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Dis
rete and Continuous Dynami
al Systems, 2005, to appear.BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THEOCEAN IN THE ABSENCE OF VISCOSITYA. ROUSSEAU[, R. TEMAM[�, AND J. TRIBBIA℄[Laboratoire d'Analyse Num�erique, Universit�e Paris{Sud, Orsay, Fran
e.�The Institute for S
ienti�
 Computing and Applied Mathemati
s,Indiana University, Bloomington, IN, USA.℄National Center for Atmospheri
 Resear
h, Boulder, Colorado, USA.Abstra
tThe linearized Primitive Equations with vanishing vis
osity are 
onsidered. Some new boundary
onditions (of transparent type) are introdu
ed in the 
ontext of a modal expansion of the solutionwhi
h 
onsist of an in�nite sequen
e of integral equations. Applying the linear semi-group theory,existen
e and uniqueness of solutions is established. The 
ase with nonhomogeneous boundaryvalues, en
ountered in numeri
al simulations in limited domains, is also dis
ussed.Introdu
tionThe Primitive Equations of the o
ean and the atmosphere are fundamental equations of geo-physi
al 
uid me
hani
s ([14℄,[24℄,[20℄). In the presen
e of vis
osity, it has been shown, in various
ontexts, that these equations are well-posed (see e.g. [9℄,[10℄, and the review arti
le [23℄).The vis-
osity appearing in [9℄ is the usual se
ond order dissipation term. Other vis
osity terms have alsobeen 
onsidered as in the so-
alled Æ-PEs proposed with di�erent motivations in [22℄ and [20℄. Ithas been shown in [15℄ and [22℄ that the mild verti
al vis
osity appearing in the Æ-PEs is suÆ
ientto guarantee well-posedness.It is generally a

epted that the vis
osity terms do not a�e
t numeri
al simulations (predi
tions)in a limited domain, over a period of a few days, and these vis
osities are generally not used, see[25℄.Now, for the PEs without vis
osity, and to the best of our knowledge, no result of well-posednesshas ever been proven, sin
e the negative result of Oliger and Sundstr�om [12℄ showing that theseequations are ill-posed for any set of lo
al boundary 
onditions (see also the analysis in [22℄).Whereas the analysis of the PEs with vis
osity bears some similarity with that of the in
ompress-ible Navier Stokes equations (see [9, 10, 23℄), it is noteworthy that the result of [12℄ shows that theDate: May 23, 2005.2000 Mathemati
s Subje
t Classi�
ation: 35L50, 76N10, 47D06, 86A05.Keywords: Nonvis
ous Primitive Equations, semi-group theory, well-posedness, limited domains, transparentboundary 
onditions 1



2 ROUSSEAU, TEMAM, AND TRIBBIAPEs without vis
osity are de�nitely di�erent from the Euler equations of 
uid dynami
s, and it isexpe
ted that totally di�erent boundary 
onditions of nonlo
al type will be required.In this arti
le the full 2D-PEs, without vis
osity, and linearized around a strati�ed state with
onstant velo
ity are 
onsidered. The proposed boundary 
onditions are of a totally new type ;they 
onsist of nonlo
al boundary 
onditions, de�ned mode by mode. The well-posedness of the
orresponding linearized PEs is established using the linear semi-group theory. Although the useof the Hille-Yosida theorem in this 
ontext is 
lassi
al, the veri�
ation of its hypotheses is notstraightforward.Results 
on
erning the linearized 3D-PEs will appear elsewhere. The additional diÆ
ulty in di-mension three is that the veri�
ation of the hypotheses of the Hille-Yosida theorem ne
essitates thesolution of partial di�erential equations, whereas in spa
e dimension two it involves the resolutionof ordinary di�erential equations.A few words are in order about the nonlinear 
ase whi
h is our ultimate goal. Con
erning well-posedness, we are fa
ed with boundary value problems for nonlinear hyperboli
 systems of equationsin a limited domain, a subje
t not yet extensively studied (see however the important results of[11, 4℄). We believe and intend to prove that the appropriate boundary 
onditions for the nonlinearPEs 
orrespond in general to those of the 
orresponding linearized equations. In any 
ase the studyof the well-posedness of the linear primitive equations is a ne
essary and important step for theproblem of well-posedness of the nonlinear PEs, and this fully justi�es the attention devoted hereto the linearized PEs.This arti
le is organised as follows. In Se
tion 1 we re
all the PEs, des
ribe the equationslinearized around the strati�ed 
ow, and perform the normal modes expansion, whi
h eviden
esas in [12, 22℄ the 
an not be well-posed for any problem when supplemented with a set of lo
alboundary 
onditions.In Se
tion 2 we introdu
e the boundary 
onditions whi
h are distin
t for the �rst set of modes(
alled sub
riti
al modes) and the remaining ones (
alled super
riti
al modes). The proposedboundary 
onditions are furthermore of nonre
e
tive (transparent) type (see e.g. [3, 6℄), makingthem appropriate for 
omputations . This initial boundary value problem is then set as an abstra
tlinear evolution equation in a suitable Hilbert spa
e (Se
tion 2.1). The result of existen
e anduniqueness of the solution is stated in Se
tion 2.2, and Se
tion 2.3 is devoted to the proof of thehypotheses of the Hille-Yosida theorem. To 
on
lude, we study in Se
tion 2.4 the 
ase, a
tuallyen
ountered in numeri
al simulations, of nonhomogeneous boundary 
onditions.1. Ill-posedness of the 
lassi
al PEsThe Primitive Equations of the O
ean read :(1.1) �~v�t + (~v:r) ~v + ~w �~v�z + f k � ~v +r~p = F;(1.2) �~p�z = �~� g;(1.3) r ~v + � ~w�z = 0;



BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THE OCEAN 3(1.4) � ~T�t + (~v:r) ~T + ~w � ~T�z = QT ;(1.5) ~� = �0 (1� � ( ~T � T0)):In these equations ~v = (~u; ~v) is the horizontal velo
ity, ~w the verti
al velo
ity, ~p the pressure,~� the density, and ~T the temperature; g is the gravitational a

eleration, and f the Coriolisparameter. The horizontal gradient is denoted by r. Equation (1.5) is the equation of state ofthe 
uid, �0 and T0 are 
onstant referen
e values of ~� and ~T , and � > 0; this equation of state islinear.Equation (1.2) is the so-
alled hydrostati
 equation. The other equations 
orrespond to theBoussinesq approximation (see e.g. [14℄ and [20℄ for more details).1.1. Referen
e 
ow and strati�
ation.We now 
onsider a referen
e strati�ed 
ow with 
onstant velo
ity v0 = (U0; 0) = U0 ex, anddensity, temperature and pressure of the form �0+ �, T0+T , p0+ p with dp=dz 
onstant and thusT (z) = N2� g z;(1.6) �(z) = ��0 �T (z) = ��0N2g z;(1.7) dTdz (z) = N2� g ;(1.8) d�dz (z) = ��0g N2;(1.9) dpdz (z) = �(�0 + �) g:(1.10)Here N is the buoyan
y frequen
y, assumed to be 
onstant.We then de
ompose the unknown fun
tions ~v; ~�; ~T ; ~p in the following way:(1.11) 8>><>>: ~v = U0 ex + v(x; y; z; t);~� = �0 + �(z) + �(x; y; z; t);~T = T0 + T (z) + T (x; y; z; t);~p = p0 + p(z) + p(x; y; z; t):Equations (1.2), (1.4) and (1.5) be
ome�p�z = �� g;(1.12) � = ��0 �T ;(1.13) �T�t + (~v:r)T + w �T�z + N2�g w = FT :(1.14)Restri
ting now to a 2D problem, we assume that all variables in (1.11) are independent of yand we infer from (1.1)-(1.5) and (1.12),(1.13) the following equations for u, v, w, � = p=�0 and



4 ROUSSEAU, TEMAM, AND TRIBBIA = �z = � g T : �u�t + U0 �u�x + u �u�x + w �u�z � f v + ���x = Fu;(1.15) �v�t + U0 �v�x + u �v�x + w �v�z + f u = Fv � f U0;(1.16) � �t + U0 � �x + u � �x + w � �z +N2 w = F ;(1.17) ���z = � ��0 g =  ;(1.18) �u�x + �w�z = 0:(1.19)From equations (1.18) and (1.19)we �nd:���x (x; z) = �0s(x) � Z 0z � �x (x; z0) dz0;(1.20) w(x; z) = Z 0z �u�x (x; z0) dz0;(1.21)where �s(x; t) = �(x; z = 0; t) is the surfa
e pressure, divided by �0, and �0s its derivative withrespe
t to x.The PEs (1.15)-(1.19), linearized around the strati�ed 
ow v0 = U0 ex; �; T ; p, read:�u�t + U0 �u�x � f v + ���x = Fu;(1.22) �v�t + U0 �v�x + f u = Fv � f U0;(1.23) � �t + U0 � �x +N2 w = F ;(1.24) ���z = � ��0 g =  ;(1.25) �u�x + �w�z = 0:(1.26)We will 
onsider the 
ow in the 2D domain M = (0; L1)� (�L3; 0). Naturally, we supplementequations (1.22)-(1.26) with the following top and bottom boundary 
onditions (just imposed bykinemati
s):(1.27) w(x; z = �L3; t) = w(x; z = 0; t) = 0; 8x 2 (0; L1); t > 0:The aim of this arti
le is to 
onsider some lateral boundary 
onditions at x = 0 and x = L1that are both physi
ally reasonable and 
omputationnally satisfying1 , and that lead to the well-posedness of the problem (1.22)-(1.26).1.2. Normal modes.1Assuming that we are willing to pay the pri
e of a nonlo
al (mode by mode) boundary 
ondition, for in
reaseda

ura
y; see [17℄ for an alternate solution and a dis
ussion on this issue.



BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THE OCEAN 5We 
onsider a normal mode de
omposition of the solution of the following form (see [22℄ for thedetails and the justi�
ations):(1.28) (u; v; �) =Xn�0Un(z) (ûn; v̂n; �̂n) (x; t);(1.29) (w; ) =Xn�1Wn(z) (ŵn;  ̂n) (x; t):As explained in [22℄, for every n � 1 the fun
tions Un and Wn are solutions of the followingeigenvalue problem: � UnN2 �zz + �2n Un = 0;(1.30) (Wn)zz + �2nN2Wn = 0;(1.31) U 0n = N2Wn 
1;n;(1.32) Un = 
2;nW 0n;(1.33) �2n = 1gHn = �
1;n
2;n :(1.34)where 
1;n; 
2;n are appropriate 
onstants and the �n the eigenvalues of these two-point boundaryvalue problems.By (1.27) we should have:(1.35) � Wn(0) = Wn(�L3) = 0;U 0n(0) = U 0n(�L3) = 0:In a standard manner, we infer from (1.31) and the boundary 
onditions (1.35), that Wn(z) =Cn sin(�nN z) with(1.36) �n = n�N L3 and thus Hn = N2 L23g n2 �2 :One of the 
onstants 
1;n, 
2;n has not yet been imposed; we 
hoose it by orthonormalization ofWn, that is we set kWnkL2(�L3;0) = 1, and we �nd(1.37) Cn =r 2L3 ;so that Cn is in fa
t independent of n. The dis
ussion above refers to the modes n � 1. For n = 0,�0 = 0, so that W0 vanishes identi
ally, whereas U0 is 
onstant. Finally we �nd:(1.38) U0(z) = 1pL3 ;and for n � 1:(1.39) 8<: Un(z) = q 2L3 
os(�nN z) = q 2L3 
os(n� zL3 );Wn(z) = q 2L3 sin(�nN z) = q 2L3 sin(n� zL3 ):



6 ROUSSEAU, TEMAM, AND TRIBBIAWe noti
e that 8n � 1;m � 0, we have, as usual:(1.40) 8>>>>>>><>>>>>>>:
Z 0�L3 Un(z)Um(z) dz = Æn;m;Z 0�L3 Un(z)Wm(z) dz = 0;U 0n(z) = �N �nWn(z);W 0n(z) = N �n Un(z):Remark 1.1. If we look for a solution \more general" than (1.28), (1.29), that is u = Xn�1Unûn,v =Xn�1Vnv̂n , � =Xn�1�n�̂n; then (1.22) and (1.23) imply that Un;Vn;�n are proportional, hen
ethey 
an be taken equal.1.3. The modal equations for (ûn; v̂n; ŵn;  ̂n; �̂n).From now on and when no 
onfusion 
an o

ur, we drop the hats and write (un; vn; wn;  n; �n)instead of (ûn; v̂n; ŵn;  ̂n; �̂n). The 
onstant mode in z (n=0) is di�erent (simpler), and we post-pone its study to Se
tion 2.5 below. For every n � 1, sin
e  (x; z; t) = �z(x; z; t) we have:(1.41)  n(x; t) = �N �n �n(x; t):We now introdu
e the expansion (1.28)-(1.29) into equations (1.22)-(1.26). We multiply (1.22),(1.23) and (1.26) by Un, (1.24) and (1.25) by Wn and integrate on (�L3; 0), and we �nd:

(1.42) 8>>>>>>>>>>><>>>>>>>>>>>:
�un�t + U0 �un�x � f vn + ��n�x = Fu;n;�vn�t + U0 �vn�x + f un = Fv;n;� n�t + U0 � n�x + N2 wn = F ;n;�n = � 1N �n n;wn = � 1N �n �un�x :Taking into a

ount the last two equations of (1.42) the �rst three be
ome:(1.43) 8>>>><>>>>: �un�t + U0 �un�x � f vn � 1N �n � n�x = Fu;n;�vn�t + U0 �vn�x + f un = Fv;n;� n�t + U0 � n�x � N�n �un�x = F ;n:Let us now introdu
e the lateral boundary 
onditions whi
h, for ea
h n � 1, will supplementthis system.1.4. Boundary 
onditions at x = 0 and x = L1.Looking at (1.43), we �nd that the 
hara
teristi
 values of this �rst order system are U0�1=�n,U0 and U0 + 1=�n; they are the eigenvalues of the matrix:



BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THE OCEAN 7An = 0BB� U0 0 � 1N �n0 U0 0�N�n 0 U0 1CCA :Sin
e U0 > 0, �n > 0, we always have at least two positive eigenvalues. But U0 � 1=�n 
aneither be positive or negative. We say that the 
orresponding mode is super
riti
al in the �rst 
aseand sub
riti
al in the se
ond 
ase, it appears then that the sub
riti
al modes require two boundaryvalues on the left of the domain (x = 0) and one boundary value on the right (x = L1), whereasthe super
riti
al modes require three boundary values at x = 0. Based on this remark, Oligerand Sundstr�om 
on
luded in [12℄ that the boundary value problem asso
iated with (1.42)-(1.43)is ill-posed for any set of lo
al boundary 
onditions (see also [22℄). Instead di�erent boundary
onditions for the two types of modes must be provided and one of our aims in this arti
le is toshow the well-posedness of the system 
onsisting of (1.22)-(1.26) supplemented with an appropriateset of boundary 
onditions.Sin
e �n = n�=N L3 �!1 as n �!1, there is only a �nite number of sub
riti
al modes, letus say n
:De�nition 1.1. We denote by n
 the number of sub
riti
al modes, de�ned by:n
 �N L3 = �n
 � 1U0 < �n
+1 = (n
 + 1)�N L3 :In physi
al appli
ations most of the modes are super
riti
al, but the few sub
riti
al modes 
ar-rying most of the energy are parti
ularly important.The boundary 
onditions for the sub
riti
al modes were dis
ussed in [18, 17℄, they are re
alledbelow. The boundary 
onditions for the super
riti
al modes are less problemati
, we now presentthem. For n > n
, a set of natural boundary 
onditions for system (1.43) is:(1.44) 8<: un(0; t) = 0;vn(0; t) = 0; n(0; t) = 0:In (1.44) and (1.46) we 
hose, for simpli
ity, homogeneous boundary 
onditions, but we dis
ussin Se
tion 2.4 below the 
ase of nonzero boundary values.For 1 � n � n
, U0 � 1=�n < 0, and the 
orresponding eigenve
tor is �n = un +  n=N . Theeigenve
tors related to U0 and U0 + 1=�n are respe
tively vn and �n = un �  n=N . Thanks to(1.41), we have, for n � 1, (�n; �n) = (un + �n �n; un � �n �n).Using the variables �n; vn; �n we rewrite (1.43) as follows:(1.45) 8>>>><>>>>: ��n�t + (U0 + 1�n ) ��n�x � f vn = F�;n;�vn�t + U0 �vn�x + 12 f (�n + �n) = Fv;n;��n�t + (U0 � 1�n ) ��n�x = F�;n:Hen
e, for these sub
riti
al modes (n � n
), a set of natural and nonre
e
tive boundary 
ondi-tions is the following(1.46) 8<: �n(0; t) = 0;vn(0; t) = 0;�n(L1; t) = 0:



8 ROUSSEAU, TEMAM, AND TRIBBIAIn Se
tion 2 of this arti
le, we will prove the well-posedness of the linear Primitive Equations(1.22)-(1.26) (equivalent mode by mode to (1.42)) with the modal boundary 
onditions (1.44) and(1.46).2. Well-posedness of the linear primitive equations with modal boundary
onditionsWe aim to implement (1.44) and (1.46), and we �rst set the fun
tional framework appropriateto these boundary 
onditions.2.1. Preliminary settings.We aim to write the initial value problem under 
onsideration as a fun
tional evolution in anappropriate Hilbert spa
e H :(2.1) ( dUdt +AU = F;U(0) = U0:Here A is an unbounded operator with domain D(A) � H , the for
ing F 2 H and the initialdata U0 2 D(A) are given.We de�ne H by setting(2.2) H = Hu �Hv �H ;Hu = nu 2 L2(M) = Z 0�L3 u(x; z) dz = 0 a.e. in (0; L1)o;Hv = H = L2(M);where M is the 2D domain (0; L1)� (�L3; 0). We endow H with the s
alar produ
t2(2.3) (U; ~U)H = ZM(u ~u+ v ~v + 1N2  ~ ) dM; 8(U; ~U) 2 H2:The spa
e Hu is 
learly 
losed in L2(M), and H = Hu � Hv � H is a 
losed subspa
e of(L2(M))3, whi
h we endow with the s
alar produ
t and norm derived from (2.3) and equivalentto those of (L2(M))3. We denote by P the orthogonal proje
tor from L2(M) onto Hu. For everyg 2 L2(M), P (g)(x; z) = g(x; z)� 1L3 Z 0�L3 g(x; z0) dz0;(2.4) (I � P )(g)(x; z) = 1L3 Z 0�L3 g(x; z0) dz0:(2.5)It is easily 
he
ked that Pg 2 Hu and (I � P )g ? Pg. Finally H?u is identi
al to L2x(0; L1). In-deed for g 2 H?u , (I�P ) g = g, so that g does not depend on z and belongs to L2x(0; L1). Converselyif h 2 L2x(0; L1), then for every u 2 Hu, (u; h)L2(M) = R L10 h(x) R 0�L3 u(x; z)dz dx = 0 and h 2 H?u .2It is not surprising to have 1=N2 as a multipli
ative 
oeÆ
ient in front of the last term of (U; ~U)H , sin
eRM u2 + v2dM represents the kineti
 energy whereas 1=N2 RM  2 dM is the available potential energy.



BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THE OCEAN 9We are now in position to de�ne the operator A; its domain D(A) is de�ned by(2.6) D(A) = nU = (u; v;  ) 2 H = ���� (ux; vx;  x) 2 L2(M)(u; v;  ) verify (2.7) and (2.8) o:Here and in the sequel ux; uz denote the partial derivatives �u=�x, �u=�z of a fun
tion u.The boundary 
onditions (2.7) and (2.8), identi
al to (1.44) and (1.46), are written in thefollowing form3:(2.7) 8>>>>>>><>>>>>>>:
Z 0�L3 u(0; z)Un(z) dz � 1N Z 0�L3  (0; z)Wn(z) dz = 0;Z 0�L3 v(0; z)Un(z) dz = 0;Z 0�L3 u(L1; z)Un(z) dz + 1N Z 0�L3  (L1; z)Wn(z) dz = 0; 8 1 � n � n
;and(2.8) 8>>>>>>><>>>>>>>:

Z 0�L3 u(0; z)Un(z) dz = 0;Z 0�L3 v(0; z)Un(z) dz = 0;Z 0�L3  (0; z)Wn(z) dz = 0; 8n > n
:For every U = (u; v;  ) 2 D(A), AU is given by:(2.9) AU = 0BB� P �U0 ux � f v � Z 0z  x(x; z0) dz0�U0 vx + f uU0  x +N2 w 1CCAwhere w = w(u) is given by (1.21).We now intend to prove, in the 
ontext of the linear semi-group theory ([26℄, [2℄, [1℄, [5℄, [7℄,[13℄), the well-posedness for equation (2.1), 
orresponding to the linearized PEs supplemented withthe boundary 
onditions (2.7) and (2.8).2.2. The main result.To prove the well-posedness of the initial value problem (2.1), we will use the following versionof the Hille-Yosida theorem borrowed from [1℄ (see also [2℄, [5℄,[7℄,[13℄,[26℄):Theorem 2.1. (Hille-Yosida Theorem) Let H be a Hilbert spa
e and let A : D(A) �! H be alinear unbounded operator, with domain D(A) � H. Assume the following :(i) D(A) is dense in H and A is 
losed,(ii) A is � 0, i.e. (AU;U)H � 0, 8U 2 D(A),(iii) 9�0 > 0, su
h that A+ �0I is onto.3We note that the boundary 
onditions on v do not depend on the modes (see also the boundary 
ondition onthe 
onstant mode v0 in Se
tion 2.5 below), hen
e they 
ould be written in the form v(0; z) = 0; 8z 2 (�L3; 0).However we keep the modal notation by analogy with the other fun
tions u and  , and be
ause this is the way thisboundary 
ondition is a
tually implemented in numeri
al simulations [19℄.



10 ROUSSEAU, TEMAM, AND TRIBBIAThen �A is in�nitesimal generator of a semigroup of 
ontra
tions fS(t)gt�0 in H, and for everyU0 2 H and F 2 L1(0; T ;H), there exists a unique solution U 2 C([0; T ℄;H) of (2.1),(2.10) U(t) = S(t)U0 + Z t0 S(t� s)F (s) ds:If furthermore U0 2 D(A) and F 0 = dF=dt 2 L1(0; T ;H) then U satis�es (2.1) and(2.11) U 2 C([0; T ℄;H) \ L1(0; T ;D(A)); dUdt 2 L1(0; T ;H):The hypotheses of Theorem 2.1 being proved in Se
tion 2.3, Theorem 2.1 readily implies ourmain result for the homogeneous boundary 
onditions:Theorem 2.2. Let H be the Hilbert spa
e de�ned in (2.2) and A be the linear operator de�ned in(2.9) 
orresponding to the linearized Primitive Equations with vanishing vis
osity and homogeneousmodal boundary 
onditions.Then the initial value problem (2.1), 
orresponding to equations (1.22)-(1.26) supplemented withthe boundary 
onditions (2.7) and (2.8) is well-posed, that is for every initial data U0 2 D(A) andfor
ing F 2 L1(0; T ;H), there exists a unique solution U 2 C([0; T ℄;H) of (2.1).2.3. Proof of Theorem 2.2.We now want to apply Theorem 2.1 to equation (2.1). To this aim we verify the hypotheses (i),(ii) and (iii) of the Hille-Yosida theorem (Theorem 2.1); we start with (ii) and (iii), and postponethe proof of (i) to Lemma 2.3 below. We start with the proof of (ii):Lemma 2.1. For every U 2 D(A); (AU;U)H � 0.Proof. For any U 2 H , let us 
ompute the s
alar produ
t (AU;U)H :(AU;U)H = ZM P (U0 ux � f v � Z 0z  x(x; z0) dz0)u dM+ ZM (U0 vx + f u) v dM+ ZM (U0  x +N2 w)  N2 dM:Sin
e u 2 Hu, we have, using (1.21):(AU;U)H = ZM (U0 ux � f v � Z 0z  x(x; z0) dz0)u dM+ ZM (U0 vx + f u) v dM+ ZM (U0  x +N2 w)  N2 dM= Z 0�L3 U02 �u2(L1)� u2(0) + v2(L1)� v2(0) + 1N2  2(L1)� 1N2  2(0)� dz� ZM nu(x; z) Z 0z  x(x; z0) dz0 �  (x; z) Z 0z ux(x; z0) dz0o dx dz:
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. Using the expansion (1.28), (1.29) with (1.39),it is easy to 
he
k that:(2.12) 8>>>>>>>><>>>>>>>>:
� Z 0z  x(x; z0) dz0 = Xn�1  n x(x)N �n (1� Un(z))= �(x)�Xn�1  n x(x)N �n Un(z);Z 0z ux(x; z0) dz0 = �Xn�1 unx(x)N �n Wn(z):where � = �(x) is an L2-fun
tion depending only on x.Using again the expansion (1.28), (1.29), and remembering that u 2 Hu, the integral RM u � dMvanishes and we �nd:(AU;U)H = Xn�1 U02 �u2n(L1)� u2n(0) + v2n(L1)� v2n(0) + 1N2  2n(L1)� 1N2  2n(0)�+U02 �v20(L1)� v20(0)��Xn�1 1N �n Z L10 ( n x un +  n unx) dx:Using the boundary 
onditions (2.7) for the sub
riti
al modes and (2.8) for the super
riti
alones, we �nd:(AU;U)H = X1�n�n
 U02 �u2n(L1)� u2n(0) + v2n(L1) + u2n(L1)� u2n(0)�+U02 v20(L1) + X1�n�n
 1�n �u2n(L1) + u2n(0)�+ Xn>n
 U02 �u2n(L1) + v2n(L1) + 1N2  2n(L1)�� Xn>n
 1N �n un(L1) n(L1):For every sub
riti
al mode (when n � n
):U0 �u2n(L1)� u2n(0) + 12 v2n(L1)�+ 1�n �u2n(L1) + u2n(0)�= (U0 + 1�n )u2n(L1) + U02 v2n(L1) + ( 1�n � U0)u2n(0) � 0;the latter quantity is nonnegative, thanks to the de�nition of n
. For every super
riti
al mode(when n > n
):U02 �u2n(L1) + v2n(L1) + 1N2  2n(L1)�� 1N �n un(L1) n(L1)= U02 v2n(L1) + U02 �un(L1)� 1U0N �n  n(L1)�2 + U02N2 �1� 1U02 �2n� 2n(L1) � 0:This quantity is also nonnegative, whi
h a
hieves the proof of Lemma 2.1. �



12 ROUSSEAU, TEMAM, AND TRIBBIAIn order to simplify the following study, we now assume that U0 is not a 
riti
al value, that is(2.13) U0 62 n 1�n ; n � 1o; or equivalently N L3 U0� 62 N:The 
ase where (2.13) is not satis�ed (U0 = ��1n ) is a
tually simpler and will be dis
ussed inRemark 2.1 below. Assuming (2.13), we 
hoose �0 su
h that:�0 62 nf2 (1� U02 �2n); n � 1o;(2.14) �0 62 nf2 U02 �2n; n � 1o:(2.15)With this 
hoi
e of �0, we 
an prove the following lemma:Lemma 2.2. The operator A + �0I is onto from D(A) onto H, where �o satis�es (2.14) and(2.15).Proof. For �0 as indi
ated, we are given F = (Fu; Fv ; F ) in H , and we look for U = (u; v;  ) inD(A) su
h that (A+ �0 I)U = F . Writing this equation 
omponentwise, we �nd:(2.16) 8>>>>><>>>>>: U0 ux(x; z)� f v(x; z) + �0 u(x; z)� Z 0z  x(x; z0) dz0 + �0s(x) = Fu(x; z);U0 vx(x; z) + f u(x; z) + �0 v(x; z) = Fv(x; z);U0  x(x; z) +N2 w(x; z) + �0  (x; z) = F (x; z):To obtain the modal equations 
orresponding to (2.16), we multiply the three equations by Un,Un and Wn respe
tively, and integrate on (�L3; 0).Of 
ourse, sin
e F = (Fu; Fv; F ) 2 H , we also have the following modal de
ompositions:(2.17) 8>>>>>><>>>>>>: Fu(x; z) = Xn�1Un(z) F̂u;n(x);Fv(x; z) = Xn�0Un(z) F̂v;n(x);F (x; z) = Xn�1Wn(z) F̂ ;n(x):Note that for F as for U , sin
e Fu 2 Hu � L2(M), F̂u;0 = 0 and the de
omposition of Fu startsfrom n = 1.For the mode n = 0 (
onstant in the variable z), we only 
onsider the �rst two equations, sin
emultiplying the third one byW0 = 0 would be useless. Integrating the equation for v and reportingin the equation for u (in whi
h û0 = 0, see above), we �nd v0 (formerly denoted v̂0) and the surfa
epressure �s, up to an additive 
onstant �s(0):(2.18) 8>>><>>>: v0(x) = 1U0 Z x0 Fv 0(x0) e(x0�x)�0=U0 dx0;�s(x) = �s(0) + Z x0 �f v0(x0)� L23� Xn�1 n x(x0)� dx0:We re
all that the nth mode is now denoted by (un; vn; wn;  n; �n) instead of (ûn, v̂n, ŵn,  ̂n,�̂n). Naturally, the above expression of �s depends on the other modes (n � 1). We now write the
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orresponding equations, derived from (2.16) mode by mode:(2.19) 8>>><>>>: U0 unx � f vn + �0 un � 1N �n  n x = Fu;n;U0 vn x + f un + �0 vn = Fv;n;U0  nx � N�n unx + �0  n = F ;n:We re
all that the fun
tions (un; vn;  n) only depend on the x variable. Hen
e (2.19) is just alinear system of ordinary di�erential equations for un; vn;  n.As usual, to solve (2.19), we �rst 
onsider the 
orresponding homogeneous system. Droppingthe subs
ripts n for the moment, we write:(2.20) 8>>>><>>>>: U0 dudx � f v � 1N �n d dx + �0 u = 0;U0 dvdx + f u + �0 v = 0;U0 d dx + N�n dudx + �0  = 0:The general solution of this linear system is of the form(2.21) (u; v;  ) = 3Xi=1(Ai; Bi; Ci) eRi xwhere the 
oeÆ
ients Ri are as follows:
(2.22) 8>>>>>>>>>>><>>>>>>>>>>>:

R1 = ��0U0 ;R2 = ��0 U0 + 1���20 � f2 (U02 �2 � 1)�1=2U02 � 1�2 ;R3 = ��0 U0 � 1���20 � f2 (U02 �2 � 1)�1=2U02 � 1�2 :The (Ai; Bi; Ci)1�i�3 satisfy the equations:(2.23) � Ai = aiBi;Ci = 
iBi;with(2.24) ( a1 = 0;
1 = �f N �R1 ;and, for i = 2; 3:(2.25) 8><>: ai = �U0Ri + �0f ;
i = N Ri� (U0Ri + �0) :



14 ROUSSEAU, TEMAM, AND TRIBBIANow, returning to the nonhomogeneous system (2.19), we look for a solution (un; vn;  n) =(u; v;  ) of the form:(2.26) Y = (u; v;  )t = 3Xi=1(ai; 1; 
i; )tBi(x) eRi x;where the (ai; 
i) and Ri have been de�ned above. Equation (2.19) reads then:(2.27) M Y 0 +N Y = F;where � = �n and M = 0B� U0 0 � 1N �0 U0 0�N� 0 U0 1CA ; N = 0� �0 �f 0f �0 00 0 �0 1A ;(2.28) F = (Fu; Fv ; F )t:(2.29)Thanks to assumption (2.13), U0 6= 1=�n, the matrix M is regular and it 
an be inverted.Equation (2.27) then implies:(2.30) 3Xi=1(ai; 1; 
i)tB0i(x) eRi x =M�1F =: ~F :We now write the latter equation 
omponent by 
omponent. We �nd:(2.31) �(x):(B01(x); B02(x); B03(x))t = ( ~F1(x); ~F2(x); ~F3(x))t;with(2.32) �(x) = 0� 0 a2 eR2 x a3 eR3 xeR1 x eR2 x eR3 x
1 eR1 x 
2 eR2 x 
3 eR3 x 1A :Let us 
he
k that the matrix �(x) is regular for every x 2 R; it is 
learly suÆ
ient to do so forx = 0, for whi
h �(0) = 0� 0 a2 a31 1 1
1 
2 
3 1A :We 
all L1, L2 and L3 the lines of �(0). It is 
lear that L1 and L2 are linearly independentve
tors. Then if �(0) were not regular there would exist (�; �) 2 R2 su
h that L3 = �L1 + � L2.After some easy 
omputations we would �nd that ne
essarily:(2.33) a3 (
2 � 
1) = a2 (
3 � 
1);whi
h leads (see (2.24) and (2.25)) to:(2.34) U0 (R3 �R2) f2 �2 = ��0R1 (R3 �R2):From (2.14) we �nd that R2 6= R3, and thanks to the de�nition of R1 equation (2.34) be
omes:(2.35) U02 f2 �2 = �20;whi
h 
ontradi
ts (2.15). Thus the matrix �(x) is regular for every x 2 R.Ba
k to equation (2.31), and thanks to the latter result, the fun
tions B0i(x) are uniquely deter-mined for i = 1; 2; 3. It remains to use the modal boundary 
onditions in order to determine the
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onstants Bi(0) and thus the fun
tions Bi(x).At this point, it is desirable to reintrodu
e the indi
es n i.e. to return to the notation (un; vn;  n),sin
e the boundary 
onditions depend on the mode 
onsidered. For the super
riti
al modes (n >n
), the modal boundary 
ondition is the one of (1.44). We thus look for the Bi(0) satisfying:(2.36) 8<: a2B2(0) + a3B3(0) = 0;B1(0) + B2(0) + B3(0) = 0;
1B1(0) + 
2B2(0) + 
3B3(0) = 0:The matrix of this system is again �(0) whi
h was shown to be regular (see above). We 
on
ludethat the 
onstants Bi(0) are uniquely determined by (2.36) and equal to zero. The fun
tions Bi(x)for the super
riti
al modes (n > n
) are now fully determined.If n � n
, the mode is sub
riti
al and we 
onsider the boundary 
ondition (1.46). We thus wantto solve the following system:(2.37) 8<: �N 
1B1(0) + (a2 �N 
2)B2(0) + (a3 �N 
3)B3(0) = 0;B1(0) + B2(0) + B3(0) = 0;N 
1B1(0) + (a2 +N 
2)B2(0) + (a3 +N 
3)B3(0) = �;where(2.38) � = � 3Xi=1 Z L10 (ai +N 
i)B0i(x) dx:The quantity � depends only on the data and on the B0i, hen
e it is known at this stage. Aftersome 
omputations and using hypotheses (2.14) and (2.15), we 
he
k that the matrix of the linearsystem (2.37) is regular (same proof exa
tly as for �(0)). This a
hieves the determination of theBi in the sub
riti
al 
ase, and the lemma is proved. �Remark 2.1. The 
ase when there exists n � 1 su
h that U0 = 1=�n is slightly di�erent anda
tually simpler sin
e the third equation (1.45) be
omes ��n(x; t)=�t = F�;n(t), whi
h 
an be in-tegrated dire
tly. We note that no boundary 
ondition (neither in the sub
riti
al 
ase nor in thesuper
riti
al one) would then be required for �n so that (2.7),(2.8) would have to be modi�ed. Butwe do not want to go into the details sin
e this nongeneri
 situation seldom o

urs in numeri
alsimulations.To 
on
lude there remains to prove the hypothesis (i) of the Hille-Yosida theorem, that is:Lemma 2.3. The domain D(A) of A is dense in H, and the operator A is 
losed.Proof. We �rst verify that the orthogonal in H of D(A), D(A)?, is redu
ed to �0	.Let v be an element of D(A)?. Sin
e A + �0I is onto, there exists u 2 D(A) su
h that(A+ �0I)u = v. Then: 0 = (v; u)H = �(A+ �0I)u; u�H � �0kuk2H ;hen
e u = v = 0, whi
h implies that D(A)? = �0	, and D(A) is dense in H .To show that A is 
losed, we 
onsider a sequen
e (uj ; vj ;  j) = Uj of D(A), su
h that :Uj �! U in H;(2.39) AUj = Fj �! F in H;(2.40)



16 ROUSSEAU, TEMAM, AND TRIBBIAand we want to verify that U = (u; v;  ) 2 D(A) and F = AU , so that the graph of A is 
losed.Thanks to (2.39), we know thatuj �! u in Hu � L2(M);(2.41) vj �! v in L2(M):(2.42)We also �nd from (2.9) and (2.40) that(2.43) U0 dvjdx + f uj �! F2 in L2(M):Hen
e the sequen
e (dvj=dx)j2N is bounded in L2(M), and thanks to (2.42) we obtain thatvx 2 L2(M).In view of proving that (ux;  x) 2 L2(M), we 
onsider the de
omposition in normal modes,introdu
ed in Se
tion 1.2. Thanks to (2.39), we have for every n � 1:ûj;n �! ûn in L2(0; L1);(2.44) v̂j;n �! v̂n in L2(0; L1);(2.45)  ̂j;n �!  ̂n in L2(0; L1);(2.46)and the quantities Xn�1 jûj nj2, Xn�1 jv̂j nj2 and Xn�1 j ̂j nj2 are bounded uniformly in j.Similarly, we infer from (2.40) that for every n � 1:U0 dûj;ndx � f vn � 1N �n d ̂j;ndx = F ju;n �! Fu;n in L2(0; L1);(2.47) U0 dv̂j;ndx + f ûn = F jv;n �! Fv;n in L2(0; L1);(2.48) U0 d ̂j;ndx � N�n dûj;ndx = F j ;n �! F ;n in L2(0; L1);(2.49)and the quantities Xn�1 jF ju;nj2, Xn�1 jF jv;nj2 and Xn�1 jF j ;nj2 are bounded uniformly in j.Combining (2.47) and (2.49), we �nd that:(2.50) dûj;ndx = 1U02 � 1=�2n (U0 F ju;n + f U0 v̂j;n + F j ;nN �n );hen
e the (dûj;n=dx)j�1 are bounded in L2(0; L1) and (dûn=dx) 2 L2(0; L1). Moreover, we �ndthat4(2.51) Xn�1 ���dûj;ndx ���2 � 4minn�1 jU02 � 1=�2nj2 Xn�1(U02jF ju;nj2 + f2U02 jv̂j;nj2 + ��� F j ;nN �n ���2);so that the latter quantity is bounded uniformly in j. This guarantees that ux 2 L2(M). Followingthe same idea, and using either (2.47) or (2.49), we also prove that  x 2 L2(M).4Thanks to (2.13), we know that minn�1 jU02 � 1=�2nj > 0.



BOUNDARY CONDITIONS FOR THE 2D LINEARIZED PES OF THE OCEAN 17To insure that U 2 D(A), we need to verify that the modal boundary 
onditions (1.44) and(1.46) are satis�ed by U . This is 
lear sin
e the 
onvergen
e of (ûj;n; v̂j;n;  ̂j;n) to (ûn; v̂n;  ̂n) isin fa
t in H1(0; L1), so that the boundary 
onditions pass to the limit.Finally, let us show that AU = F . Thanks to (2.39), we �nd that AUj ! AU in D0(M), hen
eAU = F in D0(M). We infer from U 2 D(A) that AU 2 L2(M), and 
on
lude that AU = F inL2(M), whi
h ends the proof of Lemma 2.3. �2.4. The 
ase of nonhomogeneous boundary 
onditions.In pra
ti
al simulations, we want to solve the PEs with nonhomogeneous boundary 
onditionson U at x = 0 and x = L1, that is Ug;l and Ug;r. The latter are boundary values derived from asolution ~U 
omputed on a domain ~M larger than M5 .We dis
ussed in Se
tion 2.3 above the 
ase when Ug;l = Ug;r = 0. The issue is now to determinewhi
h 
omponents of Ug;l and Ug;r are needed to obtain a well-posed problem. In this 
ontext all
omponents of Ug;l and Ug;r are available but we know (or surmise at this point) that they willnot be all used, those used depending on the mode that we 
onsider.Based on the data Ug;l,Ug;r, let us now 
onstru
t the following Ug = (ug; vg ;  g):(2.52) (ug; vg ;  g)(z; t) =Xn�1�ugn(t)Un(z); vgn(t)Un(z);  gn(t)Wn(z)�;where (ugn; vgn;  gn) are found using the boundary values Ug;l and Ug;r by:(2.53) 8>><>>: ugn(t)� 1N  gn(t) = ug;ln (t)� 1N  g;ln (t);vgn(t) = vg;ln (t);ugn(t) + 1N  gn(t) = ug;rn (t) + 1N  g;rn (t); 1 � n � n
;
(2.54) 8<: ugn(t) = ug;ln (t);vgn(t) = vg;ln (t); gn(t) =  g;ln (t); n > n
:We note that Ug is a fun
tion of z and t, and hen
e it does not depend on the horizontal
oordinate x. Setting F# = F � dUg=dt and U#0 = U0 � Ug0 where Ug0 = Ug(t = 0), we will lookfor U# solution of(2.55) 8<: dU#dt +AU# = F#;U#(t = 0) = U#0 :Like (2.1) this equation 
orresponds to the 
ase with homogeneous boundary 
onditions, andTheorem 2.2 applies6. Writting U = U#+Ug, we �nd that U is solution of (1.22) -(1.27), and theboundary 
onditions of U at x = 0 and x = L1 are those of Ug, that is for the sub
riti
al modes( 1 � n � n
):5Assuming e.g. periodi
al boundary 
onditions for ~M.6We will state in Theorem 2.3 below some assumptions on Ug;l and Ug;r so that U#0 and f# are as in Theorem2.2.
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(2.56)

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Z 0�L3 u(0; z; t)Un(z) dz � 1N Z 0�L3  (0; z; t)Wn(z) dz= Z 0�L3 ug;l(z; t)Un(z) dz � 1N Z 0�L3  g;l(z; t)Wn(z) dz;Z 0�L3 v(0; z; t)Un(z) dz = Z 0�L3 vg;l(z; t)Un(z) dz;Z 0�L3 u(L1; z; t)Un(z) dz + 1N Z 0�L3  (L1; z; t)Wn(z) dz= Z 0�L3 ug;r(z; t)Un(z) dz + 1N Z 0�L3  g;r(z; t)Wn(z) dz;and for the super
riti
al ones (n > n
):(2.57) 8>>>>>>><>>>>>>>:

Z 0�L3 u(0; z; t)Un(z) dz = Z 0�L3 ug;l(z; t)Un(z) dz;Z 0�L3 v(0; z; t)Un(z) dz = Z 0�L3 vg;l(z; t)Un(z) dz;Z 0�L3  (0; z; t)Wn(z) dz = Z 0�L3  g;l(z; t)Wn(z) dz:Thus we have established the following result:Theorem 2.3. Let H be the Hilbert spa
e de�ned in (2.2) and A be the linear operator de�ned in(2.9) 
orresponding to the linearized Primitive Equations with vanishing vis
osity. We are giventhe boundary values Ug;l and Ug;r whi
h are in L1�0; T ;L2(�L3; 0)3�, together with their �rst timederivative, F and F 0 = dF=dt 2 L1(0; T ;H).Then the initial value problem 
orresponding to equations (1.22)-(1.27), supplemented with theboundary 
onditions (2.56) and (2.57) is well-posed, that is for every initial data U0 2 Ug0 +D(A)7,there exists a unique solution U 2 C([0; T ℄;H) of (1.22)-(1.27) verifying (2.56) and (2.57).2.5. The mode 
onstant in z.We now return to the mode 
onstant in z, when n = 0. This mode does not raise any mathe-mati
al diÆ
ulty, but it is fundamental in the numeri
al simulations, sin
e it 
arries mu
h energy.Integrating (1.22),(1.23), and (1.26) on (�L3; 0) we �nd:�u0�t + U0 �u0�x � f v0 + ��0�x = Fu;0;(2.58) �v0�t + U0 �v0�x + f u0 = Fv;0;(2.59) �u0�x = 0:(2.60)We propose to supplement this system with the following boundary 
onditions:u0(0; t) = ul(t);(2.61) v0(0; t) = vl(t);(2.62)7This means that U0 has the same smoothness as a fun
tion of D(A) and (2.56),(2.57) are satis�ed at t = 0.
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essarily zero, as in Se
tion 2.4).Then, sin
e �u0=�x = 0, u0 does not depend on x, and it is thus equal to ul(t) everywhere, sothat (2.61) means in fa
t that(2.63) u0(x; t) = ul(t); 8(x; t) 2 (0; L1)� R�+ :Introdu
ing (2.63) in (2.59), we �nd that:(2.64) �v0�t + U0 �v0�x = Fv;0 � f (U0 + ul):When we supplement (2.64) with the boundary 
ondition (2.62), we have a simple well-posedproblem and v0 is given in terms of the data by integration along the 
hara
teristi
s.Finally, sin
e both u0 and v0 are known, equation (2.58) gives �0, up to an additive 
onstant(as expe
ted): �0(x; t) = �0(0; t) + Z x0 ff v0(x0; t)� �u0�t (x0; t)gdx0(2.65) = �0(0; t)� xu0l(t) + f Z x0 v0(x0; t)dx0:A
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