
HAL Id: inria-00173535
https://inria.hal.science/inria-00173535v4

Submitted on 26 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Term-graph rewriting via explicit paths
Emilie Balland, Pierre-Etienne Moreau

To cite this version:
Emilie Balland, Pierre-Etienne Moreau. Term-graph rewriting via explicit paths. RTA: International
Conference on Rewriting Techniques and Applications, Jun 2008, Hagenberg, Austria. pp.32-47.
�inria-00173535v4�

https://inria.hal.science/inria-00173535v4
https://hal.archives-ouvertes.fr

Term-graph rewriting via explicit paths

Emilie Balland and Pierre-Etienne Moreau

UHP & LORIA, and INRIA & LORIA,
BP 101, 54602 Villers-lès-Nancy Cedex France

{Emilie.Balland,Pierre-Etienne.Moreau}@loria.fr

Abstract. The notion of path is classical in graph theory but not di-
rectly used in the term rewriting community. The main idea of this work
is to raise the notion of path to the level of first-order terms, i.e. paths
become part of the terms and not just meta-information about them.
These paths are represented by words of integers (positive or negative)
and are interpreted as relative addresses in terms. In this way, paths can
also be seen as a generalization of the classical notion of position for the
first-order terms and are inspired by de Bruijn indexes.
In this paper, we define an original framework called Referenced Term
Rewriting where paths are used to represent pointers between subterms.
Using this approach, any term-graph rewriting systems can be simulated
using a term rewrite-based environment.

1 Introduction

The notion of position is of course central as soon as one deals with data struc-
tures. Absolute as well as relative positions are at the heart of algorithms ma-
nipulating data structures and their appropriate use and representation can lead
to very important differences in the complexity behavior and more generally in
the expression of the algorithms themselves. A typical example is the notion of
de Bruijn indexes for lambda-terms [11] that not only allows for an easier expres-
sion of data-structure manipulations, typically substitution, but also completely
changes the way the algorithm is designed, because in this case alpha-conversion
is useless.

The main idea of this paper is to make the notion of path first-class, i.e.
paths become part of the terms and not just meta-information about them.
Paths are defined as a generalization of positions and denote a relation from a
source position to a target one. A main difference with classical positions that
specify a subterm with respect to a global term is that the source position is not
necessarily the root.

The first contribution of the paper is to introduce the notion of referenced
terms to ground an extension of term rewriting where paths are used to express
references and thus to provide a natural way to add pointers in classical terms.
For instance, the term f(a, g(a)) where we want to make explicit the fact that the
subterm a is shared, will be represented as the referenced term f(a, g(-1 � -2 �1)),
where -1 and -2 denote backward move from respectively the first subterm of g

2 Emilie Balland and Pierre-Etienne Moreau

and the second subterm of f . The rational term g(g(g(. . .))) (a rational term is
a possibly infinite term with finitely many subterms, see [10]) is represented by
the referenced term g(-1).

Based on the formalization of paths and a notion of rewrite relation for ref-
erenced terms, a strong contribution of this paper is to establish a simulation
of term-graph rewriting by referenced term rewriting. Since this simulation is
completely based on standard first-order terms, another main interest of the
approach is to provide a safe and efficient way to represent and transform term-
graphs in a purely term-rewriting based language. Beside the theoretical interest,
this is very useful to implement program analysis tools where the representation,
the analysis, and the transformation of control-flow and data-flow graphs are cru-
cial. This new representation of terms generalizes standard first-order terms. It
requires us to carefully design this new notion of terms and its use to get syn-
tactic correctness. For instance, g(-1 � -1) makes no sense as such. Completeness
with respect to the standard notions of term and term-graph rewritings have also
to be established. This leads to an original and clean way for representing and
transforming graphs in a maximally shared rewrite-based environment, making
in particular possible the use of term rewriting strategies [16, 20] for term-graph
rewriting.

The paper is organized as follows. In Section 2, we formalize the notion of
paths and referenced terms where paths are interpreted as pointers. Section 3
shows the relation between referenced terms and cyclic term-graphs. In this
section, paths are considered as a way to identify shared parts of the term.
Sections 4 presents related work as well as the implementation that has been
done in the Tom system. Section 5 concludes.

2 Paths and Referenced terms

We assume the reader to be familiar with the basic definitions of first-order
terms given, in particular, in [4]. We briefly recall or introduce notations for a
few concepts that will be used throughout this paper.

A signature F is a set of function symbols, each one associated to a natural
number by an arity function. T (F ,X) is the set of terms built from a given
finite set F of function symbols and a denumerable set X of variables. symb(t)
is a partial function from T (F ,X) to F , which associates to each term t its top-
symbol f ∈ F . The set of variables occurring in a term t is denoted by Var(t).
If Var(t) is empty, t is called a ground term and we note T (F) = T (F , ∅) the
set of ground terms. Given a set of terms T (F ,X), a substitution σ is a function
from X to T (F), denoted σ = {x1 7→ t1, . . . , xk 7→ tk} when its domain is
finite. Ran(σ) denotes its codomain. By abuse of notation, we mix up the term
a ∈ T (F) and the function symbol a ∈ F when the arity of a is 0.

In term rewriting, the concept of positions is used to denote a subterm in
a global term (i.e. the path from the root to this subterm). In this section, we
define the notion of path, which generalizes the notion of position by denoting a

Term-graph rewriting via explicit paths 3

path from a subterm to another one, and not only the path from the root to a
given subterm. Negative numbers designate bottom-up displacements

Definition 1 (Path). We denote P the set of words on Z \ {0}. We denote ε
the empty word, p1 � p2 the concatenation of two words p1 and p2 and |p| the
length of a word p. We denote P∗ the set P \ {ε}.

Example 1. ε, 1 � 3, and -2 � 1 � 3 are paths, elements of P.

The notion of path is oriented and corresponds to the route from a subterm
to another one. For example, considering the term f(a, b), the path -1�2 describes
how to reach the subterm b starting from a. The negative integer -1 denotes a
backward move from a to f , whereas 2 goes from f to b. The inverse of a path p
is denoted by p and can be calculated using the equations ε = ε and i � p = p � -i.
For example, -1 � 2 = -2 � 1.

Note that positions are a subset of paths (paths only composed of positive
integers). In the rest of the paper, they will be denoted by Greek letters ω, δ. The
empty word ε is also a position and is generally called the top-position because in
term-rewriting, positions are only interpreted from the root of the term. Given
two positions, we will denote by v the classical relation of prefixation between
two words (ω1 v ω2 if there exists a position p such that ω1 � p = ω2). The
subterm of t at position ω is denoted t|ω. The replacement at position ω of the
subterm t|ω by t′ is written t[t′]ω. The set of positions of t is denoted Pos(t).
Given two positions ωsrc and ωdest (for source and destination), note that the
path ωsrc �ωdest corresponds to a path connecting t|ωsrc

to t|ωdest
. We denote <P

the lexicographic order on positions. For example ε <P 1 and 1 � 2<P 1 � 3.
If we want to use these paths to define term-graphs, it is necessary to con-

sider equivalence classes. Informally, two paths are equivalent if for every source
position, their target positions are equal. For example, paths 1 � 2 � -2 and 1 are
equivalent.

In the following we define the notion of canonical form as the smallest path
of this equivalence class. Moreover, when interpreting a negative integer as a
backward move from the i-th child to the father, we must ensure that if the
previous move in the word is positive, it leads to the same i-th child. For example,
the path 1 �-2 cannot be considered as valid because a move downward to its first
child is followed by a move backward from its second child. These observations
lead us to introduce the notion of well-formed paths, as well as a constant ⊥ for
representing ill-formed paths.

Definition 2 (Canonical path and path equivalence). The canonical form
of a path p ∈ P, denoted LpM, is obtained by maximal application of the rule
i � -i→ ε if i ∈ Z∗. Two paths p1 and p2 are said equivalent if Lp1M = Lp2M.

It is easy to show that the rule using to obtain canonical paths is confluent
and terminating.

Definition 3 (Well-formed path). We introduce a constant ⊥ for denoting
ill-formed paths. A path p ∈ P is well-formed if LpM 6→∗

R ⊥ with R is defined by
the rule p � i � -j � p′ → ⊥ if i > 0, j > 0 and i 6= j

4 Emilie Balland and Pierre-Etienne Moreau

Example 2. 1 � 2 � -2 and 2 � 3 � -3 � -2 � 1 are well-formed paths, but 1 � -2 is not.

Note that positions can be seen as a subset of well-formed paths because they
correspond to paths only composed of positive integers. Note also that the inverse
preserves the well-formedness. On the other hand, the concatenation of two well-
formed paths does not always lead to a well-formed path: 1 is well-formed, -2 is
well-formed, but 1 � -2 is not.

From these definitions, we show how the notion of paths can be used to
extend an algebraic signature in order to represent referenced terms.

2.1 Referenced Terms

A referenced term is a term whose leaves may be a path, which denotes a refer-
ence to another subterm.

Definition 4 (Referenced terms). Given a set of symbols F and a set of
variables X such that F , X , P are disjoint, we denote by Tr(F ,X) the set of
referenced terms T (F ∪ P,X), where the elements of P are symbols of arity 0.

Example 3. For F = {f, g, a}, a, g(-1), and g(f(a, -2 � 1)) are referenced terms,
elements of Tr(F). For any F and X , we have T (F ,X) ⊂ Tr(F ,X).

Definition 5 (Dereferencing). Given t ∈ Tr(F ,X) and ω ∈ Pos(t):

deref(t, ω) =
{

Lω � symb(t|ω)M if symb(t|ω) ∈ P
ω otherwise.

We recall that symb(t) is a partial function from T (F ,X) to F , which associates
to each term t its top-symbol f ∈ F . The operation deref(t, ω) returns the
position pointed by t|ω when symb(t|ω) ∈ P, and ω otherwise. For example,
deref(g(-1), 1) = ε, but deref(g(a), 1) = 1. Note that when ω � symb(t|ω) is
ill-formed, the result of deref(t, ω) is meaningless.

We now introduce a notion of valid referenced terms. The first condition
ensures that the value returned by deref(t, ω) is a position of Pos(t), and thus
is a well-formed path. For example, deref(g(−2), 1) is not a valid term. The
second condition forbids pointers of pointers like in f(−1 � 2,−2 � 1). This last
requirement is introduced only for simplicity but is not mandatory in term-graph
simulation. Indeed, it could be interesting to consider such terms for modeling
imperative languages for example.

Definition 6 (Valid referenced terms). A term t ∈ Tr(F ,X) is a valid
referenced term if ∀ω ∈ Pos(t) such that symb(t|ω) ∈ P we have:

– deref(t, ω) ∈ Pos(t),
– symb(t|deref(t,ω)) /∈ P∗.

We denote by Tvr(F ,X) the set of valid referenced terms and Tvr(F) the set of
ground valid referenced terms.

Term-graph rewriting via explicit paths 5

Empty paths (denoted ε) are allowed in valid referenced terms in order to
deal with degenerated cycles that can appear when applying a collapsing rule,
e.g. a rule of the form I(x) → x. In the term-graph rewriting formalism, a fresh
constant called black hole and denoted by • is generally introduced [3]. In our
context, it is not necessary since ε corresponds intuitively to this constant.

Example 4. The terms ε, g(-1), f(-1 � 2, a) and f(-1 � 2, ε) are valid, but g(3)
and f(-1 � 2, -2) are not. Terms corresponding to non-empty paths (1, -1 � 2,
etc.) are elements of Tr(F ,X) but are not valid (i.e. /∈ Tvr(F ,X)). The term
t = f(-1 � 1 � -1, -2 � 3) is invalid because deref(t, 2) = L2 � -2 � 3M = 3 which is not
in Pos(t) = {ε, 1, 2}.

3 Term-Graph Rewriting

There exist different formalisations of term-graph rewriting, category-theory ori-
ented [15, 18], equationally oriented [3, 19] or implementation oriented [6]. The
difference between terms and term-graphs is the notion of horizontal and vertical
sharing. In this section, we base our work on the equational framework intro-
duced in [3]. This well established framework allows the definition of possibly
cyclic term-graphs, using systems of recursion equations.

Definition 7 (System of recursion equations from [3]). Given a finite
set F of function symbols and a denumerable set X of variables, a system of
recursion equations is of the form {α1 | α1 = t1, . . . , αn = tn}, ∀i, j ∈ [1, n] αi ∈
X , αi 6= αj, ti ∈ T (F ,X) is of the form f(β1, . . . , βm), f ∈ F , ∀j ∈ [1,m] βj ∈
X . Moreover, ∀i ∈ [1, n] αi must be reachable from α1.

Given a system of recursion equations L, the root is denoted root(L) and cor-
responds to the recursion variable α1. The set of equations is denoted set(L).
A variable α is said bound when it appears in the left-hand side of an equa-
tion. Otherwise, α is free. Note that systems of recursion equations are consid-
ered modulo renaming of the recursion variables. In Definition 7, the systems
of recursion equations have been presented in flattened form (ti of the form
f(β1, . . . , βm)) which ensures the unicity of the representation of a term-graph
(modulo renaming of recursion variables). An example of term-graph is given in
Figure 1.

α : f

β : g γ : f

root

Fig. 1. This cyclic term-graph corresponds to the system of re-
cursion equations {α | α = f(β, γ), β = g(α), γ = f(β, α)}. It
contains horizontal sharing: α and γ share the same subterm β;
as well as vertical sharing: α is a subterm of both β and γ.

Definition 8 (Equational term-graph rewriting [3]). Given a rewrite rule
composed of two systems of recursion equations L1 and L2 with the same root

6 Emilie Balland and Pierre-Etienne Moreau

(L1 and L2 are not necessarily in flattened form) and where the free variables
of L2 are included in the set of free variables of L1, a system of recursion equa-
tions L is rewritten into L′ by the rule L1 → L2 if there exists a variable sub-
stitution σ (Definition 4.1 of [3]) and a recursion equation α = t in L such
that set(σ(L1)) ⊆ set(L) and α = root(σ(L1)). root(L′) = root(L) and
set(L′) = set(L) \ {α = t} ∪ set(σ′(L2)) where σ′(L2) denotes σ(L2) in which
every bound variable (except the root) has been renamed using a fresh name. To
obtain from L′ a system as defined in Definition 7, equations corresponding to
unreachable bound recursion variables are removed and equations are flattened
(see [3] for more details). Degenerated cycles, i.e. equations of the form α = α
are replaced by α = •. In case of equations of type α = β, each occurrence of α
is substituted by β and the equation α = β is removed.

Example 5. Suppose we want to apply the rule {β1 | β1 = f(β2, β3)} → {β1 |
β1 = β2}, which corresponds to f(x, y) → x, on the following term-graph:

α1 : f

α2 : f α3 : f

α4 : a α5 : g

α6 : b

root

α1 : f

α2 : f α3 : f

α4 : a α5 : g

α6 : b

root

initial subject s final result s′

The initial term-graph is L = {α1 | α1 = f(α2, α3), α2 = f(α4, α5), α3 =
f(α6, α4), α4 = a, α5 = g(α6), α6 = b}. When applying the rule at position 1 (i.e.
on α2), we have σ = {β1 7→ α2, β2 7→ α4, β3 7→ α5} and α2 is the selected bound
variable. σ(L2) = {α2 = α4} (note that renaming with fresh variables is not
necessary in this case) and we get L′ = L \ {α2 = f(α4, α5)} ∪ σ(L2) as final re-
sult. This corresponds to the system {α1 | α1 = f(α4, α3), α3 = f(α6, α4), α4 =
a, α6 = b} after cleanup.

3.1 Referenced term equivalence

In order to simulate term-graphs with referenced terms, we need to establish
equivalence classes between valid referenced terms. For example, f(-1 � 2, a) and
f(a, -2 �1) should be equivalent. They both correspond to the term-graph rooted
by f whose two children correspond to the shared subterm a. To define the equiv-
alence, we introduce three intermediate functions that characterize translation,
expansion and sharing.

The first one, called subterm translation, is essential in the following. Given
a term t and two positions ω1, ω2, as illustrated in Figure 2, the translation in t
from ω1 to ω2, denoted t[ω1_ω2], returns the subterm t|ω1 where the references

Term-graph rewriting via explicit paths 7

contained in t|ω1 that point outside t|ω1 have been updated as if t|ω1 was moved
to the position ω2.

Definition 9 (Subterm translation). Given t ∈ Tvr(F ,X) and two posi-
tions ω1, ω2, we consider the subterm translation t[ω1_ω2] defined such that
Pos(t[ω1_ω2]) = Pos(t|ω1) and ∀δ ∈ Pos(t|ω1):

symb(t[ω1_ω2]|δ) =

 Lω2 � δ � deref(t, ω1 � δ)M if symb(t|ω1�δ) ∈ P∗
and ω1 6v deref(t, ω1 � δ)

symb(t|ω1�δ) otherwise.

t

t[ω1_ω2]

ω1

ω2

ω
δ

δ

d = deref(t, ω)

Fig. 2. Given t and ω1, let us suppose that at position ω
the subterm t|ω contains a reference to the subterm d (i.e.
d = deref(t, ω)). The translation from ω1 to ω2 corresponds
to an update of t|ω1 as if it was moved to ω2. To maintain the
pointers to the referenced terms, the paths stored in t|ω1 are
updated. The result of this operation is the updated subterm
t|ω1 . For example, f(g(-1 � -1), a)[1_2] = g(-1 � -2).

The operation expansion noted exp consists in replacing all the sharing by
duplication. Given a set of function symbols F , exp is a function from Tvr(F) to
T ∞(F ∪{ε}) where T ∞(F ∪{ε}) is the set of infinite terms over F ∪{ε} defined
as partial functions from the infinite set of positions to F ∪ {ε}. We denote ⊥
the undefined term represented by the empty function ∅ → F ∪ {ε}. See [9] for
more details.

Definition 10 (Expansion). Given t ∈ Tvr(F), we consider the chain {ti}i∈N
of terms of T ∞(F ∪ P) defined as follows:

– t0 = t
– tn+1 = tn[tn[deref(tn,ω)_ω]]ω

where ω is the smallest position of Pos(tn) such that symb(tn|ω) ∈ P∗
(We consider the following order: ω < ω′ if |ω| < |ω′| ∨ (|ω| = |ω′| ∧ω <P
ω′))

exp(t) ∈ T ∞(F) is defined as
⋃∞

i=0 t
′
i where t′i corresponds to ti where every path

p ∈ P∗ has been replaced by ⊥.

Proposition 1. Given t ∈ Tvr(F), exp(t) is a total function (i.e. total w.r.t. to
the arities, not totally defined over the set of all positions. For more explanations,
see [9]).

Proof. By definition of the chain {ti}i∈N, exp(t) is a function. Moreover, as every
path is replaced by a subterm, exp(t) does not contain ⊥ and the symbol arities
are respected. ut

8 Emilie Balland and Pierre-Etienne Moreau

Example 6. The function exp replaces in a valid referenced term every reference
by the corresponding expanded subterm. exp(f(-1 � 2, a)) = exp(f(a, -2 � 1)) =
f(a, a) and exp(g(-1)) = g(g(g(. . .))). Note that in case of a cycle, the expanded
term corresponds to an infinite term. A non-trivial example is f(g(-1�-1�2), h(-1�
-2 � 1)). In this case, we need to update paths at every application of the rule.
As the shared subterms are dependent, the result is infinite. We finally obtain
f(g(h(g(h(. . .)))), h(g(h(g(. . .))))).

Thus two equivalent referenced terms have the same expansion. However, this
condition is necessary but not sufficient because the two terms to compare must
also have a similar sharing. For example, f(a, a) is not equivalent to f(a, -2 � 1)
because a is not explicitly shared in the first one. For this, we introduce a third
relation called sharing which computes the set of shared positions.

Definition 11 (Sharing). Given t ∈ Tvr(F), we consider:

– share0(t) = {{ω, deref(t, ω)} | ω ∈ Pos(t) and symb(t|ω) ∈ P∗}
– sharen+1(t) = {{ω′ � q, q′} | {ω, ω′}, {ω � q, q′} ∈ sharen(t)}

The function share(t) is defined as
∞⋃

n=0

sharen(t).

Example 7. The function share computes the set of shared position pairs. For
example, share(f(-1 � 2, a)) = {{1, 2}} and share(g(-1)) = {{1, ε}}. A non-
trivial example is f(g(-1 � -1 � 2), h(-1 � -2 � 1)). At the first step, share0(t) =
{{1, 2 � 1}, {2, 1 � 1}}. In this case, it is necessary to close the relation of sharing
with prefixes. We finally obtain the infinite set of related positions share(t) =
{{1, 2�1}, {2, 1�1}, . . . , {1�(1�1)∗, 2�1�(1�1)∗}, {2�(1�1)∗, 1�1�(1�1)∗}} (∗ denotes
the sublist repetition). This infinite result is due to the inter-dependency of the
two references.

Definition 12 (Equivalence). Two valid referenced terms t1, t2 are equivalent
(denoted by t1 v t2) if share(t1) = share(t2) and exp(t1) = exp(t2).

It is easy to show that v is an equivalence relation.

3.2 Canonical referenced terms

For every equivalence class, we define a canonical form using <P , the lexico-
graphic order on positions.

Definition 13 (Canonical referenced terms). A valid referenced term t ∈
Tvr(F ,X) is canonical if for every position ω ∈ Pos(t) such that symb(t|ω) ∈ P∗,
symb(t|ω) is a canonical path and deref(t, ω)<P ω.
We denote by Tg(F ,X) the set of canonical referenced terms and Tg(F) the set
of ground canonical referenced terms.

Term-graph rewriting via explicit paths 9

Example 8. The term f(a, -2 � 1) is canonical but f(-1 � 2, a) is not because
deref(f(-1 � 2, a), 1) = 2 (the position of the pointed subterm a) is not smaller
than 1.

To define the normalization function that returns the canonical form of any valid
referenced term, we introduce a swapping function that permutes two subterms
and updates all the paths contained in the global term in order to preserve
the sharing. First, we translate the two subterms. This translation updates the
pointers from the subterms to the external context. To obtain a valid referenced
term, we still have to update every pointer from the outside to the subterms.

Definition 14 (Swapping). Given t ∈ Tvr(F ,X) and two disjoint positions
ω1, ω2 (ω1 6v ω2 and ω2 6v ω1), we consider u = t[ω1_ω2], v = t[ω2_ω1], t

′ =
t[v]ω1 [u]ω2 . The swapping in t of the subterms at position ω1 and ω2 is denoted
by t[ω1]ω2], and is defined such that ∀ω ∈ Pos(t′), we have:

symb(t[ω1]ω2]|ω) =


Lω � ω2 � δM if symb(t′|ω) ∈ P∗, ω 6v ω1

and ∃δ s.t. deref(t′, ω) = ω1 � δ
Lω � ω1 � δM if symb(t′|ω) ∈ P∗, ω 6v ω2

and ∃δ s.t. deref(t′, ω) = ω2 � δ
symb(t′|ω) otherwise.

Example 9. f(a, b)[1]2] = f(b, a), f(g(-1 � -1 � 2), h(-1 � -2 � 1))[1]2] = f(h(-1 �
-1 � 2), g(-1 � -2 � 1)). A more complex example is the swap of a and b in t =
f(f(a, b), -2 � 1 � 2). In this case, the reference -2 � 1 � 2 has to be updated because
it has to reference b. Thus, the result is f(f(b, a), -2 � 1 � 1).

The swapping function preserves the notion of validity (Definition 6). Its com-
plexity is linear on the size of the term since in the worst case, all the references
in the term must be updated. In the following, we introduce a normalization
function that associates to every valid referenced term its canonical form.

Definition 15 (Normalization). We define J K : Tvr(F ,X) → Tg(F ,X) such
that given t ∈ Tvr(F ,X), JtK is the normal form of t′ (t where every path is in
canonical form) with respect to the conditional rule: t′ → t′[ω]deref(t′,ω)] if ω <P
deref(t′, ω). The proof of this rule convergence can be found in the Appendix A.

Example 10. JaK = a, Jf(-1�2, a)K = f(a, -2�1), and Jf(g(-1�-1�2), h(-1�-2�1))K =
f(g(h(-1 � -1)), -2 � 1 � 1)

Note that the normalization is linear in the size of the term when the swapping
is applied in a leftmost-innermost way.

Proposition 2. ∀t ∈ Tvr(F ,X), we have t v JtK.

Proof. Given t ∈ Tvr(F ,X), t′ is trivially equivalent to t and every rewriting
step of normalization preserves the two functions share(t) and exp(t). In fact,
the swapping between a pointer and its corresponding pointed subterm preserves
the sharing and as only references are updated, the expansion is the same. ut

10 Emilie Balland and Pierre-Etienne Moreau

Proposition 3. ∀t1, t2 ∈ Tvr(F ,X), we have: Jt1K v Jt2K ⇔ Jt1K = Jt2K.

Proof. First, the proof that Jt1K = Jt2K ⇒ Jt1K v Jt2K is trivial because as v is an
equivalence relation and thus is reflexive. Secondly, we prove that Jt1K v Jt2K ⇒
Jt1K = Jt2K. Suppose they are not equal, it means that there exists a shared
subterm at a position ω referenced at a position ω′ in Jt1K and the contrary
in Jt2K. As Jt1K, Jt2K are canonical, it implies that ω <P ω′ and ω′ <P ω which is
impossible due to the total order on positions. So Jt1K = Jt2K. ut

Theorem 1. ∀t1, t2 ∈ Tvr(F ,X), we have: t1 v t2 ⇔ Jt1K = Jt2K

Proof. Direct consequence of the propositions 2 and 3. ut

In practice, to verify that two terms are equivalent we compare their canonical
forms. It is simpler and more realistic than computing exp(t) and share(t),
which can be infinite.

3.3 Term-graph rewriting using canonical referenced terms

We introduce an original algorithm for implementing term-graph rewriting using
canonical referenced terms. By manipulating only canonical referenced terms, we
obtain a mapping one-to-one with term-graphs which makes easier the encoding
of matching and rewriting. In Figure 3 we present a set of rules (Tg-Matching),
which is a specialization of the syntactic pattern matching algorithm presented
in [17].

Decompose E ∧ f(p1, . . . , pn) �s,ω
δ f(t1, . . . , tn) ‖ ∆ 7→7→ E ∧

n̂

i=1

pi �s,ω�i
δ�i ti ‖ ∆ ∪ {(δ, ω)}

Variable E ∧ x �s,ω
δ t ‖ ∆ 7→7→ E ‖ ∆ ∪ {(δ, ω)}

Stability E ∧ π �s,ω
δ f(t1, . . . , tn) ‖ ∆ 7→7→ E ‖ ∆ ∪ {(δ, ω)}

if (Lδ � symb(π)M, ω) ∈ ∆

Dereferencing E ∧ p �s,ω
δ π ‖ ∆ 7→7→ E ∧ p �s,ω′

δ s|ω′ ‖ ∆ ∪ {(δ, ω)}
where ω′ = Lω � symb(π)M

Fig. 3. We consider the set of rules Tg-Matching where E is a conjunction of constraints,
∆ is a set of pairs, x is a variable (∈ X), f is a symbol, element of ∈ F ∪ {ε},
(remember that ε corresponds to •), s, t, t1, . . . , tn are ground referenced term (∈
Tg(F)), π is a non-empty path (symb(π) ∈ P∗), p is a pattern not reduced to a variable
(∈ Tg(F ,X) \ X), pi are patterns (∈ Tg(F ,X)), ∧ is the classical boolean connector,
which is associative and commutative. Starting from a constraint l �s,ω

ε s|ω ‖ ∅, the
reduction leads either to > (the neutral element of ∧) or a conjunction of matching
constraints of the form p �s,ω

δ t, where δ and ω correspond to the positions of p and t
with respect to l and s (i.e. p = l|δ and t = s|ω). The context ∆ corresponds to the set
of positions already visited. This set is necessary to correctly handle the case of cyclic
terms.

Term-graph rewriting via explicit paths 11

Definition 16 (Rule application). Given s ∈ Tg(F) and l, r ∈ Tg(F ,X), the
rule l → r can be applied to subject s at position ω if l �s,ω

ε s|ω ‖ ∅ reduces
to > ‖ ∆ by application of Tg-Matching.

Note that the algorithm given Figure 3 does not compute a substitution. More-
over, contrary to syntactic term matching algorithms, there is no rule for han-
dling variables that have multiple occurrences. The notion of non-linearity in
term rewriting should not be confused with the notion of non-linearity in term-
graph rewriting. The latter one corresponds to subterms sharing. For example,
{α | α = f(β, β)} denotes a term-graph where the two subterms of f are shared.
This does not match {α | α = f(β, γ), β = a, γ = a}. In our formalism, linear
term-rewriting is sufficient to simulate non-linear term-graph rewriting. For ex-
ample, the system of recursion equations {α | α = f(β, β)} can be encoded by
f(x,−2 � 1), where x appears only once.

Proposition 4. Given a subject s ∈ Tg(F), a pattern l ∈ Tg(F ,X), a position
ω ∈ Pos(s), the reduction of l�s,ω

ε s|ω ‖ ∅ by Tg-Matching is convergent.

Proof. First, we prove the termination. We consider the lexicographic combina-
tion of prefix ordering on positions (@) and <P . This strict order is well-founded
because Pos(l)×Pos(s) is finite. Its multiset extension to

⊎
(p�s,ω

δ t)∈E(δ, ω) de-
creases at each application of Tg-Matching rules.

Secondly, proving the local confluence is trivial because there is no interfer-
ence between the rules. When two rules r1 and r2 can be applied on a subject t,
we obtain the same result t′ when applying r1 followed by r2 or r2 followed by
r1. As Tg-Matching terminates, local confluence implies convergence. ut

Definition 17 (Rewriting algorithm). Given t ∈ Tg(F) and l, r ∈ Tg(F ,X):

– l and r are both linear.
– we denote by ωxl the position of the variable x in l.
– t is rewritten into t′ by the rule l→ r if:

1. there exists a position ω such that the rule can be applied to t (following
the Definition 16),

2. t′ = J〈ṫ, ṙ〉[1�ω]2]K|1, where
〈 , 〉 is a fresh binary symbol,
ṫ corresponds to t where every path towards the position 1 �ω has been
replaced by a path towards the position 2,
ṙ is the ground term corresponding to r in which the occurrence of a
variable x (whose position is denoted by ωxr) is replaced by the path
Lωxr � -2 � deref(〈ṫ, r〉, 1 � ω � ωxl)M.

In this algorithm, no substitution is explicitly computed. Instead, the right-
hand side of the rule is instantiated by replacing every variable by paths to their
corresponding subterm in t|ω. The binary symbol 〈 , 〉 enables to connect it with
the global subject in a valid referenced term 〈ṫ, ṙ〉. By swapping the redex and
the right-hand side of the rule in 〈ṫ, ṙ〉[1�ω]2], the substitution is automatically

12 Emilie Balland and Pierre-Etienne Moreau

applied. The main subtlety of the algorithm is to rebalance the whole term using
normalization. All the shared subterms in t|ω that must be conserved are moved
to the term and the unused part is left in the right part of 〈ṫ, ṙ〉[1�ω]2]. At
the end, the result of the rewrite step corresponds exactly to the left child of
J〈ṫ, ṙ〉[1�ω]2]K.

The complexity of the rewriting step is linear in the size of the global subject
because the complexity of the swapping and the normalization are linear.

Example 11. Suppose we want to apply the rule f(x, y) → f(y, x) on the subject
t = f(a, b). The rule is applied at top-position, therefore we have ωxl = 1,
ωyl = 2, ωxr = 2, ωyr = 1, ṫ = f(a, b) and ṙ = f(Lωyr � -2 � (1 � ε � ωyl)M, Lωxr �
-2 � (1 � ε � ωxl)M) = f(-1 � -2 � 1 � 2, -2 � -2 � 1 � 1). Starting from 〈f(a, b), ṙ〉, we get
〈f(a, b), ṙ〉[1]2] = 〈f(-1 � -1 � 2 � 2, -2 � -1 � 2 � 1), f(a, b)〉. When computing the
canonical form, we obtain J〈f(a, b), ṙ〉[1]2]K = 〈f(b, a), f(-1 � -2 �1 �1, -2 � -2 �1 �2)〉.
Finally, the result is J〈f(a, b), ṙ〉[1]2]K|1 = f(b, a) as expected.

The following example illustrates how collapsing rules are handled. Suppose
we want to apply the rule f(x) → x to the subject t = f(-1). Since -1 is a
path to the top of the redex, we have ṫ = f(-1 � -1 � 2). In a second step ṙ is
evaluated to ṙ = L-2 � deref(〈f(-1 � -1 � 2), x〉, 1 � 1)M = L-2 � 2M = ε and we get
〈f(-1 � -1 � 2), ε〉[1]2] = 〈ε, f(-1 � -2 � 1)〉 which is already normalized. The result
of the rewrite step is 〈ε, f(-1 � -2 � 1)〉|1 = ε in accordance with [3].

By applying the rule f(x, y) → x to the first subterm, this last example shows
what happens to pointers to subterms that disappear:

f2

a

b

g

f1

f3

〈 , 〉

f2

a

b

g

f1

f3

f2

a

b

g

f1

f3

〈 , 〉

f2

g

〈 , 〉

a

b

f3

f1

a

b

f3

f1

Initial subject 〈ṫ, ṙ〉 building Swapping Normalizing Result

In this example, the subterm g(b) is not preserved by the rule, therefore the
reference to b is replaced by a copy of the subterm.

Theorem 2. The set of ground canonical terms Tg(F) is closed under rewriting.

Proof. Given a term t ∈ Tg(F), we have to prove that J〈ṫ, ṙ〉[1�ω]2]K|1 ∈ Tg(F).
The ground term ṙ is not a valid referenced term in itself because of the references
that replace variables. The term ṫ is neither valid because some paths can have
been replaced by paths to the position 2. But, 〈ṫ, ṙ〉 is valid because invalid
paths in ṫ are now referencing the top position of ṙ and invalid paths in ṙ
are referencing subterms of t. Since the swapping function preserves the notion
of validity, the normal form J〈ṫ, ṙ〉[1�ω]2]K exists. Thanks to the property of
canonical referenced terms (pointers only from the right to the left), we can
conclude that J〈ṫ, ṙ〉[1�ω]2]K|1 ∈ Tg(F). ut

Term-graph rewriting via explicit paths 13

As the main result of the paper we show in the next section that every
term-graph can be represented by a canonical referenced term and that term-
graph rewriting (Definition 8) can be simulated by the algorithm introduced in
Definition 17.

3.4 Simulation of term-graph rewriting

We introduce a function φ that translates any valid referenced term in Tvr(F ,X)
into a system of recursion equations (under the same set F and X). For this
purpose, we associate to every term t ∈ Tvr(F ,X) a total function ψt from
Pos(t) to X defined as follows:

ψt(ω) =


x if symb(t|ω) ∈ F ∪ {ε}

where x is a fresh variable
t|ω if t|ω ∈ X
ψt(ω′) if t|ω ∈ P∗

where ω′ = deref(t, ω)

Definition 18. Given a valid referenced term t ∈ Tvr(F ,X), we define its rep-
resentation in systems of recursion equations by φ(t) = {α | ∆} where α = ψt(ε)
is the root, and ∆ is a set of equation defined by:

∆ = {β = f(β1, . . . , βn) | ω ∈ Pos(t), β = ψt(ω), βi = ψt(ω � i),
symb(t|ω) = f ∈ F , arity(f) = n}

∪ {γ = • | ω ∈ Pos(t), γ = ψt(ω), symb(t|ω) = ε}

φ can be naturally extended to rules: φ(l→ r) = φ(l) → φ(r).

Note that the equational representations of two equivalent valid referenced terms
are equal modulo renaming. Moreover, the φ function is surjective so every sys-
tem of recursion equations has an unique representation in Tg(F ,X).

Theorem 3 (Rewrite step simulation). Given a canonical referenced term
t ∈ Tg(F) and a rule R, we have:

t→R t′ ⇔ φ(t) →φ(R) φ(t′)

Proof. The proof is in the Appendix B. ut

Theorem 3 shows how to simulate term-graph rewriting using term-rewriting
and provides a technique for easily extending rule-based languages with term-
graphs and more generally with a notion of pointers.

Acyclic term graphs are widely used to obtain efficient term rewriting im-
plementation [14]. On the contrary, our goal is not to improve the efficiency of
term-rewriting engines but to offer a support for graph structure manipulation.
The main objective of such extensions is to perform static analysis by rewriting
control flow graphs or data-structures with pointers.

14 Emilie Balland and Pierre-Etienne Moreau

4 Related work

The notion of term graph has been intensively studied in the literature, in par-
ticular in [6], where a restricted form of acyclic term-graph has been used to
represent terms with sharing. There is also a rich literature on modeling func-
tional languages [7, 1, 2]. This approach leads to efficient implementations of
functional languages or term rewriting engines, as in Clean, Elan, or Maude.

We are in a dual situation: we already have a very efficient term rewrit-
ing engine. This implementation is based on the notion of maximally shared
terms, internally represented by acyclic graphs. Such a representation is purely
functional and does not allow any side effect. This constraint makes the imple-
mentation of graphs and term-graphs difficult. The contribution of the paper is
to provide a solution to represent and transform graphs in a functional environ-
ment. In addition to reuse efficient term structures, a main advantage of using
a classical underlying term representation is to make possible the reuse of the
notion of term rewriting strategy [16, 20] which allows control over how rules are
applied.

The extension to cyclic term-graph rewriting has been studied and in partic-
ular linked up with rational term rewriting [8, 10]. Especially, a mapping from
cyclic term-graph rewriting to rational parallel term rewriting can be defined.
In this context, it is often difficult to deal with graph homomorphism. In this
work, we choose to simulate term-graph rewriting as defined in [3] and to fa-
vor practical aspects. In this formalism, the matching corresponds to functional
bisimulation. As a consequence, the pattern g(-1) cannot be matched with the
subject g(g(-1 � -1)) at the root position even if they both represent the same
infinite term g(g(g(. . .))).

Moreover, the set of valid referenced terms where references are not inter-
preted as sharing but as oriented pointers (Definition 6) is to our knowledge
a new approach that can be interesting to study and simulate object-oriented
languages [12, 13]. For example, it could be used to model garbage collection
algorithms. In the context of term-graph rewriting, an original approach is the
formalism presented in [13] where the right-hand side of the rules consists in a
set of actions on the pointers. The work presented in this paper is a first step
towards an implementation of such a formalism.

4.1 Integration in a rewrite environment: the Tom language

As canonical referenced terms are terms, it is possible to extend in a non-
intrusive way any rule-based language in order to support term-graph rewriting.
The presented formalism is implemented in Tom and thus directly available at
http://tom.loria.fr.

For now, it is possible to automatically generate from a signature the ex-
tended version for referenced terms where the normalization is integrated. As
the Tom terms are implemented with maximal sharing, so are the term-graphs.
This part of the implementation is presented in [5]. All the operations on paths
have been also implemented. Thus users can define a system of term-graph rules

Term-graph rewriting via explicit paths 15

and it is automatically compiled in a basic Tom strategy based on the rewrit-
ing algorithm (Definition 17). These term-graph rewriting rules can then be
integrated in a more complex strategy using Tom strategy combinators. As a
consequence, all Tom features are available for term-graphs.

5 Conclusion

We have generalized the notion of term positions with term paths that are closely
related to the notion of path in graphs and to the concept of de Bruijn in-
dices [11]. By extending a signature with paths we obtained a new kind of terms
called referenced terms which can contain pointers. This representation of point-
ers can be useful to model the semantics of imperative programming languages
for instance.

In the second part of the paper, we introduced canonical referenced terms
to represent term-graphs. As in the case of de Bruijn indices, the interest of
this representation is to avoid problems of alpha conversion, compared to rep-
resentations with labels or variables. Another advantage is that contrary to a
recursion equation, the hierarchical structure of the term-graph is explicit be-
cause of its term representation. The last contribution of the paper is an original
algorithm that simulates cyclic term-graph rewriting using canonical referenced
terms. Thanks to pointers, the substitution can be applied in an unusual way,
using swapping between the redex and the right-hand side of the rule.

To conclude, this formalism opens promising perspectives in terms of program
transformation and code analysis. To the best of our knowledge, the integration
in the Tom language constitutes actually one of the most active and maintained
implementation of term-graph rewriting and thus provides a solid platform to
experiment graph transformations in a concise and expressive way.
Acknowledgments: We are extremely grateful to Claude Kirchner who has
been strongly involved in this work. He greatly contributed to the foundations
of the paper. We also sincerely thank Rachid Echahed and Joe Wells for fruitful
exchanges and remarks about preliminary versions of this work.

References

1. Z. M. Ariola and S. Blom. Cyclic lambda calculi. In TACS ’97: Third International
Symposium on Theoretical Aspects of Computer Software, LNCS, pages 77–106,
1997.

2. Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec.
Annals of Pure and Applied Logic, 117(1-3):95–168, 2002.

3. Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamenta
Informaticae, 26(3/4):207–240, 1996.

4. F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge University
Press, 1998.

5. E. Balland and P. Brauner. Term-graph rewriting in tom using relative posi-
tions. In TERMGRAPH’07: International Workshop on Computing with Terms
and Graphs, 2007.

16 Emilie Balland and Pierre-Etienne Moreau

6. H. P. Barendregt, M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, and
M. Sleep. Term graph rewriting. In PARLE Parallel Architectures and Languages
Europe, volume 259 of LNCS, pages 141–158, 1987.

7. Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose. Modeling sharing and recursion
for weak reduction strategies using explicit substitution. In PLILP’96: Proceedings
of the 8th International Symposium in Programming Languages: Implementations,
Logics, and Programs, volume 1140 of LNCS, pages 393–407, 1996.

8. A. Corradini and F. Drewes. (cyclic) term graph rewriting is adequate for rational
parallel term rewriting. Technical Report TR-97-14, Dipartimento di Informatica,
Pisa, Italy, 1997.

9. A. Corradini and F. Gadducci. Cpo models for infinite term rewriting. In
AMAST’95: Proceedings of the 4th International Conference in Algebraic Method-
ology and Software Technology, volume 936 of LNCS, pages 368–384, 1995.

10. A. Corradini and F. Gadducci. Rational term rewriting. In FoSSaCS ’98: Proceed-
ings of the First International Conference on Foundations of Software Science and
Computation Structure, volume 1378 of LNCS, pages 156–171, 1998.

11. N. G. de Bruijn. Lambda calculus notation with nameless dummies. a tool for
automatic formula manipulation with application to the church-rosser theorem.
Indagationes Mathematicae, 34:381–392, 1972.

12. D. J. Dougherty, P. Lescanne, and L. Liquori. Addressed term rewriting systems:
Application to a typed object calculus. Mathematical Structures in Computer
Science, 16:667–709, 2006.

13. R. Echahed and N. Peltier. Narrowing data-structures with pointers. In ICGT’06:
Proceedings of the Third International Conference on Graph Transformations, vol-
ume 4178 of LNCS, pages 92–106, 2006.

14. B. Hoffmann and D. Plump. Implementing term rewriting by jungle evaluation.
RAIRO: Theoretical Informatics and Applications, 25, 1991.

15. R. Kennaway. On graph rewritings. TCS, 52(1-2):37–58, 1987.
16. C. Kirchner. Strategic rewriting. In International Workshop on Reduction Strate-

gies in Rewriting and Programming - WRS, volume 124 of ENTCS, 2004.
17. C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version

of a book is available at www.loria.fr/~ckirchne/=rsp/rsp.pdf, 1999.
18. M. Löwe. Algebraic approach to single-pushout graph transformation. TCS, 109(1–

2):181–224, 1993.
19. D. Plump. Handbook of Graph Grammars and Computing by Graph Transfor-

mation, chapter Term graph rewriting, pages 3–61. World Scientific Publishing,
1999.

20. E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In RTA’01: 12th International Con-
ference on Rewriting Techniques and Applications, volume 2051 of LNCS, pages
357–361, 2001.

Term-graph rewriting via explicit paths 17

A Proof of convergence for the Definition 15

We have to prove termination and confluence. The termination property is trivial
because of the total order on positions and of the fact that valid addressed terms
do not contain pointers to pointers. Consider the multiset {deref(t, ω) | t|ω ∈ P}
composed of the pointed positions and the order on multisets (a multiset N is
smaller than a multiset M if it is obtained by replacing finitely many elements of
M by smaller elements). This multiset decreases strictly at each rewriting step.
Indeed, after applying the rule at a given position, t|ω 6∈ P and t|deref(t,ω) ∈ P.
Now deref(t, deref(t, ω)) = ω and ω <P deref(t, ω). Concerning the other up-
dated addresses, deref(t, ω) is either smaller (pointers to the swapped subterm
or to subterms of it) or remains unchanged (pointers inside the subterm). Fi-
nally, the cardinality of the multiset has not evolved and each replaced element
has been substituted by a smaller one so the termination is ensured.

Moreover, we will show that for the same reason, the normal form is unique.
Suppose there are two distinct positions ω′ and ω′′ where the rule can be applied.
We denote ω1 = deref(t, ω′) and ω2 = deref(t, ω′′). We distinguish several cases
depending on the order between positions and the prefixation (noted v). Some
combinations of conditions are impossible because the rule can be applied only
if ω′<P ω1 and ω′′<P ω2. Moreover, each prefixation ω v β implies that ω<P β.
If we consider that ω′ <P ω′′, there are eight cases to consider:

ω′′ < ω1 < ω2 ∧
{
ω1 v ω2

ω1 6v ω2
ω′′ < ω2 < ω1 ∧

{
ω2 v ω1

ω2 6v ω1

ω′ < ω1 < ω′′ < ω2 ∧

ω1 v ω′′ ∧ ω1 v ω2

ω1 v ω′′ ∧ ω1 6v ω2

ω1 6v ω′′ ∧ ω1 6v ω2

ω1 = ω2

For each case, we can prove local confluence. We will only detail the first case
ω′′ <P ω1 <P ω2 ∧ ω1 v ω2. The other cases are analogous.

t

ω1

ω2

ω′

ω′′ →ω′′]ω2

t

ω1

ω2

ω′

ω′′ →ω′]ω1

t

ω1

ω2

ω′

ω′′ →ω′�Lω2−ω1M]ω′′

t

ω1

ω2

ω′

ω′′

t

ω1

ω2

ω′

ω′′

↓ω′]ω1

If we start by swapping ω′ and ω1, as ω1 v ω2, the subterm at position ω2 is
translated to the position ω′ �Lω2−ω1M and its pointer at position ω′′ is updated.

18 Emilie Balland and Pierre-Etienne Moreau

Now deref(t, ω′′) = ω′ � Lω2 − ω1M and as ω′ <P ω′′, deref(t, ω′′)<P ω′′, we do
not need a second swapping.

If we start by swapping ω′′ and ω2, ω′ is not updated and ω′<Pderef(t, ω′) =
ω1. So we need to swap ω′ and ω1 and then translate the pointer at position ω2

to the position ω′ � Lω2 − ω1M which does not respect the order on positions
(ω′ � Lω2 − ω1M <P deref(t, ω′ � Lω2 − ω1M) = ω′′). We need a third swapping
between ω′′ and ω′ � Lω2 − ω1M.

As the normalization terminates, local confluence implies convergence. ut

B Proof of Theorem 3

Theorem. Given a canonical referenced term t ∈ Tg(F ,X) and a rule R, we
have:

t→R t′ ⇔ φ(t) →φ(R) φ(t′)

First (I), we show that the notions of matching for systems of recursion
equations and canonical referenced terms are equivalent. More formally, if we
denote p the left-hand side of R, we have to prove that there exists a position ω
such that p �t,ω

ε t|ω ‖ ∅ reduces to > ‖ ∆ by application of Tg-Matching if and
only if there exists a variable substitution σ such that set(σ(φ(p))) ⊆ set(φ(t)).
In (II), we will show that given t and t′ such that t→R t′, the reduction of φ(t)
by φ(R) is φ(t′).

(I) (⇒) Let ω be a position ω such that p �t,ω
ε t|ω ‖ ∅ reduces to > ‖ ∆, let

σ be the relation {(ψp(δ), ψt(ω)) | (δ, ω) ∈ ∆}. It is easy to show that σ is a
functional bisimulation (the notion of bisimulation is explained in Definition 3.5
of [3]):

1. σ is a function from the variables of φ(p) to the variables of φ(t) because
it is a relation with the appropriate domains and codomains by definition
and because every rule of Tg-Matching preserves the fact that for every pairs
(δ, ω1) and (δ, ω2) in ∆, ψt(ω1) = ψt(ω2),

2. the first step of rewriting ensures that (ε, ω) ∈ ∆ so the root of σ(p) is in
relation with the root of the matched subterm ψt(ω),

3. the condition about congruence is respected due to the rule Decompose and
because every pair of positions that appeared in a constraint has been added
in ∆ when the normal form > has been reached.

As a consequence we have set(σ(φ(p))) ⊆ set(φ(t)).

(⇐) We now consider that there exists a variable substitution σ such that
set(σ(φ(p))) ⊆ set(φ(t)). We need to show that there exists a position ω such
that p�t,ω

ε t|ω ‖ ∅ reduces to > ‖ ∆ by application of Tg-Matching. Let ω be the
position such that symb(t|ω) ∈ F and ψt(ω) = root(σ(φ(p))). By construction
of ψt and φt, ω exists and is unique.

To show that any reduction of p �t,ω
ε t|ω ‖ ∅ leads to >, we show that if

the conjunction of matching constraints E is not reduced to >, there is a rule

Term-graph rewriting via explicit paths 19

of Tg-Matching that can be applied. Since Tg-Matching is convergent, > is the
normal form. Thanks to the convergence property proved in the Proposition 4,
we can choose any strategy, in particular the one that consists in selecting the
matching constraints which have the smallest δ according to <P . The considered
matching constraint is unique because at each rewriting step, the conjunction E
contains matching constraints with distinct δ.
We now consider two invariants that are used to show the expected result:

– Inv1: ∀δ, ω (δ, ω) ∈ ∆ ∪ Γ ⇒ (ψp(δ), ψt(ω)) ∈ σ, where Γ is the set of pairs
(δ′, ω′) that appear in the matching constraints of E

– Inv2: for every position δ′ ∈ Pos(p) smaller than the smallest position δ in
E, ∃ω′ such that (δ′, ω′) ∈ ∆

It is easy to show that Inv1 and Inv2 are invariant: they are true for the initial
term p �t,ω

ε t|ω ‖ ∅ and they are maintained by every rewrite step, for the
considered strategy.

Now, we show that at each step of the derivation, a rule of Tg-Matching
can be applied. When considering the matching constraint p′ �t,ω

δ t′, we can
distinguish four cases:

1. symb(p′) ∈ F ∪ {ε} and symb(t′) ∈ F ∪ {ε}. In this case, symb(p′) = symb(t′)
because due to the invariant Inv1, (ψp(δ), ψt(ω)) ∈ σ and as the substitution
is a bisimulation, the property about congruence is respected. Decompose
can be applied,

2. symb(p′) ∈ X . We can apply the rule Variable,
3. symb(t′) ∈ P∗. We can apply the rule Dereferencing,
4. symb(p′) ∈ P∗ and symb(t′) ∈ F∪{ε}. We need to show that (Lδ�symb(π)M, ω) ∈
∆ to apply the rule Stability. Thanks to Inv2 and as Lδ � symb(π)M <P δ
due to the Definition 13, there exists a pair (Lδ � symb(π)M, ω′) ∈ ∆. This
pair is in ∆ means that one of the four rules has been applied. Due to
the Definition 13, we know that symb(p|Lδ�symb(π)M) ∈ F ∪ {ε}. Moreover, as
(ψp(δ), ψt(ω)) ∈ σ (Inv1) and ψp(Lδ � symb(π)M) = ψp(δ) by definition of ψ,
we know that (ψp(Lδ � symb(π)M), ψt(ω)) ∈ σ. As σ is a function, we have
ψt(ω′) = ψt(ω). There are two cases:
– the rule Decompose has been applied so symb(t|ω′) ∈ F . As symb(t|ω′) ∈
F and ψt(ω′) = ψt(ω), ω′ = ω.

– the rule Dereferencing has been applied so the rule Decompose has been
applied with the pair (Lδ � symb(π)M, ω) and thus belongs to ∆.

Tg-Matching is convergent. With the considered strategy, a matching constraint
can always be reduced by a rule of Tg-Matching. Therefore, the resulting normal
form is >.

(II) According to Definition 17, we have t′ = J〈ṫ, ṙ〉[1�ω]2]K|1, where r is the right-
hand side of R. We want to show that for the system of recursion equations L
such that φ(t) →φ(R) L and ψt(ω) = root(σ(φ(p))) we have L = φ(t′). According
to Definition 8, we have L = {αt | (set(φ(t)) \ {α = τ})∪ set(σ′(φ(r)))}, where
αt = root(φ(t)), α = root(σ(φ(p))).

20 Emilie Balland and Pierre-Etienne Moreau

First φ(〈ṫ, ṙ〉) can be expressed as {α′ | ∆} where ∆ = {α′ = 〈αt, α〉} ∪
set(φ′(t)) ∪ set(σ′(φ(r))). Let α′′ be a fresh variable, φ′(t) corresponds to φ(t)
where the equation α = t is replaced by α′′ = t and if there exists a position β
and a positive integer i such that ω = β � i, the equation ψt(β) = f(. . . , α, . . .) is
replaced by ψt(β) = f(. . . , α′′, . . .).

Now, we need to interpret the swapping operation in the context of equation
systems. From the definitions of swapping and translation (Definitions 14 and 9),
it is possible to derive φ(t[ω1]ω2]) from φ(t). Indeed, the swapping just consists
in exchanging two subterms in t. φ(t[ω1]ω2]) is defined by:

– root(t[ω1]ω2]) = root(t),
– set(φ(t[ω1]ω2])) is set(φ(t)) where the equation β1 = f(. . . , α1, . . .) is re-

placed by β1 = f(. . . , α2, . . .) and the equation β2 = f(. . . , α2, . . .) is re-
placed by β2 = f(. . . , α1, . . .).
α1, α2, β1, β2 are respectively ψt(ω1), ψt(ω2), ψt(π1), ψt(π2) where ω1 = π1�i,
ω2 = π2 � j and i, j ∈ N∗.

By applying the swapping operation, we get φ(〈ṫ, ṙ〉[ω1]ω2]) = {α′ | {α′ =
〈αt, α

′′〉} ∪ (φ(t) \ {α = τ}) ∪ {α′′ = τ} ∪ σ′(φ(r))}. As two equivalent valid ref-
erenced terms have the same representation by φ, we have φ(J〈ṫ, ṙ〉[ω1]ω2]K) =
φ(〈ṫ, ṙ〉[ω1]ω2]). In general, φ(t|ω) = {ψt(ω) | ∆} where ∆ corresponds to the
subset of set(φ(t)) of bounded variables reachable from ψt(ω). In our case
ω = 1, and thus the root is αt. In addition, since there is no pointer to α′

and α′′, we can suppress their corresponding equations and we finally obtain
φ(t′) = φ(J〈ṫ, ṙ〉[ω1]ω2]K|1) = φ(〈ṫ, ṙ〉[ω1]ω2]|1) = {αt | (set(φ(t)) \ {α = τ}) ∪
set(σ′(φ(r)))} where equations corresponding to bounded variables unreachable
from αt have been cleaned.
This shows that given t and t′ such that t→R t′, the reduction of φ(t) by φ(R)
is φ(t′). ut

