D. V. Arnold and H. Beyer, Local performance of the (1 + 1)-ES in a noisy environment, IEEE Transactions on Evolutionary Computation, vol.6, issue.1, pp.30-41, 2002.
DOI : 10.1109/4235.985690

E. Atanassov, On the discrepancy of the halton sequences, Math. Balkanica, vol.18, issue.12, p.1532, 2004.

A. Auger, Convergence results for the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>??</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-SA-ES using the theory of <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>??</mml:mi></mml:math>-irreducible Markov chains, Theoretical Computer Science, vol.334, issue.1-3, pp.35-69, 2005.
DOI : 10.1016/j.tcs.2004.11.017

A. Auger and N. Hansen, Reconsidering the progress rate theory for evolution strategies in finite dimensions, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.445-452, 2006.
DOI : 10.1145/1143997.1144081

A. Bienvenüe and O. Fancois, Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties, Theoretical Computer Science, vol.306, issue.1-3, pp.269-289, 2003.
DOI : 10.1016/S0304-3975(03)00284-6

E. Braaten and G. Weller, An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration, Journal of Computational Physics, vol.33, issue.2, pp.249-258, 1979.
DOI : 10.1016/0021-9991(79)90019-6

R. Cranley and T. Patterson, Randomization of Number Theoretic Methods for Multiple Integration, SIAM Journal on Numerical Analysis, vol.13, issue.6, p.904914, 1976.
DOI : 10.1137/0713071

J. Dennis and V. Torczon, Managing approximation models in optimization, Multidisciplinary Design Optimization: State of the Art, 1996.

B. Denton, Review of " stochastic optimization: Algorithms and applications " by Stanislav Uryasev and Panos M. Pardalos, Interfaces, vol.33, issue.1, pp.100-102, 2001.

H. Faure, Good permutations for extreme discrepancy, Journal of Number Theory, vol.42, issue.1, p.4756, 1992.
DOI : 10.1016/0022-314X(92)90107-Z

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

S. Kern, S. Müller, N. Hansen, D. Büche, J. Ocenasek et al., Learning probability distributions in continuous evolutionary algorithms ??? a comparative review, Natural Computing, vol.3, issue.1, pp.77-112, 2004.
DOI : 10.1023/B:NACO.0000023416.59689.4e

F. Leibfritz and S. Volkwein, Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming, Linear Algebra and its Applications, vol.415, issue.2-3, pp.542-757, 2006.
DOI : 10.1016/j.laa.2004.12.024

K. Marti, Stochastic Optimization Methods, 2005.

M. Mascagni and H. Chi, On the Scrambled Halton Sequence, Monte Carlo Methods and Applications, vol.10, issue.3-4, pp.435-442, 2004.
DOI : 10.1515/mcma.2004.10.3-4.435

S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, 1993.

W. Morokoff and R. Caflish, Quasi-Random Sequences and Their Discrepancies, 19] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution, p.12511279, 1973.
DOI : 10.1137/0915077

H. Schwefel, Numerical Optimization of Computer Models, 1981.

J. K. Sengupta, Stochastic Programming. Methods and Applications, 1972.

A. Srinivasan, Parallel and distributed computing issues in pricing financial derivatives through quasi Monte Carlo, Proceedings 16th International Parallel and Distributed Processing Symposium, 2002.
DOI : 10.1109/IPDPS.2002.1015484

O. Teytaud and S. Gelly, General Lower Bounds for Evolutionary Algorithms, 10 th International Conference on Parallel Problem Solving from Nature, 2006.
DOI : 10.1007/11844297_3

URL : https://hal.archives-ouvertes.fr/inria-00112820

B. Tuffin, A new permutation choice in Halton sequences, p.427435, 1997.
DOI : 10.1007/978-1-4612-1690-2_30

B. Vandewoestyne and R. Cools, Good permutations for deterministic scrambled halton sequences in terms of l2-discrepancy, Computational and Applied Mathematics, vol.189, issue.12, p.341361, 2006.

X. Wang and F. Hickernell, Randomized Halton sequences, Mathematical and Computer Modelling, vol.32, issue.7-8, pp.887-899, 2000.
DOI : 10.1016/S0895-7177(00)00178-3

T. Warnock, Computational Investigations of Low-Discrepancy Point Sets II, Applications of Number Theory to Numerical Analysis (Proceedings of the Symposium, p.319343, 1972.
DOI : 10.1007/978-1-4612-2552-2_23

T. Warnock, Computational Investigations of Low-Discrepancy Point Sets II, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 1995.
DOI : 10.1007/978-1-4612-2552-2_23

G. Okten and A. Srinivasan, Parallel quasi-monte carlo methods on a heterogeneous cluster, Monte Carlo and Quasi-Monte Carlo Methods, p.406421, 2000.