
HAL Id: inria-00173488
https://inria.hal.science/inria-00173488

Submitted on 19 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Path to Trajectory Deformation
Hanna Kurniawati, Thierry Fraichard

To cite this version:
Hanna Kurniawati, Thierry Fraichard. From Path to Trajectory Deformation. IEEE-RSJ Int. Conf.
on Intelligent Robots and Systems, Oct 2007, San Diego, United States. �inria-00173488�

https://inria.hal.science/inria-00173488
https://hal.archives-ouvertes.fr

From Path to Trajectory Deformation∗

Hanna Kurniawati
National University of Singapore

http://www.comp.nus.edu.sg/∼hannakur

Thierry Fraichard
Inria Rhône-Alpes & Grenoble University (FR)

http://emotion.inrialpes.fr/fraichard

Abstract— Path deformation is a technique that was intro-
duced to generate robot motion wherein a path, that has
been computed beforehand, is continuously deformed on-line
in response to unforeseen obstacles. This paper introduces the
first trajectory deformation scheme as an effort to improve
path deformation. The main idea is that by incorporating
the time dimension and hence information on the obstacles’
future behaviour, quite a number of situations where path
deformation would fail can be handled. The trajectory defor-
mation scheme presented operates in two steps, ie, a collision
avoidance step and a connectivity maintenance step, hence
its name 2-Step-Trajectory-Deformer (2-STD). In the collision
avoidance step, repulsive forces generated by the obstacles
deform the trajectory so that it remains collision-free. The
purpose of the connectivity maintenance step is to ensure that
the deformed trajectory remains feasible, ie, that it satisfies
the robot’s kinematic and/or dynamic constraints. Moreover,
unlike path deformation wherein spatial deformation only takes
place, 2-STD features both spatial and temporal deformation.
It has been tested successfully on a planar robot with double
integrator dynamics moving in dynamic environments.

I. INTRODUCTION

A. Background and Motivation

Motion determination is a fundamental issue in designing
autonomous robotic systems. To operate in the physical
world, an autonomous robot needs to sense, reason, and
act. Without a reliable motion determination strategy, the
results of sensing and reasoning become void. Many motion
determination strategies have been proposed (a summary
can be seen in [2]). Most of them can be classified into
two approaches, ie, deliberative and reactive. Deliberative
approach computes a complete motion all the way to the goal
using motion planning techniques. This approach requires
a model of the environment as complete as possible and
their intrinsic complexity is such that it may preclude their
application in dynamic environments [3], [4]. On the other
hand, reactive approach determines the motion to execute
during the next few time-steps only. This approach can be
used in any kind of environment including unknown and
dynamic, but convergence towards the goal is not guaranteed.

To bridge the gap between deliberative and reactive ap-
proaches, recent works have proposed a complementary
approach called motion deformation. Before execution, this
approach computes a complete motion to the goal based on
a priori environment information. Then, during execution,

*) An extended version of this paper is in [1]

Fig. 1. Path deformation principle. The initial path is deformed so as to
account for the triangular obstacle that was unknown at planning time [5].

the still-to-be-executed part of the motion is continuously
deformed in response to sensor information acquired on-
line, thus accounting for the incompleteness and inaccuracies
of the a priori world model. Provided that the motion
connectivity can be maintained, convergence towards the
goal is achieved (Fig. 1).

Fig. 2. Path deformation problem. As the moving disk approaches the
path, the path is increasingly deformed until it snaps [6].

Fig. 3. Temporal deformation of a trajectory.

Although several motion deformation methods have been
proposed [6], [7], [8], [9], [10], all deform only the geo-
metric path and ignore the time dimension of a dynamic
environment. This is not entirely satisfactory. For instance
in Fig. 2, when a moving obstacle is to cross the path of the
robot, path deformation takes place. As the moving obstacles
approach the path, deformation increases. At some point,
the path violates the robot’s motion constraints and hence
path connectivity can no longer be maintained. When this
happens, it is necessary to resort to path planning in order to

determine a new path to the goal. However, if instead of keep
deforming the geometric path, we also adjust the velocity, we
can avoid the obstacles by slowing down to let the obstacles
pass through first, and then continue following the geometric
path at the next time step. Fig. 3 shows an illustration of
the deformation in the state×time space. This indicates that
the above problem can be alleviated if we deform in the
state×time space.

Based on the above observation, we propose a trajectory
deformation method. A trajectory is a continuous time-
sequence of states and can be represented as a geometric
curve in the state×time space of the robotic system [11].
Each obstacle yields a forbidden subset of the state×time
space which is equivalent to the well-known configuration-
obstacle. To avoid collision, a trajectory in the state×time
space must avoid these “state×time-obstacles”. As in path
deformation, trajectory deformation starts with an initial
trajectory to the goal which is computed off line based
on a priori information. We assume that the robot starts
execution with this initial trajectory and then updates its en-
vironment model periodically based on information from its
sensors using techniques such as [12], [13]. At each update,
the corresponding state×time-obstacle may change and the
current trajectory may no longer be collision-free. Hence,
the trajectory should be deformed accordingly. Intuitively,
trajectory deformation features both spatial and temporal
deformation, which means that the planned velocity of the
robot can be altered and hence permitting a more satisfactory
deformation in situations such as the one depicted in Fig. 2.

We call our trajectory deformation method
2-Step-Trajectory-Deformer (2-STD). It consists of
two steps, ie, a collision avoidance step and a connectivity
maintenance step. In the collision avoidance step, repulsive
forces generated by the obstacles deform the trajectory so
that it remains collision-free. This step applies repulsive
forces in the workspace×time space to several points on the
robot, and then transform these forces to generate a repulsive
force in the robot’s state×time space. By doing so, this
step can be applied to high dofs robot. The purpose of the
connectivity maintenance step is to ensure that the deformed
trajectory remains feasible, ie, that it satisfies the robotic
system’s kinematic and/or dynamic constraints. Depending
on the dynamic equation of the robot, the connectivity
maintenance step is performed either independently per
dimension or using a method similar to the bang bang
approach. Hence, this step can be applied to high dofs robot
efficiently, too. Therefore, 2-STD is applicable to robots
with any number of dofs.

II. OVERVIEW OF THE APPROACH

Throughout the paper, we consider that the robot’s motion
is governed by an equation of the form:

ṡ = f(s, u) ; umin ≤ u ≤ umax (1)

where s ∈ S is the robot’s state. In a first order system, a
state refers to the robot’s configuration, while in a second

order system, a state refers to a tuple of the robot’s con-
figuration and velocity. The variable ṡ ∈ V is the state’s
first derivative with respect to time or velocity for short, and
u ∈ U is a control input bounded by minimum control umin

and maximum control umax. The set S , V , and U are the
state space, velocity space, and control space, respectively.

2-STD assumes that a collision-free trajectory γ taking
the robot to its goal has been computed prior to execution.
Trajectory γ is discretized into a sequence of nodes. Each
node is denoted by (s, t), where t ∈ T is the time. We
assume that the discretization is fine enough such that any
two subsequent nodes (si, ti) and (si+1, ti+1) are connected,
ie, a constant control input can move the robot from si at ti
to si+1 at ti+1. A node (si+1, ti+1) is in the reachable space
of a node (si, ti) and (si, ti) is in the back-reachable space
of (si+1, ti+1) iff (si, ti) and (si+1, ti+1) are connected.

Periodically, the robot receives an updated model of its
workspace W . This world model includes the prediction of
the future motion of the moving obstacles. Upon receiving
the new world model, 2-STD checks whether the still-to-be-
executed nodes of γ are still collision-free. If one or more
nodes are in-collision, 2-STD deforms γ.

2-STD deforms γ by moving the nodes in S × T in two
steps, ie, obstacle avoidance step and connectivity mainte-
nance step. In the obstacle avoidance step, 2-STD adopts the
external force mechanism of the Elastic Strip approach [6].
A set of points (called control points) are defined over the
robot body. Based on a particular distance function, repulsive
forces generated by the different obstacles are defined for
each control point. However, unlike elastic strip, the repulsive
forces in 2-STD are defined in W × T , instead of W .
Applying a repulsive force to a given control point pushes
the control point in W × T away from the obstacles. Each of
the repulsive forces are mapped into a displacement vector
in S × T and the sum of these displacement vectors will be
applied to the obstructed node.

Once the obstacle avoidance step is completed, γ may no
longer be connected. In the connectivity maintenance step,
2-STD tries to restore the connectivity. It operates locally on
triples of subsequent nodes. Suppose (sj

′, tj ′) is the result of
applying the obstacle avoidance step to (sj , tj) and (sj

′′, tj ′′)
is the result of applying the connectivity maintenance step to
(sj

′, tj ′). To ensure the connectivity of a trajectory, 2-STD
tries to ensure the connectivity of each triplet (si−1

′, ti−1
′),

(si
′, ti′), (si+1

′, ti+1
′) in the trajectory, sequentially. It tries

to move these nodes such that (si
′′, ti′′) is in the reachability

space of (si−1
′′, ti−1

′′) and the back-reachability space of
(si+1

′′, ti+1
′′). For computational efficiency, the nodes are

moved in S only. To respect the displacements generated
by the obstacle avoidance step, 2-STD tries to minimize the
total displacements,

d(s′i−1, s
′
i, s

′
i+1) =

i+1∑

j=i−1

|s′j − s′′j | (2)

The overall strategy of 2-STD is shown in Algorithm 1.
And the details are described in the next section.

Algorithm 1 2-Step-Trajectory-Deformer (2-STD)
1: Let γ be the current trajectory followed by the robot.
2: Receive new world model.
3: if the still-to-be-executed part of γ is obstructed then
4: Let (sj , tj) be the first node of γ that becomes obstructed with

respect to the new world model.
5: i = j.
6: repeat
7: if node (si, ti) is the last node then
8: Add extra node (si+1, ti+1).
9: for k = i-1 to i+1 do

10: if (sk, tk) has not been deformed by the obstacle avoidance
step according to the new world model then

11: Apply the obstacle avoidance step to (sk, tk) and keep the
result in (sk

′, tk′).
12: Apply the connectivity maintenance step to triplet (si−1

′, ti−1
′),

(si
′, ti′), and (si+1

′, ti+1
′) and keep the results in

(si−1
′′, ti−1

′′), (si
′′, ti′′), and (si+1

′′, ti+1
′′), respectively.

13: i = i + 1.
14: until all nodes from (si, ti) to the last node of γ are collision-free,

(si+1, ti+1) is reachable from (si
′′, ti′′), and the last node is at

the goal state.
15: if the deformed trajectory is collision free then
16: Let the robot follow the deformed trajectory. So, γ is now :

<(s1, t1), . . ., (sj−2, tj−2), (sj−1
′′, tj−1

′′), . . ., (si
′′, ti′′),

(si+1, ti+1), . . . >.
17: else
18: Find a new trajectory starting from the current node.

III. 2-STEP-TRAJECTORY-DEFORMER

A. Obstacle Avoidance Step

2-STD avoids collisions by applying repulsive forces to
the obstructed nodes. Suppose γ is the trajectory that is cur-
rently followed by the robot. Then, assuming the trajectory
discretization is fine enough, when an obstacle obstruct an
edge of γ, some of the nodes will also be obstructed. Now,
suppose at time t, the robot receives a new world model
of the future where node (si, ti) of γ, ti > t, becomes
obstructed. To avoid collision, 2-STD generates repulsive
forces in W × T to move the robot’s control points away
from obstacles. It then transforms each of these forces to a
displacement vector in S × T . The sum of these vectors is
then applied to (si, ti).

Since the repulsive force is defined based on distance
function in W × T , before describing the repulsive force,
we need to first define a metric in W × T . The main issue
here is in deciding the scaling between a unit distance in
the spatial dimension W and a unit distance in the temporal
dimension T . In this paper we simply assume that 1 m in
W is the same as 1 sec in T . Other scalings are of course
possible and we discuss them in Section V. Once the scaling
is resolved, we consider W × T as a Euclidean space and
use Euclidean metric as the metric in W × T .

Now, we can define the repulsive force applied to a control
point c. Let’s denote the position of c when the robot is at
(si, ti) as ci. The goal of the repulsive force is to move ci

in W × T away from obstacles. Since the robot’s control
points are supposed to represent the whole robot, 2-STD
“enlarges” the obstacles at each time ti of each node (si, ti)
in γ by a constant factor rinf . The enlarged obstacles are
then interpolated to generate the obstacles in the continuous
W × T space. We call the enlarged obstacle as the obstacle’s

influence region and a point in W × T will be repulsed
whenever it lies inside an obstacle’s influence region. To
compute the force, 2-STD will first find a point on the
boundary of the obstacles’ influence region that is nearest to
ci. For computational efficiency, 2-STD also tries to preserve
the temporal ordering of the nodes in γ. For that, 2-STD
sets the time deformation to be within [ti−1,i, ti,i+1] where
tj,k = (tj + tk)/2. So, 2-STD finds a point on the boundary
of the obstacles’ influence region within [ti−1,i, ti,i+1] that
is nearest to ci. Suppose this point is (wn, tn). The repulsive
force (illustrated in Fig. 4) can then be defined as follows,

FW (si, c) = kext(wn − ci) ; FT (si, c) = tn − ti (3)

where kext is the repulsion gain. The constant kext is not
used in FT to ensure that the deformation in T will not
change the temporal ordering of the nodes in γ.

ti−1,i

ti,i+1

(wn, tn)

(ci, ti)
FW

FT

ti−1,i

ti,i+1

(wn, tn)

(ci, ti)

FWFT

(a) (b)

Fig. 4. The repulsive force in W × T . The grey parallelogram is the
influence region of an obstacle in W × T . (a) When tn = ti−1,i. (b)
When ti−1,i < tn < ti,i+1.

The repulsive forces will then be transformed and summed
to generate a displacement vector in S × T as follows,

DS (si) =
∑

∀c∈C
JT
c (si)FW (si, c) (4)

DT (si) =
1
|C|

∑

∀c∈C
FT (si, c)

where C is the set of the control points of the robot, |C| is
the cardinality of C, and Jc(si) is the Jacobian at point c of
the robot while it is at si. The displacement vector will then
be applied to (si, ti) to move the robot away from obstacles.

B. Connectivity Maintenance Step

After the trajectory γ has been deformed to avoid ob-
stacles, it may no longer be connected. The connectivity
maintenance step tries to ensure the connectivity of the de-
formed trajectory while respecting the results of the obstacle
avoidance step, as much as possible.

To ensure the connectivity of the trajectory, 2-STD ensures
the connectivity of each triplet of nodes, sequentially. To
keep the notation simple, we will use triplet (s0, t0), (s1, t1),
(s2, t2) and assume that these nodes are the results of the
obstacle avoidance step. They are connected whenever there
is a pair of velocities (ṡ0, ṡ1) such that

s1 = s0 +
∫ t1

t=t0
ṡ0 dt ; s2 = s1 +

∫ t2

t=t1
ṡ1 dt (5)

We denote the result of the connectivity maintenance step
as (s0

′, t0′), (s1
′, t1′), (s2

′, t2′). Maintaining connectivity
of triplet means moving the nodes such that the resulting
node (s1

′, t1′) is in the reachability space of (s0
′, t0′) and

u0max(k)
u0min(k)

u1min(k)

u1max(k)

rk

lk

ṡ1(k)

ṡ0(k)

Vk
XVk

Fig. 5. All pairs of ṡ(k) inside rk satisfy the robot’s motion equation for
dimension-k. All pairs of ṡ(k) on lk satisfy (7).

in the back-reachability space of (s2
′, t2′). Thus, to ensure

the connectivity of the triplet, we need to find a valid pair
of velocities ṡ0 and ṡ1 that move the robot from (s0

′, t0′)
to (s1

′, t1′) and from (s1
′, t1′) to (s2

′, t2′), respectively.
Furthermore, in trying to respect the results of obstacle avoid-
ance step, we try to minimize the displacement d(s0, s1, s2),
as defined in (2). Hence, the main issue here is to find a
desired valid pair of velocities (ṡ0

obj , ṡ1
obj), ie, a pair of

velocities that satisfies the motion equation of the robot and
minimizes the displacement d(s0, s1, s2).

Let’s now describe the overall method for finding
(ṡ0

obj , ṡ1
obj). First, 2-STD approximates the integration in

(5) with summation to get

s1 = s0 + (t1 − t0)ṡ0 ; s2 = s1 + (t2 − t1)ṡ1 (6)

When (t1− t0) and (t2− t1) are small, any motion equation
can be approximated quite accurately with the above summa-
tion. 2-STD will then find the pair of velocities (ṡ0

inv, ṡ1
inv)

that satisfies (6). This pair of velocities minimizes the dis-
placement since it will not move the states at all, but it may
not satisfy the robot’s motion equation. The idea is to use
this pair as an “initial guess” to get (ṡ0

obj , ṡ1
obj). Different

motion equations may have different ways for finding this
desired valid pair of velocities, efficiently. In the subsequent
paragraphs, we give the details when the motion equation
is governed by f(s, u) = u and the details for arbitrary
motion equation. Once the desired valid pair of velocities
(ṡ0

obj , ṡ1
obj) is found, 2-STD applies these velocities to (6)

to get the new s′1 and s′2. Notice that we do not change s0.
Although changing s0 is possible, we prefer not to move s0

to ensure that we do not need to go back and ensure the
connectivity of the previous triplets again. This enables the
robot to use a partially deformed trajectory, instead of having
to wait until the whole deformation process is finished, which
is useful when part of the trajectory that is obstructed by
obstacles is quite long and the robot needs to move fast.

When the robot’s motion is governed by f(s, u) = u, a
valid pair of velocities can be found independently for each
dimension. Let’s now focus on dimension-k of S and of V .
When we consider the space of pair-of-velocities V × V , the
pair of velocities at dimension-k forms a 2-dimensional sub-
space Vk×Vk ⊂ V × V . In this subspace, the boundaries of
the control input at dimension-k, ie, umin(k) and umax(k),
form a rectangle rk. Moreover, combining the two equations
in (6) gives us the following line lk equation in Vk × Vk

s2(k)− s0(k) = (t1 − t0)ṡ0(k) + (t2 − t1)ṡ1(k) (7)

rk

lk

ṡ1(k)

ṡ0(k)

(ṡ0
inv(k), ṡ1

inv(k))

VkXVk

(ṡ0
obj(k), ṡ1

obj(k))

s0(k)

s1(k)

s2(k)

reachability space of s0(k)

back-reachability space of s2(k)

Sk
XT

Sk

T

t2

t0

t1

(a) Case-1

rk

lk

ṡ1(k)

ṡ0(k)

(ṡ0
inv(k), ṡ1

inv(k))

VkXVk

(ṡ0
obj(k), ṡ1

obj(k))

s0(k)

s1(k)

s2(k)

reachability space of s0(k)

back-reachability space of s2(k)

Sk
XT

Sk

T

t2

t0

t1

(b) Case-2

rk

lk

ṡ1(k)

ṡ0(k)

(ṡ0
inv(k), ṡ1

inv(k))VkXVk

(ṡ0
obj(k), ṡ1

obj(k))

s0(k)

s1(k)

s2(k)

reachability space of s0(k)

back-reachability space of s2(k)

Sk
XT

Sk

T

t2

t0

t1

(c) Case-3

Fig. 6. Three possible cases for (ṡ0
inv(k), ṡ1

inv(k)) when f(s, u) = u.

where s(k) and ṡ(k) are dimension-k of s and ṡ, respectively.
See Fig. 5 for an illustration. Each point that lies inside rk

and on lk satisfies the robot’s motion equation at dimension-
k, and if s′1(k) = s0(k)+ (t1− t0)ṡ0(k) then s′1(k) is in the
reachability space of (s0(k), t0) and in the back-reachability
space of (s2(k), t2). The point (ṡ0

inv(k), ṡ1
inv(k)) always

lie on lk. The issue here is to bring (ṡ0
inv(k), ṡ1

inv(k)) to
be inside rk. Three cases are possible (Fig. 6), ie,
• Case-1 (Fig. 6a), (ṡ0

inv(k), ṡ1
inv(k)) is valid. In this

case, (ṡ0
obj(k), ṡ1

obj(k)) = (ṡ0
inv(k), ṡ1

inv(k)). This
automatically minimizes the displacement as none of
the nodes are moved.

• Case-2 (Fig. 6b), (ṡ0
inv(k), ṡ1

inv(k)) is invalid but
rk ∩ lk 6= ®. In this case, (ṡ0

obj(k), ṡ1
obj(k)) is the

point on rk ∩ lk that is closest to (ṡ0
inv(k), ṡ1

inv(k)).
Simple algebraic manipulation is enough to prove that
this pair of velocities minimizes the displacement, as-
suming that the approximation in (6) is accurate enough.

• Case-3 (Fig. 6c), (ṡ0
inv(k), ṡ1

inv(k)) is invalid
and rk ∩ lk = ®. In this case, 2-STD sets
(ṡ0

obj(k), ṡ1
obj(k)) to be the point on rk that is

nearest to (ṡ0
inv(k), ṡ1

inv(k)). Note that in this
case both s1(k) and s2(k), instead of just s1(k), are
moved. Here, the pair of velocities is not guaranteed to
minimize the displacement.

The above steps are performed to each dimension indepen-

dently to get the desired valid pair of velocities (ṡ0
obj , ṡ1

obj).
Now, in general f(s, u) 6= u and a valid pair of velocities

can not be found independently for each dimension. Never-
theless, the pairs of valid velocities that satisfy f(s, u) form
a subspace in V × V . When efficient methods are known
for projecting a point in V × V to the subspace, 2-STD
finds valid pair of velocities that minimizes the displacement,
by first projecting (ṡ0

inv, ṡ1
inv) to the subspace. When the

projected point satisfies the bounds on the control input, this
projected point becomes (ṡ0

obj , ṡ1
obj). When the projected

point does not satisfy the bounds on the control input,
2-STD generates pairs of velocities using the combination of
minimum and maximum control input and chooses the pair of
velocities that minimizes the displacement d(s0, s1, s2) to be
(ṡ0

obj , ṡ1
obj). When this happens, the deformed nodes will

be achieved by applying combinations of minimum and max-
imum control input, similar to the bang-bang approach [2].
In this case too we can not guarantee that (ṡ0

obj , ṡ1
obj) min-

imizes the displacement. When the motion equation is too
complicated for projection to take place, 2-STD bypasses the
projection step to directly use the combination of minimum
and maximum control.

C. Adding nodes

When node (sgoal, tend) at the end of the trajectory is de-
formed, the trajectory may not end at the goal state anymore.
When the trajectory does not end at the goal state anymore,
2-STD adds an additional node (sadd, tadd), sadd = sgoal and
tadd = tend+td+tε at the end of the deformed trajectory. Of
course this additional node is not guaranteed to be collision-
free nor reachable from its previous node. Therefore, 2-STD
will again apply both obstacle avoidance and connectivity
maintenance step. This process of adding node and applying
the two steps of 2-STD will be repeated until the goal state
is collision-free and reachable.

IV. EXPERIMENTAL RESULTS

We implemented and tested 2-STD on a simulator written
in C++ and ran on an Intel Pentium 4 3GHz 1GHz RAM
with Linux operating system. In the test, we assume that a
new world model is given every 20ms. Throughout the test,
we use a planar square robot with double integrator subject
to velocity and acceleration bounds. We ran this robot on
two different dynamic environment scenarios.

The first scenario is used to assess the performance of
2-STD in handling scenarios as in Fig. 2. Initially, there is
no obstacle and the original trajectory is a straight line. At
t = 20ms, the robot receives a new world model (Fig. 7b)
where there is a new obstacle that crosses the original
trajectory. Upon receiving this world model, 2-STD deforms
the trajectory to avoid obstacles (Fig. 7c). By incorporating
the information on the future behaviour of the obstacle,
2-STD is able to deform the trajectory from behind the
obstacle. This avoids 2-STD from deforming the trajectory
too much such that it breaks the connectivity. Next, 20ms
later, the robot receives a new world model where again
there is another obstacle moving and crossing the original

trajectory (Fig. 7d). As before, 2-STD deforms the trajectory
to avoid obstacles (Fig. 7e). Each of the deformation process
took less than 2ms. This scenario shows that 2-STD is able
to avoid obstacles where path deformation methods tend to
fail. This is expected because by taking the time dimension
into account, 2-STD uses information on the future behaviour
of the robot in order to deform the trajectory. This enables
2-STD to anticipate the obstacle’s motion and deform the
trajectory more appropriately.

The second scenario is to assess the usefulness of 2-STD
when the model of the future changes frequently. Initially,
there is no obstacle and the original trajectory is shown
in Fig. 8a. At t = 20ms, new obstacle A is detected to
obstruct the trajectory. As a result, 2-STD deforms the initial
trajectory (Fig. 8b). Then, 40ms later the robot detects new
obstacle B that obstructs the trajectory. To avoid collision,
2-STD deforms the trajectory (Fig. 8c). Next, 20ms later at
t = 80ms, the robot realizes that B has changed its motion
and obstructs a different part of the trajectory and hence
triggers 2-STD to deform the trajectory again (Fig. 8d). Then,
20ms later, the robot realizes that the motion of B, predicted
at t = 80ms, is not entirely correct and the new predicted
obstacle’s motion obstructs again a different part of the
trajectory. So 2-STD deforms the trajectory again (Fig. 8e).
Note that the trajectory that has been deformed to avoid
obstacles according to the world model received at t = 80ms
will not be deformed back (to the original trajectory) unless
it becomes obstructed. Last, at t = 160ms, new obstacle C
is detected and this new obstacle passes through the goal
position at the same time the trajectory reaches its goal
position. 2-STD deforms the trajectory by adding nodes such
that it will reach the goal position sometimes later (Fig. 8f).
Each of these deformations took less than 8ms. This scenario
shows that 2-STD is efficient enough to adapt to the frequent
changes of the world model.

Although in our experiments, all the obstacles are dy-
namic, 2-STD respects static obstacles, too. Static obstacles
are handled in the same way as dynamic obstacles are
handled. And, although we only experimented with low dofs
robot, 2-STD is applicable for high dofs robot, because the
two steps of 2-STD, ie, obstacle avoidance and connectivity
maintenance, are applicable to both low and high dofs robot.

V. DISCUSSION

Several issues still need further investigation, ie,

• 2-STD uses distance function in W × T to avoid obsta-
cles. This means, the distance metric is a combination
of the distance in W and T . Therefore, we need a good
scale between a distance of one unit in W and a distance
of one unit in T . Too much weight on W causes the
deformation to be dominated by spatial deformation,
while too much weight on T causes the deformation to
be dominated by temporal deformation. In the current
implementation, we simply assume that 1m distance in
W is the same as 1s distance in T . A better scale may
be to consider the average speed of the robot. Another

(a) The scenario. (b) t = 20ms, obstructed. (c) t = 20ms, deformed. (d) t = 40ms, obstructed. (e) t = 40ms, deformed.
Fig. 7. Scenario-1. (a) The robot is colored green, the obstacles are colored red. The obstacle at the left of the robot is heading up while the other
obstacle is heading down. The robot has just avoided collision with the obstacle in the left. (b)-(e) The environment and trajectory in configuration×time
space. The axis are the black lines, the time axis is the vertical line. The skewed tubes are the obstacles in the configuration×time space, the blue part is
the past while the green part is the future. The trajectory is the red line.

(a) t = 0ms. (b) t = 20ms. (c) t = 60ms. (d) t = 80ms. (e) t = 100ms. (f) t = 160ms.
Fig. 8. Scenario-2. The environment and trajectory in configuration×time space. The axis are the black lines, the time axis is the vertical line. The skewed
tubes are the obstacles in the configuration×time space, the blue part is the past while the green part is the future. The trajectory is the red line.

possibility is to relate it to our objective, eg, to reach
the goal quickly, to minimize energy usage, etc.

• Currently, to keep the temporal ordering of the trajec-
tory unchanged, the deformation of each node in T is
limited. It would be interesting to see the result when the
deformation in T is unlimited just as the deformation
in S . The key issue is of course how to efficiently
reorder the trajectory such that the robot can still use
the partially deformed trajectory.

• In the connectivity maintenance step, 2-STD fixes the
time and assumes that only one control input can be ap-
plied for moving the robot from a node to its subsequent
node. This is often too restricted, especially when the
motion equation is complex. One improvement would
be to allow changes in time and allow several changes
of control between nodes.

• Although in the connectivity maintenance step, 2-STD
tries to respect the deformation generated by the obsta-
cle avoidance step, in general there is no guarantee that
the connectivity maintenance step will not nullify the
results of obstacle avoidance step. One way to improve
on this maybe to “blend” the obstacle avoidance and
connectivity maintenance step more smoothly.

VI. CONCLUSION

This paper introduces the first trajectory deformation strat-
egy as an effort to improve path deformation technique
for motion planning in dynamic environment. The main
idea is that by incorporating the time dimension and hence
information on the obstacles’ future behaviour, motion de-
formation approach can be used for robotic system moving
in complicated dynamic environment. Based on this idea,
we propose a trajectory deformation method, 2-STD, that
consists of two steps. First, the obstacle avoidance step
to deform the trajectory to avoid obstacles. Second, the
connectivity maintenance step to ensure that the deformed

trajectory respects the robot’s kinematic and/or dynamic
constraints.

Our preliminary results on a planar robot with double
integrator dynamics show that 2-STD is able to efficiently
deform the robot’s motion in cases where path deformation
methods fail, ie, cases such as Fig. 2. Moreover, 2-STD
is efficient enough to deform the robot’s motion, avoiding
collision with dynamic obstacles, even when the world model
changes frequently.

REFERENCES

[1] H. Kurniawati and T. Fraichard, “From path to trajectory deformation,”
INRIA Research Report, 2007.

[2] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
2006.

[3] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” AIAA Journal of Guidance, Control
and Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[4] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in IROS, Edmonton, AB (CA), Aug. 2005.

[5] O. Lefebvre, F. Lamiraux, C. Pradalier, and T. Fraichard, “Obstacles
avoidance for car-like robots. integration and experimentation on two
robots,” in ICRA, New Orleans, LA (US), Apr. 2004, pp. 4277–4282.

[6] O. Brock and O. Khatib, “Elastic strips: a framework for motion
generation in human environments,” IJRR, vol. 21, no. 12, pp. 1031–
1–52, Dec. 2002.

[7] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” in ICRA, Atlanta, GA (US), May 1993, pp. 802–807.

[8] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond, “Dynamic
path modification for car-like nonholonomic mobile robots,” in ICRA,
Albuquerque, NM (US), Apr. 1997, pp. 2920–2925.

[9] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deforma-
tion for nonholonomic mobile robots,” IEEE Trans. on Robotics and
Automation, vol. 20, no. 6, pp. 967–977, Dec. 2004.

[10] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation,” in RSS, Philadelphia,
USA, August 2006.

[11] T. Fraichard, “Trajectory planning in a dynamic workspace: a ‘state-
time space’ approach,” Adv. Robotics, vol. 13, no. 1, pp. 75–94, 1999.

[12] A. Bruce and G. Gordon, “Better motion prediction for people-
tracking,” in ICRA, New Orleans, LA (US), Apr. 2004.

[13] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning
motion patterns of people for compliant robot motion,” IJRR, vol. 24,
no. 1, pp. 31–48, 2005.

