
M z

+/M (ﬁgvz+fu)vdM+/M (m¢I+N2w)%dM

_ / 2 (1 (10) = w(0) + (1) = v7(0) + <3 9(Ta) = =5 97(0)) d=

Ly 2

_/M {“(”m) /ZO bz, 2") dz’ = 1p(z,2) /ZO uz(:v,z’)dz’}da:dz.
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Here u(Ly), u(0) stands for u(Lq, z), u(0, z), etc. Using the expansion (1.28), (1.29) with (1.39),
it is easy to check that:

r —/ Yo (z,2")d2' = Z%u—un(z))
z n>1 n
(2.12) = ba)- ) Qp]@w;:) Un(2),
/ ug(z,2)dz = — Z % Wi (2).

where § = #(z) is an L2-function depending only on x.

Using again the expansion (1.28), (1.29), and remembering that u € H,, the integral [, u6dM
vanishes and we find:

AU = Y20 (u2(00) —u2(0) + 02(E0) — v2(0) + 3 ¥ (L) — 15 ¥2(0))
n>1
ﬁ ) Ly
+?0 (’Ug(Ll) - 1)(2)(0)) - Z NlAn A (wnr Up + wn 'Ufnm) dz.

n>1

Using the boundary conditions (2.7) for the subcritical modes and (2.8) for the supercritical
ones, we find:

AU = Y () = () + 02 (E) + (1) — 2 (0)
1<n<n.
+%1)§(L1) + Z )\i (“2(L1) +“i(0))
1<n<n. "
+n§ % (ui(Ll) +v2 (L) + %1/)2@1))

For every subcritical mode (when n < n.):

Ty (1) = w200 + 5 02 (00)) + 1= (w2(20) +220)

— 1 Up . 1 —
= (o + ) ud(La) + 03 (0) + (- = To) u(0) > 05

the latter quantity is nonnegative, thanks to the definition of n.. For every supercritical mode
(when n > n,):

2 (L) + o) + 5 (L) = o (L) (L)
Uy - Ty 1 2 Ty 1
= 701)721(111)4‘70(Un(Ll)_md)n(Ll)) +21\(;2 (1_ﬁ02)\2)¢i(l’1)20'

This quantity is also nonnegative, which achieves the proof of Lemma 2.1. O
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In order to simplify the following study, we now assume that Uy is not a critical value, that is

3U0

— 1
(2.13) Uy & {—, n > 1}, or equivalently ¢ N.

An

The case where (2.13) is not satisfied (Uy = A,!) is actually simpler and will be discussed in
Remark 2.1 below. Assuming (2.13), we choose o such that:

(2.14) o ¢ {20 -To"X2), n>1},
(2.15) o ¢ { T2, n>1}.
With this choice of ug, we can prove the following lemma:

Lemma 2.2. The operator A + uol is onto from D(A) onto H, where u, satisfies (2.14) and
(2.15).

Proof. For g as indicated, we are given F = (F,, F,, Fy) in H, and we look for U = (u,v,%) in
D(A) such that (A + po I) U = F. Writing this equation componentwise, we find:

Upug(w,2) — fo(z,2) + pou(z,2)

210 / Yolz, #) '+ 6,(5) = Fula,)
Ug vy (, 2 +fu( 2)+wov(z,z) = F,(xz,2),
Up Yu(m,2) + N> w(w,2) + po ¥0(z,2) = Fy(w,2).

To obtain the modal equations corresponding to (2.16), we multiply the three equations by U,,
U, and W, respectively, and integrate on (—L3,0).

Of course, since F' = (Fy, Fy,, Fy) € H, we also have the following modal decompositions:

Fu(z,2) = Y Un(2)F

(2.17) Fy(z,2) = S U2)F
n>0
n>1

Note that for F as for U, since F, € H, C L}*(M), Fmo = 0 and the decomposition of F,, starts
from n = 1.

For the mode n = 0 (constant in the variable z), we only consider the first two equations, since
multiplying the third one by W, = 0 would be useless. Integrating the equation for v and reporting
in the equation for u (in which 4y = 0, see above), we find vg (formerly denoted 9y) and the surface
pressure ¢s, up to an additive constant ¢, (0):

T

vo(z) = U%] Fyo(a') ™ =m uo/Uo gy
0

bua) = O+ [ (rnte) - *Zwm ) da

We recall that the nth mode is now denoted by (s, Vn, Wy, ¥n, ¢n) instead of (Gy,, Un, Wy, 1/A)n,
¢n). Naturally, the above expression of ¢s depends on the other modes (n > 1). We now write the

(2.18)
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corresponding equations, derived from (2.16) mode by mode:

munz_fvn+uoun_N1An 1/)nz = Fu7n;
(2.19) Uovna + fn+povn = Fyn,
U_anTf)\ﬂ“nT'i‘/l[)djn = Fw,n-

n

We recall that the functions (uy,,v,,%,) only depend on the z variable. Hence (2.19) is just a
linear system of ordinary differential equations for wu,,, v, , ¥,.

As usual, to solve (2.19), we first consider the corresponding homogeneous system. Dropping

3

the subscripts n for the moment, we write:

77 d

Uo % - fv - Nl)\n ﬁ + pou = 0,
(2.20) L& + fu + pev = 0,

7 d N du -

The general solution of this linear system is of the form

3

(2.21) (w,v,9) = > (Ai, B;, C;) efi®

i=1

where the coefficients R; are as follows:

R, = -4,
(R Oy’ /
N 1/2
—,u0U0+—(,u0—f2 (Uo )\2—1))
Ry, = —2 1
(2.22) 0o 32
_ ) 1/2
—,liolfo—x(,uo—f2 (Uo )\2—1))
Ry = —2 1
L Uo =32

The (4;, B;, Ci)1<i<3 satisfy the equations:

Ai = ai By,
(2:23) { Ci = B,
with
ay = O,
(2.24) _ _fNA
1 = R] ’
and, for i = 2, 3:
0 = U Ri + o
(3 f 3
(2.25) . _NR; '
' A(Uo R; + o)
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Now, returning to the nonhomogeneous system (2.19), we look for a solution (u,,v,,¥,) =
(u,v,1) of the form:
3

(2.26) Y = (u,0,¢) = Z(%’; 1,¢;,)" Bi(z) e,

i=1
where the (a;,¢;) and R; have been defined above. Equation (2.19) reads then:
(2.27) MY'+NY =F,

where A = \,, and

= 1

Uo 0 —xx po —f 0

¥ o T 0 0 po
(2.29) F = (F,,F, Fy)

Thanks to assumption (2.13), Uy # 1/),, the matrix M is regular and it can be inverted.
Equation (2.27) then implies:
3
(2.30) Z(a,;,l,c,;)th(m) eflie = M~'F = F.
i=1
We now write the latter equation component by component. We find:

(2.31) A@).(B}(2), By(w), By(@))" = (Fi (a), Fa(a), Fu())",
with
0 ayefi2®  qgefia®
(2.32) Az) = efire efi2e efta®
crefre oy efl2r oo pBax

Let us check that the matrix A(z) is regular for every x € R; it is clearly sufficient to do so for
x = 0, for which

We call £y, L5 and L3 the lines of A(0). Tt is clear that £, and L. are linearly independent
vectors. Then if A(0) were not regular there would exist (a, 3) € R? such that £3 = a Ly + 3 La.
After some easy computations we would find that necessarily:

(233) as ((32 - (31) = a3 ((33 — (31),
which leads (see (2.24) and (2.25)) to:
(234) E(Rg —RQ) f2 )\2 = —UOR] (Rg —RQ).
From (2.14) we find that Ry # R3, and thanks to the definition of Ry equation (2.34) becomes:
(2.35) To 2% = i,

which contradicts (2.15). Thus the matrix A(z) is regular for every z € R.

Back to equation (2.31), and thanks to the latter result, the functions Bj(z) are uniquely deter-
mined for ¢ = 1,2,3. It remains to use the modal boundary conditions in order to determine the
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constants B;(0) and thus the functions B;(x).

At this point, it is desirable to reintroduce the indices n i.e. to return to the notation (t, vy, ),
since the boundary conditions depend on the mode considered. For the supercritical modes (n >
n¢), the modal boundary condition is the one of (1.44). We thus look for the B;(0) satisfying:

as B2 (O) + as Bq (0) = O,
(2.36) B (0) + By(0) + Bs5(0) 0,
C1 B1 (O) + Co B2 (O) + C3 Bq (0) O

The matrix of this system is again A(0) which was shown to be regular (see above). We conclude

that the constants B;(0) are uniquely determined by (2.36) and equal to zero. The functions B;(z)
for the supercritical modes (n > n.) are now fully determined.

If n < n., the mode is subcritical and we consider the boundary condition (1.46). We thus want
to solve the following system:

—N C1 B1 (0) + ((12 — N(’Q) BQ(O) + ((13 — N(33) B?(O) = 0,
(2.37) Bi(0) + B2(0) + Bs(0) = o0,
NC] B] (0) + (a2 + NCQ) BQ(O) + (ag + NCg) B3(0) = F,
where
3 L
(2.38) r=- Z/ (a; + N ¢;) Bj(x) da.

i=1
The quantity T' depends only on the data and on the B}, hence it is known at this stage. After
some computations and using hypotheses (2.14) and (2.15), we check that the matrix of the linear
system (2.37) is regular (same proof exactly as for A(0)). This achieves the determination of the
B; in the subcritical case, and the lemma is proved. (I

Remark 2.1. The case when there exists n > 1 such that Uy = 1/),, is slightly different and
actually simpler since the third equation (1.45) becomes On,(x,t)/0t = F), ,(t), which can be in-
tegrated directly. We note that no boundary condition (neither in the subcritical case nor in the
supercritical one) would then be required for n,, so that (2.7),(2.8) would have to be modified. But
we do not want to go into the details since this nongeneric situation seldom occurs in numerical
simulations.

To conclude there remains to prove the hypothesis (i) of the Hille-Yosida theorem, that is:
Lemma 2.3. The domain D(A) of A is dense in H, and the operator A is closed.
Proof. We first verify that the orthogonal in H of D(A), D(A)*, is reduced to {0}.

Let v be an element of D(A)*. Since A + pol is onto, there exists u € D(A) such that
(A4 pol)u =v. Then:

0= (,u)n = ((A+pol)u,u) > pollullf
hence u = v = 0, which implies that D(A)* = {0}, and D(A) is dense in H.

To show that A is closed, we consider a sequence (u;,v;,%;) = U; of D(A), such that :
(2.39) U, — UinH,
(2.40) AU;=F;, —— FinH,
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and we want to verify that U = (u,v,¢) € D(A) and F = AU, so that the graph of A is closed.

Thanks to (2.39), we know that

(2.41) u; — win H, C L*(M),
(2.42) v; — wvin L*(M).
We also find from (2.9) and (2.40) that
— dv; ‘
(2.43) o % + fu; — Fy in L2 (M),

Hence the sequence (dv;/dx);en is bounded in L?(M), and thanks to (2.42) we obtain that
vy € L2(M).

In view of proving that (u,,v,) € L?>(M), we consider the decomposition in normal modes,
introduced in Section 1.2. Thanks to (2.39), we have for every n > 1:

(2.44) ijn — iy in L*(0,Ly),
(2.45) Vjn —— Dnin L*(0,L;),
(2.46) Vjim — nin L3(0, L),

and the quantities Z W nl?, Z i n|* and Z 1hj n|? are bounded uniformly in j.
n>1 n>1 n>1

Similarly, we infer from (2.40) that for every n > 1:

— da;, 1 dipj, : .
(2.47) Uo :Zj’—fvn—NA S;”:Fgm —  F,, in L}(0,L,),
—dA'n N 1 .
(2.48) Uo ZJ“+,fu,n:an s F,,in L2(0,Ly),
. :
—dipj, N dij, ;
(2.49) To Z’; - Z; =F], — Fy,inL%0,L)

and the quantities Z \Fi’n\Q, Z |Fv7n\2 and Z |F131n‘2 are bounded uniformly in j.
n>1 n>1 n>1
Combining (2.47) and (2.49), we find that:
dfl,jm, 1

. _ Fi
2.50 = Uy F? Uo ¥in vy,
( ) dx mQ—l/Ai( 0 u,n+f OUJM+NAH)/

hence the (di;,,/dz)j>1 are bounded in L?(0, Ly) and (diy,/dz) € L*(0,L;). Moreover, we find
that*
dfl,jm,

Fj
—2 ; —2 . Y,n
@51 > S YW L+ TR il + |
n>1 dz 151>11]1 Uo = 1/XP° =1 N An

2 4 2
< );

so that the latter quantity is bounded uniformly in j. This guarantees that u, € L?(M). Following
the same idea, and using either (2.47) or (2.49), we also prove that ¢, € L?(M).

4Thanks to (2.13), we know that m>11} \%2 —1/A%| > 0.
n._
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To insure that U € D(A), we need to verify that the modal boundary conditions (1.44) and
(1.46) are satisfied by U. This is clear since the convergence of (@, 0j.n,%j.n) t0 (Un, On, ) is
in fact in H'(0, L;), so that the boundary conditions pass to the limit.

Finally, let us show that AU = F. Thanks to (2.39), we find that AU; - AU in D'(M), hence
AU = F in D'(M). We infer from U € D(A) that AU € L*(M), and conclude that AU = F in
L?(M), which ends the proof of Lemma 2.3. O

2.4. The case of nonhomogeneous boundary conditions.

In practical simulations, we want to solve the PEs with nonhomogeneous boundary conditions
on U at x = 0 and z = L;, that is U%! and U9". The latter are boundary values derived from a
solution U computed on a domain M larger than M® .

We discussed in Section 2.3 above the case when U9! = U9" = 0. The issue is now to determine
which components of U9 and U9" are needed to obtain a well-posed problem. In this context all
components of U%! and U9" are available but we know (or surmise at this point) that they will
not be all used, those used depending on the mode that we consider.

Based on the data U9!,U9", let us now construct the following U9 = (u?,v9,1)9):

(2.52) (w07, 97)(2,1) = 3 (Ul (0) U (2), 0 (U (2), ()W (2) )
n>1
where (ug,v9,19) are found using the boundary values U%! and U9 by:
uh(t) = j ) = ug'(t) - 5 v o),
(2.53) vi(t) = Ufm’l(t)a 1<n<n,
wh(0) + R ) = uh (1) + 3 v (),
ug(t) = uf'(t),
(2.54) vi(t) = vdl(t), n>n,.

i) = Pgl(),

We note that U9 is a function of z and ¢, and hence it does not depend on the horizontal
coordinate z. Setting F# = F — dU¢/dt and U = Uy — U$ where U = U9(t = 0), we will look
for U# solution of

dU#

@ L AU# = F#,

(2.55) di ’
U#(t=0)=UF.

Like (2.1) this equation corresponds to the case with homogeneous boundary conditions, and
Theorem 2.2 applies®. Writting U = U# + U9, we find that U is solution of (1.22) -(1.27), and the
boundary conditions of U at £ = 0 and x = L, are those of UY, that is for the subcritical modes
(1<n < ne):

5Assuming e.g. periodical boundary conditions for M.
6We will state in Theorem 2.3 below some assumptions on U9°! and U9" so that Ug?e and f# are as in Theorem
2.2.
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( 0 1 0
/ uw(0, z,8) Un(z)dz — —= (0, 2,8) Wi (z) dz
JoLs N J p,

0 0
= / w9 (2, 1) Up (2) dz — 1 VI (2, 1) Wa(2) dz,
J g N J p,

0 0

(2.56) / v(0,2,t) Un(2)dz = / v (2, 1) Un(2) dz,
J 1 Jors

0 0

1
[ uisn@ a5 [ etisnwae)ds
J Ly J Ly

1 0
:/ Wt (5 ) Un(2) dz b [ 0T Wa(2) dz,
Ly

—Ls

\

and for the supercritical ones (n > n.):

4 0 0
/ u(0,z,t) Un(2)dz = / u?l (2, t) Uy (2) dz,
—Lg — L3
0 0
(2.57) / v(0,z,t) Uy (2)dz = / vl (2, 1) Uy (2) dz,
— L3 — L3
0 0
(0,2, t) Wy(z)dz = Y9 (2, t) Wh(2) dz.
\ /L — Ly

Thus we have established the following result:

Theorem 2.3. Let H be the Hilbert space defined in (2.2) and A be the linear operator defined in
(2.9) corresponding to the linearized Primitive Equations with vanishing viscosity. We are given
the boundary values U%' and U9 which are in L' (0,T; L*(—Ls,0)%), together with their first time
derivative, F and F' = dF/dt € L*(0,T; H).

Then the initial value problem corresponding to equations (1.22)-(1.27), supplemented with the
boundary conditions (2.56) and (2.57) is well-posed, that is for every initial data Uy € UJ + D(A)7,
there ezists a unique solution U € C([0,T]; H) of (1.22)-(1.27) verifying (2.56) and (2.57).

2.5. The mode constant in z.

We now return to the mode constant in z, when n = 0. This mode does not raise any mathe-
matical difficulty, but it is fundamental in the numerical simulations, since it carries much energy.
Integrating (1.22),(1.23), and (1.26) on (—L3,0) we find:

3

aUO —8'LLO 8¢0
2.58 — 4+ Uy — — — = F,o,
(2.58) gt Ty Tty 0
Ovg — Oug
2.59 - Uy — L = Fv )
(2.59) gt Vo, Tuo 0
aUO
2.60 — = 0.
(2.60) o
We propose to supplement this system with the following boundary conditions:
(2.61) up(0,t) = w(t),
(2.62) vo(0,t) = w(t),

"This means that U has the same smoothness as a function of D(A) and (2.56),(2.57) are satisfied at ¢ = 0.
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with u;, v; given (not necessarily zero, as in Section 2.4).

Then, since dug/dx = 0, ug does not depend on x, and it is thus equal to u;(t) everywhere, so
that (2.61) means in fact that

(2.63) ugp(z,t) = w(t), V(x,t) € (0,L1) x RY.
Introducing (2.63) in (2.59), we find that:
0 — 0 —
(2.64) LT 22 = Fo— f (T +w).
ot ox

When we supplement (2.64) with the boundary condition (2.62), we have a simple well-posed
problem and v is given in terms of the data by integration along the characteristics.

Finally, since both uy and vg are known, equation (2.58) gives @g, up to an additive constant
(as expected):

Oug

(265) d)U(T,f) = d)g(o,f) + 'Aw{fq)o(m’7t) — W(T’,f)}drrl

= ¢o(0,t) —zu(t)+ f /w vo(z', t)dx'.
0
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