Outdoor Obstacle Detection and Localisation with Monovision and 3D Geographical Database

Cindy Cappelle 1 Maan El Badaoui El Najjar 2, 3 François Charpillet 2 Denis Pomorski 3
2 MAIA - Autonomous intelligent machine
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
3 STF - Systèmes Tolérants aux Fautes
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : In this paper, an obstacle detection approach for downtown environments is developed. This approach exploits a 3D geographical database managed by a 3D-GIS and a monovision-based system. The pose estimated by a LRK GPS is used to geo-localise the vehicle. After coordinates system conversion, the vehicle is localised in the 3D geographical database. An image processing module is developed to match synchronized images provided by 3D GIS and an on-board camera. Several kinds of obstacles are then detected and tracked by comparison between real images and virtual images. Finally, the distance between the camera and the obstacles is computed, as well as the geo-position of the detected obstacles. Experimental results with real data are presented in the final section.
Type de document :
Communication dans un congrès
The 10th International IEEE Conference on Intelligent Transportation Systems - ITSC'07, Oct 2007, Seattle, United States. IEEE, pp.1102-1107, 2007
Liste complète des métadonnées

https://hal.inria.fr/inria-00172651
Contributeur : Maan El Badaoui El Najjar <>
Soumis le : lundi 17 septembre 2007 - 16:01:44
Dernière modification le : mardi 3 juillet 2018 - 11:47:29

Identifiants

  • HAL Id : inria-00172651, version 1

Collections

Citation

Cindy Cappelle, Maan El Badaoui El Najjar, François Charpillet, Denis Pomorski. Outdoor Obstacle Detection and Localisation with Monovision and 3D Geographical Database. The 10th International IEEE Conference on Intelligent Transportation Systems - ITSC'07, Oct 2007, Seattle, United States. IEEE, pp.1102-1107, 2007. 〈inria-00172651〉

Partager

Métriques

Consultations de la notice

352