Boundary Conditions for an Ocean Related System with a Small Parameter

Abstract : A linear system derived from the Primitive Equations (PEs) of the atmosphere and the ocean is considered. Existence and uniqueness of solutions, behavior as a small viscosity parameter tends to zero are studied for different boundary conditions ; one of the boundary condition is of Dirichlet type and it produces reflections of waves at the boundary, the other one is of transparent type. Computational issues are addressed in a companion paper [RTT04], which also contains more details on the derivation of the system that we study here.
Type de document :
Article dans une revue
American Mathematical Society, 2005, Contemporary Mathematics, Nonlinear Partial Differential Equations and Related Analysis, 371
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00172515
Contributeur : Antoine Rousseau <>
Soumis le : lundi 17 septembre 2007 - 14:19:55
Dernière modification le : jeudi 11 janvier 2018 - 06:12:18
Document(s) archivé(s) le : vendredi 9 avril 2010 - 02:17:51

Fichier

RTT05a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00172515, version 1

Collections

Citation

Antoine Rousseau, Roger Temam, Joe Tribbia. Boundary Conditions for an Ocean Related System with a Small Parameter. American Mathematical Society, 2005, Contemporary Mathematics, Nonlinear Partial Differential Equations and Related Analysis, 371. 〈inria-00172515〉

Partager

Métriques

Consultations de la notice

401

Téléchargements de fichiers

78