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Abstract :

This paper introduces the many-armed bandit problem (Man#Bere the num-
ber of arms is large comparatively to the relevant numbeinoé steps. While the
ManAB framework is relevant to many real-world applicasothe state of the art
does not offer anytime algorithms handling ManAB problemsth theory and
practice suggest that two problem categories must be disghed; the easy cat-
egory includes those problems where good arms have rewabdbiiity close to
1; the difficult category includes other problems. Two aitjons termed FAIL-
URE and MUCBT are proposed for the ManAB framework. FAILUREats
variants extend the non-anytime approach proposed foreharderable-armed
bandit and non-asymptotic bounds are shown; it works vdiygiefitly for easy
ManAB problems. Meanwhile, MUCBT efficiently deals withfiillt ManAB
problems.

1 Introduction

One mainstream paradigm for online learning is known as tbkivarmed bandit for-
mulated by Lai & Robbins (1985); givem bandit arms with (unknown) reward prob-
abilities p;, in each time step the player selects an argnand receives a reward,
wherer; = 1 with probabilityp;, andr; = 0 otherwise. The goal is to maximize the
cumulated reward gathered over all time steps, or mininfizddss incurred compared
to the best strategy (playing the arm with maximal rewardpfulity in each time step),
referred to as regret.

Indeed, such optimization problems can be solved exacthgudynamic program-
ming approaches when the numb¥rof time steps is known in advance, as shown
by Bellman (1957) and Bertsekas (1995). Currently, the irawihed bandit litterature
focuses on anytime algorithmgv(is not known beforehand), with good asymptotic
bounds on the regret and which are less computationallyresipethan the prohibitive
dynamic programming approach.

Devised by Aueret al. (2001), the so-called Upper Bound Confidence (UCB) al-
gorithms enforce an optimal asymptotic bound on the regret\(log(N))) in the
stationary case. The non stationary case has also beerdtudKocsis & Szepesvari
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(2005) or Hussaiet al. (2006), respectively considering the adversarial casbly
changing environments. Also, Kocsis & Szepesvari (2006¢extended UCB to the
case of tree-structured arms, defining the UCT algorithm.

This paper focuses on the caserdny-armed bandigvManAB), when the number of
arms is large relatively to the relevant numbéof time steps (relevant horizon) (Banks
& Sundaram (1992); Agrawal (1995); Dani & Hayes (2006)). Sfieally, we assume
in the rest of the paper thaf is not known in advance and that is at most~ n2. It
is claimed that the ManAB setting is relevant to many potrapplications of online
learning. For instance when Wang & Gelly (2007) adapt UCT uddban automatic
Go player, the deep regions of the UCT tree can only be frygedplored while they
involve an exponential number of moves. Applications sustaéor markets, votes,
consumers choice, dating, resource-mining, drug-tegBegry et al. (1997)), feature
selection and active learning (Cesa-Bianchi & Lugosi (D@60 involve a number of
options which is large compared to the relevant horizon.

The state of the art does not address the anytime ManAB profigore on this in
section 2). On one hand, UCB algorithms boil down to unifolampling with no
replacement when the number of arms is large comparatieetite number of time
steps. On the other hand, the failure-based approachesgl@aih the denumerable-
armed bandit with good convergence rates (Batal. (1997), section 2.2) require
both: (i) prior knowledge on the reward distribution; (il numberN of time steps
to be known in advance. They provide highly suboptimal sgigs whenV is badly
guessed or when the are far from1.

As a first contribution, this paper extends the failure-blegorithms devised for the
denumerable-armed bandit by Begtal. (1997) to the anytime framework, preserving
their good convergence properties. The resulting algorjtiermed FAILURE, however
suffers from the same limitations as all failure-based afjms when the highest re-
ward probabilities are well below 1. Therefore, two settirge distinguished, tHeasy
ManAB(EManAB) where the reward probabilities are uniformly and independently
distributed in[0, 1], and theDifficult ManAb (DManAB) where thep; are uniformly
distributed in[0, €] with € < 1. It must be emphasized that the DManAB setting is rele-
vant to real-world applications; e.g. in the News Recomnagiod application (Hussain
et al. (2006)) the optimal reward probabilities might be signifitig less than one.

We thus propose a second algorithm, inspired from the MetadR approach first
described by Hartlandt al. (2006) and referred to as MUCBT. While MUCBT ro-
bustly and efficiently deals with all ManAB problems incladithe difficult ones, it is
outperformed by FAILURE on Easy ManAB problems.

This paper is organized as follows. Section 2 briefly introekithe multi-armed ban-
dit background, presenting the UCB algorithms (Ae¢ral. (2001)) and the failure-
based algorithms devised for the denumerable-armed bamtlie non-anytime case
(Berry et al. (1997)). Section 3 extends the failure-based algorithmthéoanytime
framework, considering both easy and difficult ManAB seftinSection 4 presents the
MUCBT algorithms specifically devised for the Difficult Ma®Aproblems. Section 5
reports on the comparative validation of the presentedrdlgns compared to the state
of the art, and discusses which algorithms are best suitadhich settings. The paper
concludes with some perspectives for further research.
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2 State of the art

This section briefly introduces the notations and UCB atgars, referring the reader
to Aueret al. (2002) for a comprehensive presentation. The state of theelated to
infinitely many-armed bandits is then presented.

2.1 Any-time MAB

A multi-armed bandit involves arms, where théth arm is characterized by its reward
probabilityp;. In each time step, the player or the algorithm selects some grm a;
with probabilityp; it gets reward-, = 1, otherwise-; = 0. The loss aftefV time steps,
or regret, is defined ad/p* — Zf’zl r¢, wherep* is the maximal reward probability
amongpi, - - -, Pn-

Two indicators are maintained for ea¢tth arm: the number of times it has been
played up to time, notedn; ; and the average corresponding reward ngigd Sub-
scriptt is omitted when clear from the context.

The so-called UCBL1 algorithm selects in each stépe arm which maximizes an
exploration vs exploitation tradeoff

R 21o ng
Djt + 21082 e
\ njt

The first termp; , clearly reflects the exploitation bias (select the arm wittiroal
average reward); the second term (select arms which have flaged exponentially
rarely) corresponds to the exploration bias. The asymptodiund on the regret in
UCB1isO(log(N)) whereN is the number of time steps, which is known to be optimal
after Lai & Robbins (1985).

\/ 2og> Sy m.e UCB1
X — - UCB-Tuned
pJ + Js . l J,t
|/t KUCBT
[clogd , nk.t cUCB

Exploitation Exploration

log> . k.t + vy,elogd s, k¢

Table 1: UCB Algorithms, where; ; denotes the maximum betweer01 and the
empirical variance of the reward for thyeth arm. The max with0.01 is intended to
avoid null estimated variance that could lead to reject defety an arm.

The key point is to adjust the exploration strength. Seveeaiants have been
proposed, summarized in Table 1:
Based on intuitively satisfactory ideas and taking intocart the empirical variance
of the reward associated to each arm, the UCB-Tuned (UCB3dpgsed by Aueet al.
(2002) often outperforms UCB1, though with no formal probimprovement.
KUCBT is similar to UCBT but without the non-variance-basetgrm
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log(> 4 nke)/nj. We additionally consider the cUCB variant, using an explic
constant to bias the selection toward exploitation as being more @mpte when the
number of arms increases and the time horizon decreases.

2.2 Denumerable-Armed Bandits

The case of denumerable-armed bandits (DAB) have beenestusli Berryet al.
(1997), establishing an upper bouxd’ N on the regret when the numbaf of time
steps is known (non any-time setting).

Berry et al. (1997) introduce several algorithms:

e The k-failure strategy. When the current arm fails fdr successive time steps,
this arm is never tested again and a new arm is selected. \WHidestrategy
converges toward the optimal success rate, the regret asaseslowly withV
(O(N/logN)).

e The a-rate strategy. When the average reward of the current arm falls below
somex < 1 threshold, a new arm is selected. This strategy does nossadky
converge toward the optimal success rate.

e The m-run strategy. This strategy firstly runs thé-failure strategy until either
selecting then-th arm, or until a sequence af wins occurs; at this point, the
m-run strategy plays the arm with best average reward urdilethd of the/V
steps. Whenn is of the order ofy/N, them-run strategy reaches the optimal
success rate and the regret decreases Witts2/N; otherwise, then-strategy
does not necessarily converge to the optimal success rateiasreases, as it
almost surely stops exploration after having tested fipitehny arms.

e The non-recalling m-run strategy. This strategy likewise runs thefailure
strategy until a sequenceof wins occurs, and it thereafter plays the currentarm
until the end. Like then-run strategy, the non-recalling-run strategy reaches
the optimal success rate with regeat N for m ~ /N.

e The m-learning strategy. This strategy uses 1-Failure during the finststeps,
and then uses the empirically best arm during the remaihing m steps.

3 Any-time Denumerable-Armed Bandits

This section extends the approaches presented by Bémy (1997) to the anytime
setting, where the algorithm does not depend on the nuibafrtime steps.

3.1 The Easy ManAB setting

Let us first consider the easy setting where the reward pititiedp; are independently
uniformly distributed in[0, 1]. Then we show:
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Theorem 1: EManAB setting. There exists an any-time strategy for the denumerable-
armed bandit with expected failure rate boundedXyt /v/N).
Proof: Let o« > 1 be a parameter and let us define the family of time interyals
[i%, (i + 1)*[. Let us consider the strategy defined by playing:theun strategy with
m = /i® on intervall; (independently from what has been done during the previous
time intervals).

By construction this strategy is any-time; it does not dep@m/N. For a givenV, let
k be such thalv € I;. On each interval;, the expected number of failures incurred by
the V/io strategy isO(v/i%) after Berryet al. (1997), Thm 4. Therefore, the expected
number of failures until the end df, is at mostO(YF_, /i®).

It comes that the number of failures of the considered gyate to time stepV
is upper bounded b x Vk> = k'*/2_ The failure rate thus is upper bounded by
k1+a/2/N < k1+a/2/ka — O(l/\/ﬁ) O

We point out that another algorithm can be used for the saswdtréVith the same
proof as above using the propertiesoflearn strategies instead of the propertiegnf
run strategy (Berngt al. (1997)), we show the same result for the following algorithm
at stept:

o if [v/t/log(t)| > [Vt — 1/log(t—1)], choose the arm with lowest index which
has never failed (this is the FAILURE algorithm);

e otherwise, use the arm which has the best empirical sucagssmong all arms
that have been rejected by FAILURE.

This algorithm, termed "MLEARN?” in the rest of this paper,nger as it has no free
parameter; it will be used in experiments.

3.2 The Difficult ManAB setting

Let us consider the difficult ManAB setting, where the rewarababilitiesp; are uni-

formly distributed in[0, €] for e < 1. As shown by Berret al.(1997), for some givem

depending or and N, them-run strategy reaches an expected failure @g/c/N ).
In this section, the above result is extended to the caseai@nde are unknown.

Theorem 2: DManAB setting. Let us assume that the reward distribution is such that
there exists a constait > 0 which satisfies

Ve €]0, 1[, P(p1 > supp; — €) > min(1, Ce) 1)

Then there exists an any-time strategy for the denumerabiedbandit with expected
failure rate bounded by)(N—3/C) (with a = O(b) the notation fordk > 0;a =
O(b(log(b))"*)).-

Note that the bound is uniform in the distribution (i.e. alhstants hidden in th@(.)
are independent of the distribution) under assumption @9sumption (1) typically
holds when the reward probabilities are uniformly disttémlin [0, €].

Proof: The proof is constructive, based on the algorithm describddble 2. Indices
n; ¢+ andw; ; respectively stand for the number of times thih arm is played (resp.,
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wins) up to timet. Two sequences$s,, ),en and (ky,)nen, With s increasing and:
non-decreasing are used.

1. Init: n; 0 = Wi = 0 forall 4.

2. Loop: Fort =1; true; t =t +1;
If t = s; for some:, Exploratior(t).
Else ¢ €]s;, si+1[), Exploitation(t).

Exploratior(t) t=s;
Selectj = argmin{ne, ¢ € [1,k;[}  Incase of ties, prefer smallest
Receiver;
i1 =nje+1 5 Wi =wje+ry
Nigr1 =Ny 5 Wil = Wi foralli #j

Exploitation(t) t €]84, Sit1]
Selectj = argmax{we/ne, ¢ € [1,k;[}  In case of ties, prefer smallest
Receiver;
i1 =nje+1 5 Wi =wje+ry
Nigrl = Nge 5 Wil = Wi foralli #j

Table 2: DManAB Algorithm
Let us define:; the maximal reward estimation error aftegxploration steps:

(] .
€ = argmax{|n¢’t —pjl.j €1, ki],t =s; +1}
J,t

Let ¢ be a time step in théth epoch { € [s;, s;+1[). Lete; define the maximad;
such thatt < s;5.1. Up to timet, i) the number of exploration steps so farijdi) the
arms which have been played are includedilirk;]; iii) the maximal estimation error
so far ise;.

For the particular two sequences below, we shall show tlesaktorithm is efficient,
i.e. e goes ta). Let

kn = |n%], « :% (2)
Sn, :ZU—FWJ, ’y—%

Step 1: Fast convergence qfto 0.
Let ¢ be the current time step, belonging to thth epoch { € [s;, s;+1]). Letj be an
arm belonging to the set of arms explored up to ngwe([1, k;[). Then, as all arms
have been played an equal number of times during theploration steps:

nje > i/ki] 3)
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After the Hoeffding bound, for all armg € [1, k;[ andt > s;, it comes

w .
(Iﬁ —pjl > €) < exp(—2li/ki|e?) 4)
P(sup |— —pj| > €) < kjexp(—2]i/ki|€?)
j<k; Mjt
and thereforéf sup |— —p;| = O(Vkilog(k;) /i) (5)
J<ki Tt
and therefor@ sup | -2t — p;| = O(i(®~1/2) (6)
j<k; Mjt

Eq. (5) follows from the lemma below ((Devrog¢ al, 1997, chap 12, p 208)):
P(Z <0)=0AP(Z >¢) < cexp(—2me?) = EZ < /log(ce)/2m
Eq. (6) states that, converges td like O(i~/3log(i)) ie like O(i~1/3).
Step 2: exploitation is efficient.
Let Ry denote the sum of all rewards up to time sfépand let us consider the expec-

tation of Ry. Let us assume further that belongs to thex-th epoch (V € [s,,, $511])-
It comes:

n—1 si41—1
ERy >EY_ re o+ Y. T 7
=1 vA t=s;+1
exploration
exploitation

Let p; denote the reward probability of the arm selected duringittie exploitation
epoch (being reminded that a single arm is played dutng;+1), and letp;* denote
the maximal reward probability; for j in [1, k;[. NoteE,, the expectation operator,
conditionally td the (p;);c and to the exploration (formally, conditionally to all the
fori € Nandto all the, fort = s1,...,sp).

n—1
1 1 .
—E,Ry > N Z (z'yp )

N
> NZ *—2¢))

by definition ofe;. Let us noteS,, = % 3" L1+ )pr

n—1
E.S— BBy = O >+
n—1
= O/N + 3. S (@ 2 Iogi)  (®)
=1
— O/ ©)

1Recall that thep; are i.i.d random variables.
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almost surely thanks to step 1. LIgj denote the conditional expectation with respect
top;,i € {1,2,3,...}; as the constants in th@(.) notation are universal constants, we
can therefore take the expectation of eq. (9) with respetigexploration (keeping the
conditioning with respect to the), and get:

]Ep[EnSn - %EnRN] = e:rplor~[EnSn - %EnRN] = Ee:rplor[o(n/N)] = O(n/N)
hencexE,Ry > pi* — O(n/N)
(10)
sinceE, S, < & SN (1 +i7)p* < pr* by construction.

Step 3: exploration is sufficientlt remains to lower-bound),,, which depends on
the expectation of the maximupy for j € [1, k;[, wherep; are iid random variables
such that eq. (1) holds. Noting as abgyé = maz{p;, j € [1,k;[}, and letting
P« = sup p;, after eq. (1) it comes:

Elp. —p;*] = [ Plp. —p}*) > t)dt = [TI5' P(p, — p; > t)dt
= [P(p. —p1 > t)k =Lt (11)
= [(1—P(p. —p1 < t))ktdt
< 1/C( — Ct)kat
hence
Ep;* > p. — O(1/(Ck:))- (12)
Summing eq. (12) fof € [1,n] leads to
R > — _
Sn 2 pe = 550! Zz /k) 2 p. — Ol572) (13)
Egs (13) and (10) together lead to
1
NEPRN > p.—O(1/n*"Y/2) —O(n/CN)
> p.—ONTV4/C)
which concludes the proof. O

4  Algorithms For Many-Armed Bandits

The theoretical analysis in the previous section suggéststhe easy and difficult
ManAB settings should be handled through different alfponis. Accordingly, this
section presents two FAILURE variants adapted from theifaiblgorithms introduced
in section 2.2. The FPU algorithm inspired by Wang & Gelly@2pand the MUCBT
algorithm inspired by Hartlandt al. (2006) are last presented.
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4.1 The FAILURE and FAILUCB Algorithms

The 1-failure algorithm previously defined for the denuntéeaarmed bandit is adapted
to the ManAB setting in two ways, respectively referred toFASLURE and FAIL-
UCB.

In both cases, the algorithm plays the current arm untiliisfan failure, one selects
the first arm which has never been tested if it exists.

After all arms have been played at least once, FAILURE gigséiects the arm with
best estimated reward; FAILUCB uses KBCBT (Table 1). Indé&dLURE offers no
guarantee to converge to the best success rafé gees to infinity; however, such a
poor asymptotic behaviour is irrelevant in the consideradiework sinceV remains
comparable tar or n2.

4.2 The First Play Urgency Algorithm

The First Play Urgency (FPU) algorithm was first defined in Mdéy Wang & Gelly
(2007), to handle a large number of tree-structured armenélty, the selection crite-
rion used in UCT (Table 1) is replaced by:

v, = | DietV2frpulog( k) /nje i nye >0
J CFPU otherwise

(other formula, taking into account variance-terms, areppsed in Wang & Gelly
(2007)) It is worth noting that forfrpy = 0 andcrpy = 1, the FPU algorithm
coincides with the FAILURE one.

4.3 The Meta-UCBT Algorithm

We last define the meta-bandit algorithm MUCBT to deal with tManAB setting.
MUCBT is inspired from the meta-bandit algorithm devisedHsrtlandet al. (2006),
which won the Exploration vs Exploitation Challenge defibgdHussairet al. (2006).
However, the EE Challenge focuses on the extension of thg+aamed bandit to non-
stationary environments, where the meta-bandit was ingehaf handling the change
point detection epochs.

Quite the opposite, MUCBT is a recursive meta-bandit, wthkesfirst meta-bandit
decides between the best empirical arm and all other arnessebond meta-bandit
decides between the second best arm and all other arms, &odrs(Fig. 1, left).

A variant of the MUCBT algorithm, referred to as MUCBT-k, ssthe first meta-
bandit to decide between the first bést1 arms, and the others, the second meta-bandit
to decide between the next bést- 1 arms, and the remaining arms, and so forth (Fig
1, right).

Formally, w, (respectively;) denotes the number of wins (resp. losses) withithe
th arm up to the current time step. Algorithms MUCBT and MUGB@&re specified
above, (Algs. 1 & 2), where each algorithm chooses afrat time step, andt; is the
number of time steps (previoustpwhere the chosen arm is greater thidh = |{¢' <
tyap > i}
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Algorithm 1 MUCBT
Input: a (possibly infinite) number of arms.
Initialize w; = 0, £; = 0 andt; = 0 for all j.
fort =1; true; t<—t+1do
Sort arms by decreasing; /(w; + ¢;) (with 0/0 = —oo by convention).
fori=1; true; i+ i+1do
Computew; = -, wj andf; = 3. ¢;.
Vi = wi/(wi 4+ ;) + /2log(t:) / (w; + £;)
Vi = wi/(wi+ ) + \/2log(t:) / (w] + £})
if V; > V/ then
break
end if
end for
Play armi (a; = ).
Ifwin w; «— w; +1elsel; —I; +1
Vi <ty e t;+ 1.
end for

ZENG

Bes
arm

Figure 1: MUCBT algorithm (left) and MUCBT-3 as an exampletid MUCBT+ algorithm
(right).
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Algorithm 2 MUCBT-k
Input: a (possibly infinite) number of arms; parameter 1.
Initialize w; = 0, £; = 0 andt; = 0 for all j.
fort=1; true; t«—t+1do
Sort arms by decreasing; /(w; + ¢;) (with 0/0 = —o0).
fori=1;true;i— i+ k—1do
Computew; = >, wj andf; = >, ¢;.
for j=i;j<i+k—2;j—j5+1do
W = w;/(wj + ;) + /2log(t:) / (w; + £;)
end for
u = argmax;c; ;+k—2)] Wi
V/ = w!/(w} + €) + /21og(t:)/(w] + 0])
if Vi > V/ then
break
end if
end for
Play armu (a; = u).
If win w,, «— w, + lelsel, «— I, +1
Vj S’U,,tj <—tj+1.
end for

5 Experimental Validation

This section reports on the experimental validation of thespnted algorithms and
discusses which algorithm is best suited to the differettitggs considered.

5.1 Experimental Setting

Considering a number of bandit armganging in[20, 200], artificial bandit problems
are generated by drawing iid reward probabilitigs) in [0, 1] (Easy ManAB setting)
and in[0, €] for somee (Difficult ManAB setting).

All defined algorithms, including the FAILURE and MUCBT algthms presented
in the paper and the baseline UCB variants, are tested aglagse problems.

The comparisons refer to three main regimes, depending®mnetfationship of the
numberN of time steps and the numberof bandit arms. The standard multi-armed
bandit case, referred to as long-run regime, is whéen-> n; the medium regime is
whenN ~ n?; and the short-run regime is whé¥iis circa2 ou 3 timesn.

The performance of each algorithm is given by its averageetqger time step.

5.2 Experimental Results

Fig. 2 displays the regret per time step against the numbeine step, compar-
ing MUCBT-k for various values of to the UCB variants (UCB1, UCBT, KUCBT,
cUCBT) in an Easy ManAB setting. Note that all UCB variantsidee identically in
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the considered framework; indeed, fdr < n, UCB-variants receive a reward = 1
with probability exactlys.

regretnbTimeSteps (100 arms,377 runs)

Figure 2: Easy ManAB setting: Comparing UCB variants with ®BJIT-k with n = 100 arms
and N = 100 time steps. The average regret per time step is plotted stghia total number of
time steps. All UCB variants get a reward with probabil%tyand are significantly outperformed
by MUCBT-k. No significant differences among the variousues ofk is found in this setting.

regretnbTimeSteps (80 arms,37 runs)

Figure 3. Easy ManAB setting. Experimental results with= 50, for n > N (infinitely
many arms). Dotted lines around curves drestandard deviations. Algorithms are ordered
wrt their horizon performance (best strategies at the bottdOnly the five best algorithms are
presented.All UCB variants are outperformed by MUCBT andLF/RE.

A first remark is that, while standard UCB algorithms are oyaily suited to the

long-run regime ' >> n?), they do not handle efficiently the non-asymptotic cases
including the medium-run ~ n2) and short-runV ~ 2n, 3n) regimes.

In the medium-run regime, the failure-based algorithms @gémal in the Easy
ManAB case, when the reward probabilities are uniform[dnl]; in the Difficult
ManAB case, the MUCBT algorithms empirically outperforre flailure algorithms.

Lastly, the MUCBT algorithms are well suited to the shomregime.

5.3 Discussion

Failure algorithms, based on theoretical investigations in Beetyal. (1997), are very
efficient for EManAB. Some variants proposed in this paperwery efficiently also
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regretinbTimeSteps (20 arms,377 runs) regret/nbTimeSteps (40 arms, 377 runs)

i
i

i
b e S

Figure 4: Easy ManAB settingV<3n. Experimental results with. = 20 andn = 40 arms
respectively, both withv = 1,...,50. Dotted lines around curves atie standard deviations.
Algorithms are ordered wrt their horizon performance (kstsategies at the bottom). Only the
five best algorithms are presented.MUCBT variants have g sinilar behavior. FAILURE
and FAILUCB are exactly equal and all variants of UCB (UCB, @B, cUCB) are exactly
equal whenN < n. For moderately largev (N > 3n) the best algorithms are firstly the
FAILUREvariants and secondly MUCBT.

regretinbTimeSteps (10 arms,37 runs) regretinbTimeSteps (40 arms,37 runs)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 5:Easy ManAB settindarger horizons. Experimental results with= 10, n = 40 arms
respectively, andV = 5000. Legends and set-up as in figure 4 (only the best five algosthm
wrt horizon performance are presented). We see the strdhgeirce ofn; the number of time
steps for which FAILURE algorithms outperform baseline U€®Biants is at leas®(n?), in
agreement with theory.

in the anytime case and farfinite with N ~ n2. FAILURE and its variants are exper-
imentally very impressive in experiments, until at leasb8@ime-steps, when > 40.
FAILUCB combines (i) the asymptotic optimality of UCB1 (Auet al. (2001)) when
the number of arms is finite and small in front of the horizai);the non-asymptotic
very good behavior of failure-based algorithms.

Also, FPU, in particular in its optimal parametrization is close tolEAIRE (converg-
ing to FAILUCB and UCBT whenV increases). Therefore, the mathematical analysis
of FPU is very related to the joint analysis of FAILURE and dEB.

Meta-bandit algorithms MUCBT inspired by Hartlandet al. (2006) outperform
baseline UCB-variants and FPU in all ManAB settings congidehere; they also
strongly outperform FAILURE and FAILUCB in the DManAB caskg(re 6, with
reward probabilities irf0, i]). For cases like news-selection (for which many news are
not interesting for the reader) or game-tree-search (fackvimnany moves are stupid
moves), small probabilities are a natural case. As for FATIB)we point out that FPU
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Figure 6: Difficult ManAB setting Experimental results with, = 40 arms andN = 50 time
steps (left),n = 80 arms andN = 300 time steps (right); legends and set-up are as in other
figure, but here probabilitiep; of reward are uniform ino, i] instead of[0, 1]. Within this
less favorable framework, MUCBT is significantly more robtisan FAILURE and variants
(MLEARN, FAILUCB); while FPU outperforms FAILURE, it is dtidominated by MUCBT.
MUCBT-2 (usually the best MUCBT) dominates the other altponis until N ~ 90 time steps

for n = 40 (only 50 time-steps presented) and um¥il ~ 190 time steps fomn = 80.

was designed for specific purposes (UCT-adaptation) andffleeency of MUCBT in
front of FPU is not ensured for these specific cases.

UCBT and other variance-based extensions of UCB1 (Aex. (2001); Audibert
et al.(2006)) significantly improve on the baseline UCB1 in thesidared setting. This
holds for algorithms considered in isolation or as subrmegifor MUCBTor FAILUCB.

6 Conclusion

In summary, some recommendations based on theoreticalrantigal arguments can
be formulated regarding anytime many-armed bandit-prable

e Use FAILURE when the reward probability distribution is gasd if N <n?.

e Use MUCBT when the reward probability distribution mightvery bad and if
N<3n.

e Always use variance-based UCB-algorithms instead of beseICB-algorithms.

e FPU (mainly used for UCT) is a trade-off between FAILURE andJ@BT
(Wang & Gelly (2007)).

From the mathematical point of view, we conclude that thelgms that are proved
optimal (within v/2-factor) for infinitely many arms and finite horizon, namehyrun
strategies, can be extended to an anytime algorithm thé&aspaoved optimal (within
a multiplicative factor) in the EManAB case. Additionallye show that av—'/4 rate
can be achieved in the DManAB case without knowledge of teeildution.

Still, both proposed algorithms are somewhat unsmoeoithrun strategies switch
from a failure-based exploration to exploitation; and ttegiytime extensions (section
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3.1 and 3.2) switch infinitely often between both behavioliris likely that algorithms
learning the distribution of reward-probability could bieer and more efficient.
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Appendix

This appendix focuses on the First Play Urgency algorithxap@ning the impact of
thecrpy constant in the particular context of the Go-program Mogasiel by Wang
& Gelly (2007). As noted above, the so-called UCB1 algoritbonresponds to the
particular caserpy = oo. The best constant in the considered frameworksisy =
1.

Table 3: The effect of the constanit oy in FPU from Wang & Gelly (2007). Exper-
iments with 70000 simulations/move in a UCT-based Montde=@o, distinguishing
the winning rate with white, with black, and the average vingrate.

FPU Winning Rate Winning rate Total
constant| for Black Games| for White Games| Winning Rate
1.4 37%+ 4.5% 38%+ 5% 37.5%+ 3.5%
1.2 46%+ 5% 36%+ 5% 41%+ 3.5%
1.1 45%+ 3% 41%+ 3% 43.4%+ 2.2%
1.0 49%+ 3% 42%+ 3% 45%+ 2%
0.9 47%+ 4% 32%+ 4% 40%+ 2.8%
0.8 40%+ 7% 32%+ 6.5% 36%+ 4.8%




