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Reconstruction de la forme et des propríetés de ŕe�ectance d'une
sc�ene tridimentionnelle �a partir d'images multiples avec des

conditions d'éclairage connues

Résuḿe : Nous d́eveloppons une ḿethode variationnelle permettant de reconstruire conjointe-
ment la forme tridimensionnelle et les propriét́es de ŕe�ectance de la surface d'une sc�ene �a par-
tir d'images de cette sc�ene prises de plusieurs points de vue. Nous supposons que les conditions
d'illumination sont �xées et connues et que les caméras sont compl�etement calibŕees. La ḿethode
consiste�a minimiser une fonctionnelle de coût globale par rapport,�a la fois, la forme et la ŕe�ectance.
Contrairement�a la plupart des ḿethodes pŕećedentes reconstruisant seulement la forme de surfaces
Lambertiennes, la ḿethode propośee ici consid�ere des surfaces dichromatiques géńerales.

Mots-clés : vision tridimensionnelle, reconstruction de la forme et de la ré�ectance d'une sc�ene,
surface non lambertienne, méthode variationnelle.
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1 Introduction

Recovering the three-dimensional scene shape using multiple images is one of the major research
topics in computer vision. Many methods have been proposed to solve the problem during these
last two decades; refer to [15] for an evaluation of various recent methods. However, most of them
pay little attention to the re�ectance properties of scenes, usually assuming perfectly Lambertian
surfaces.

To reduce errors due to non-Lambertian surfaces, Bhat and Nayar [1] analyzed the physics of
specular re�ection and the geometry of stereopsis, which leads to a relationship between stereo
vergence, surface roughness, and the likelihood of a correct match. Zickler et al. [23] presented the
Helmholtz stereopsis to overcome the specular re�ection problem. However, these two approaches
require specialized camera con�gurations. Some other works [11, 19, 21] also tried to handle non-
Lambertian surfaces in the shape reconstruction. However, they rely on some pre-processing and/or
specularity-independent photo-consistency measures that are practically hard to use in the case of
multiple light sources with different colors. Moreover, they do not recover the surface re�ectance.

There are a few works to recover scene geometry and re�ectance from known illumination con-
ditions and/or prior knowledge on the shape, while Yu and Malik [22] showed how to recover illumi-
nation from known scene geometry and re�ectance. Samaras et al. [14] proposed amultiplemethod
(succession of several independent processes) for the computation of object shape and re�ectance
characteristics for non-constant albedo and non-uniformly Lambertian surfaces using 3D models.
Recently, Birkbeck et al. [3] proposed a method that recovers diffuse and specular re�ectance with
changing lights and viewpoints. Our goal is to provide a shape and re�ectance estimation method that
is global and completely model based as [4]. Also, we want to provide a method that improves the
robustness to non-Lambertian effects by directly incorporating a physically based specular model
in the mathematical formulation of the problem. By incorporating a complete photometric image
formation model, we also exploit proli�cally all the photometric phenomena. Also, we thus aim to
provide a method that allows to naturally manage with a set of images under with several lighting
conditions.

Let us note that actually there already exist recent works that provide solutions in this direction
[4], [25]. In [25], Yu and Xu proposed a global and model-based method for recovering the 3D
shape and the re�ectance properties of a non-Lambertian object. Nevertheless, in this last paper, the
authors constrain the object to be made by asingle material; that is to say that the parameters of
the re�ectance (in particular the albedo) are the same for all the points of the object surface. So, the
method in [25] is a “Multiview Shape From Shading” method, similarly as the one proposed by Jin
et al. [10] who focuses on the Lambertian case.

Our method provides a multiview stereo/shape from shading algorithm similarly to [10, 7, 12,
18, 26] which allow to recover 3D shapes from Lambertian shading [10, 7, 12] as well as specular
shading [18, 26]. Nevertheless, contrary to these previous works [10, 7, 12, 18, 26, 25], in our work,
we do not want to restrain ourself to a single material: in other words, the re�ectance properties
of the object can spatially (strongly) change. In effect, now a day, more and more objects are now
printed and so it is fundamental to be able to recover textured and patterned objects. In return, of
course, we will not be able to recover lighting conditions as done [10], and we have to use a parallel
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4 Yoon, Prados, Sturm, Et al.

process which return them. In this work, we assume that lighting conditions are known in advance.
Practically, we can use spherical objects with the reference white color to capture the directions and
the colors of light sources.

In short, in this work, we develop a variational method to recover the shape and the re�ectance
of a scene surface using multiple images, assuming that illumination conditions are �xed and known
in advance. The proposed method can handle quite general dichromatic surfaces exhibiting specular
re�ection, and the output of this work is the complete description of a scene surface, which can be
used to synthesize novel views with arbitrary illumination conditions.

The paper is organized as follows. We �rst present the modeling of scene introduce the re�ection
model and the image formation process in Section 2.4. We then formulate the problem in Section 3
and de�ne cost functions in Section 4. Shape evolution and re�ectance estimation are described in
Section 5 and experimental results for test image sets are shown in Section 7. We then summarize
and conclude the work in Section 8.

2 Modeling Assumptions and Notations

We assume here that the scene can be decomposed into two entities: the foreground, which corre-
sponds to the objects of interest, and the background; these are de�ned more precisely below. The
foreground is composed by a set of (bounded and closed) 2D manifolds ofR3. These surfaces are
represented byS.

2.1 Lighting conditions

We assume that the scene is illuminated by a �nite number of distant point light sources. We com-
plete them by adding an ambient light term (which partially accounts for interre�ections and other
complex phenomena), with constant energy radiated isotropically in all directions. Note that, based
on Wiener's theorems, [17] shows that such a light distribution can approximate arbitrarily well any
positive distribution on the sphere. Letnl be the number of illuminants andl j 2 S2 andL j 2 Rc be
the direction and the intensity1 of the j th illuminant, respectively.L a 2 Rc is the intensity1 of the
ambient illumination.

2.2 Cameras, image data and visibility

Image data are generated bync pinhole cameras. The perspective projection, from world to image
coordinates, performed by thei th camera, is represented by� i : R3 ! R2. � i � R2 is the
image domain of thei th camera (i.e. the area covered by the pixels). It is split into two parts: the
pixels corresponding to the foreground,� iF = � i \ � i (S), and the other points� iB = � i n � iF

(associated to the background).I i : � i ! Rc is the image of the true scene, captured by thei th

camera (c = 1 for a gray-scale image, andc = 3 for a color image). We denoteI the set of input
images:I = f I 1; I 2; � � � ; I n c g; I iF andI iB are the restrictions of the functionI i to � iF and� iB ,

1Non-normalized color vector, ifc = 3 .

INRIA
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respectively. In other respects, we consider the visibility function� Si de�ned by: � Si (X ) = 1 if X
is visible from thei th camera and� Si (X ) = 0 otherwise.Si denotes the part ofS that is visible
from thei th camera and� � 1

i;S is the backprojection from thei th camera ontoS: i.e. for all points
x 2 � iF , � � 1

i;S (x) is the closest point onS along the ray joiningX to the optical center of thei th

camera.

2.3 Modeling the background

As suggested by [20], to be sure that the estimated foreground surface does not shrink to an empty
set (which is indeed the global optimum for most cost functionals used in other works) it is crucial
to de�ne and characterize the background. The choice of model is dictated by the scenario and
the applications. For example, in [20, 7], the background is characterized by its radiance which is
constrained to be constant or strongly regular. At the opposite extreme, when the background is quite
irregular, one can assume that one has at his disposal the background images, i.e. the images of the
scene captured by the same cameras without foreground objects. Due to lack of space, we only deal
here with the latter scenario. Therefore, in addition to the imagesI , we assume that we detain the
background images~I = f ~I 1; � � � ; ~I n c g. Finally, we de�ne~I iF and ~I iB analogously toI iF andI iB .

2.4 Modeling the foreground surface

In this work, we model the foreground object(s) by its shapeS and its re�ectanceR. We denote

 = ( S; R).

Contrary to most previous stereovision methods, we want to go beyond the Lambertian model.
In order to get a solvable minimization problem without too many unknown variables, we chose to
represent the re�ectance by a parametric model. Of course the chosen model directly depends on the
applications aimed at; as an example, we consider the popular Blinn-Phong shading model. In this
context, and assuming thatI i (x) is equal to the radiance of the surfaceS at pointX = � � 1

i;S (x) in
the direction of thei th camera, the imagesI i are then decomposed as

I i = I id + I is + I ia ; (1)

whereI id , I is , andI ia are images with the diffuse, specular, and ambient re�ection component of
I i , respectively.

Diffuse re�ectionis caused by the subsurface scattering of light and it is independent of viewing
direction. By using the cosine law, this image component is described as

I id (x) =
n lX

j =1

� L j (X )
�

� d(X )L j
�
n(X ) � l j

� �
; (2)

where� d(X ) 2 Rc is the diffusion albedo1 at pointX , n(X ) is the normal vector to the surfaceS
at X and� L j represents the light visibility function:SL j being the part ofS visible from thej th

illuminant, we de�ne� L j (X ) = 1 if X 2 SL j , � L j (X ) = 0 otherwise.

RR n° 6309



6 Yoon, Prados, Sturm, Et al.

Specular re�ectionis caused by the surface re�ection, as with a mirror. This component is
expressed as

I is (x) =
n lX

j =1

� L j (X )
�

� s(X )L j
�
n(X ) � h ij (X )

� � s (X )
�

(3)

whereh ij (X ) is the bisector of the angle between the view of thei th camera and thej th illuminant
atX , � s(X ) 2 Rc and� s(X ) 2 R+ are the specular albedo and the shininess parameter at pointX .

Theambient illuminationis assumed to be uniform in the scene and modeled as

I ia (x) = � d(X )L a ; (4)

whereL a is de�ned above.
By combining the diffuse, specular, and ambient re�ection, we get the image formation equation

as

I i (x) =
n lX

j =1

� L j (X )L ij (X ; n(X )) + � d(X )L a ; (5)

where
L ij (X ; n(X )) = L d

ij (X ; n(X )) + L s
ij (X ; n(X ))

= L j � d(X )
�
n(X ) � l j

�

+ L j � s(X )
�
n(X ) � h ij (X )

� � s (X )
:

(6)

In the sequel, in order to simplify the notations, we denoteR = ( Rd; Rs), whereRd = � d and
Rs = ( � s; � s).

3 Problem Formulation

From a probabilistic point of view, the goal of this work is to estimate the shapeS and the re�ectance
R of a scene surface
 , that maximizeP(
 jI ) for given I . By Bayes' rule, the problem is then
formulated as

P(
 jI ) =
P(I j
) P(
)

P(I )
_ P(I j
) P(
)

= P(I jS; R) P(S) P(R)
(7)

under the assumption thatS andR are independent. Here,P(I j
) = P(I jS; R) is a likelihood and
P(S) andP(R) are priors on the shape and re�ectance respectively.

3.1 Likelihood

If � i and illumination conditions are given, we can produce a synthetic image�I i (
) corresponding
to an input imageI i by using the current estimation of
 . Here, the correct estimation of
 will
produce the same images as the input images under the given illumination conditions (modulo noise
of course). This allows us to measure the validity of the current estimation by comparing input

INRIA
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images with generated ones. When assuming an independent identical distribution (i.i.d) of noise in
the observations, the likelihood can be expressed as

P(I j
) _
n cY

i =1

exp
�

� � i (
)
�

=
n cY

i =1

exp
�

� � (I i ; �I i (
))
�
; (8)

where� i (
) = � (I i ; �I i (
)) is a function of
 , measuring the dissimilarity between two imagesI i

and �I i .

3.2 Prior on surface shapeS

A typical and reasonable prior for the surface shapeS is about the area or about the smoothness of
a surface. When using the surface area for the prior onS, it is expressed as

P(S) _ exp
�

�  (S)
�
: (9)

Here, (S) is the monotonic increasing function of the surface area
R

S d� whered� is the Euclidean
surface measure.

3.3 Prior on re�ectance R

R is composed of two components,R = ( Rd; Rs). We express our prior asP(R) = P(Rd)P(Rs)
under the assumption thatRd andRs are independent. Here,P(Rd) andP(Rs) can be assumed
uniform in general so thatP(R) is constant. However, unfortunately, estimating reliable specular
re�ectance for all surface points with the uniform prior is very dif�cult unless there are enough
observations exhibiting specular re�ection at every surface point. For that reason, we need some
speci�c prior on specular re�ectance to be able to infer it inspite of the lack of observations2. It
is physically valid to assume that specular re�ectance varies smoothly within each homogeneous
material surface patch. It is, however, also very dif�cult to partition
 according to the types of
materials. Instead, we use the diffuse re�ectance of a surface as a soft constraint to partition
 and
de�ne the prior on the surface re�ectance as

P(R) _ exp
�

� ! (R)
�

(10)

where! (R) is a function of the intrinsic gradient of the diffuse and specular re�ectance of a surface.
This function will be de�ned below.

2We will discuss some special cases that do not need any speci�c prior on the surface re�ectance in Sec. 6.

RR n° 6309
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4 Cost Functions

Based on the derivations in Sec. 3, the problem is formulated as

P(
 jI ) _ P(I j
) P(
)

_
n cY

i =1

exp
�

� � i (
)
�

�
�

exp
�

�  (S)
� �

�
�

exp
�

� ! (R)
� �

(11)

and it can be expressed in terms of cost functions as

E total (
) = Edata (
) + Eshape (S) + E ref l (R)

=
n cX

i =1

� i (
) +  (S) + ! (R):
(12)

This shows that maximizing the probability (Eq. (11)) is equal to minimizing the total cost (Eq.
(12)).

4.1 Data cost function

The current estimation of
 gives a segmentation of the input imageI i into foregroundI iF and
backgroundI iB and we can synthesize�I iF according to the above image formation model. As for
�I iB , it is generated according to the available background model. In this paper, as mentioned in Sec.
2.3, we use actual background images, i.e.�I iB =~I iB . � i (
) = � (I i ; �I i ) is then rewritten as

� (I i ; �I i ) = � F (I iF ; �I iF ) + � B (I iB ; �I iB )

= � F (I iF ; �I iF ) + � B (I iB ; ~I iB )

= �̂ F (I iF ; �I iF ) + � (I i ; ~I i );

(13)

where�̂ F (I iF ; �I iF ) = � F (I iF ; �I iF ) � � F (I iF ; ~I iF ). Since� (I i ; ~I i ) is independent of
 , the data
cost function is written as

Edata (
) =
n cX

i =1

�̂ F (I iF ; �I iF ) + C; (14)

whereC =
P n c

i =1 Ci =
P n c

i =1 � (I i ; ~I i ) is constant.

4.1.1 Similarity Measure

When computing� , any statistical correlation among color or intensity patterns such as the sum of
squared differences (SSD), cross correlation (CC), and mutual information (MI) can be used3. In

3In fact, we do not need to use any sophisticated measure because we also recover the surface re�ectance. Instead, we can
use the simple pixel-wise measure.

INRIA
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any case,� can be expressed as the integral over the image plane as

� (I i ; �I i ) =
Z

� i

e(x)d� i ; (15)

whered� i is the surface measure ande(x) is the contribution atx to � i . The data cost function is
then given as

Edata (
) =
n cX

i =1

Z

� iF

ê(x)d� i + C; (16)

whereê(x) = e
�
I i (x); �I i (x)

�
� e

�
I i (x); ~I i (x)

�
. We adopt the derivations proposed in [13] for� i ,

e, and@2e.

4.1.2 Decoupling appearance from surface normal

As shown in Eq. (5), surface appearance (i.e., the data cost function) is dependent on both the
surface normal and position, and this makes the problem hard to solve and unstable. To resolve this
problem, we introduce an auxiliary unit vector �eldv satisfyingkvk = 1 as in [7], which is used for
the computation of surface appearance. To penalize the deviation between the actual normal vector
n and the auxiliary normal vectorv , we add a new term

Edev (
) = �
Z

S
� (X )d� =

�
2

Z

S
kn(X ) � v (X )k2d�

= �
Z

S
(1 � (n(X ) � v (X ))) d�;

(17)

to the cost function, where� is a control constant.

4.2 Shape area cost function

By using the area of a surface for the prior, the shape area cost function is simply de�ned as

Eshape (S) =  (S) = �
Z

S
d�; (18)

where� is a control constant.

4.3 Re�ectance discontinuity cost function

Based on the assumption on surface re�ectance in Sec. 3.3, we de�ne a discontinuity cost function
of surface re�ectance as

E ref l (R) = ! (R) = �
Z

S
f (X )d�; (19)

where� is a control constant.f (X ) is de�ned as

f (X ) = �
�
Rd(X )

�
� �

�
Rs(X )

�
; (20)

RR n° 6309



10 Yoon, Prados, Sturm, Et al.

where�
�
Rd(X )

�
and�

�
Rs(X )

�
are de�ned in terms of the magnitude of the intrinsic gradients of

diffuse re�ectance and specular re�ectance respectively as

�
�
Rd(X )

�
=

�
1 �

kr SRd(X )k2

M

�
(21)

�
�
Rs(X )

�
=

�
kr S � s(X )k2 + 
 kr S � s(X )k2�

(22)

with a pre-de�ned constantM 4. r S denotes the intrinsic gradient de�ned onS.
The proposed discontinuity cost function of surface re�ectance makes the discontinuities of spec-

ular re�ectance generally coincide with the discontinuities of diffuse re�ectance, which is physically
valid in general. Accordingly, surface points that do not have enough specular observations get as-
signed specular re�ectance inferred from the specular re�ectance of neighboring surface points.

4.4 Total cost function

By combining the cost functions de�ned in the previous sections, the total cost function is given by

E total (
) = Edata (
) + Edev (
)

+ Eshape (S) + E ref l (R):
(23)

Here, it is worthy of notice thatEdev (
) , Eshape (S), andE ref l (R) are de�ned over the scene
surface whileEdata (
) is de�ned as an integral over the image plane. By the change of variable

d� i = �
d i (X ) � n(X )

zi (X )3 d�; (24)

wheren(X ) is the outward unit surface-normal vector atX , d i (X ) is the vector connecting the
center of thei th camera andX and zi (X ) is the depth ofX relative to thei th camera, we can
replace the integral over the image plane by an integral over the surface:

Edata (
) = C �
n cX

i =1

Z

Si

�
ê(x)

d i (X ) � n(X )

zi (X )3

�
d�

= C �
Z

S

 
n cX

i =1

� Si (X )ê(x)
d i (X ) � n(X )

zi (X )3

!

d�

(25)

When denotingg(X ; n(X )) : R3 � 
 ! R as

g(X ; n(X )) =

 

�
n cX

i =1

�
� Si ê

d i � n
zi

3

�
+ � � + � + �f

!

; (26)

4M � 3 for gray-level images andM � 9 for color images.

INRIA



Shape and Re�ectance Recovery using Multiple Images 11

Eq. (23) is simply rewritten as

E total (
) = C +
Z

S
g(X ; n(X ))d�: (27)

Here, although the total cost function is an integral over the surface, it does not suffer from the
usual minimal surface bias: most functionals used in multiple stereo have an empty set as globally
optimal surface, since they do not “explain” all pixels in the input images. Our approach, like
[20], takes into account all pixels in the cost function, using both the estimated foreground and the
available background information.

5 Scene Recovery

Scene recovery is achieved by minimizingE total while updatingS andR. Unfortunately,S andR
are highly coupled and, therefore, it is very complicated to estimate all unknowns simultaneously.
To ef�ciently solve the problem, we adopt an alternating scheme, updatingS for a �xed R and then
R for a �xed S. This procedure is repeated untilE total no longer decreases andS andR no longer
change.

5.1 Shape estimation – Surface evolution

When assuming thatR is given,E total is a function ofS. In this case, the gradient ofE total (S) is
given according to the derivation in [5] and [16] as

r SE total (S) = ( r Sg) � n + 2gH + r S � gn ; (28)

whereH is the mean curvature andgn represents the gradient on the unit sphere.
Accordingly, the gradient descent surface evolution that minimizes the total cost function is

characterized by the normal velocity of the evolution given as

St = � (( r Sg) � n + 2gH + r S � gn ) : (29)

In this work, we derive the gradient descent �ows corresponding to the cost functions respec-
tively. The �nal gradient descent �ow is then given by

St =
�

St
�
�
data + St

�
�
dev + St

�
�
shape + St

�
�
ref l

�
:n (30)

5.1.1 Gradient descent �ow for the data cost

According to the form ofEdata (
) , St
�
�
data is given as

St
�
�
data =

n cX

i =1

�
ê
z3

i
(r S � Si � d i ) +

� Si

z3
i

��
@2êr S �I i

�
� d i

�
�

(31)

RR n° 6309



12 Yoon, Prados, Sturm, Et al.

This includes both the variation related to the camera visibility changes (the �rst term in Eq. (31))
and the variation related to the image changes (the second term in Eq. (31)), which also includes the
variation due to the light visibility changes. By using Eq. (5),r S �I i is expressed as

r S �I i =
n lX

j =1

f (r S � L j )L ij + � L j (r SL ij )g + ( r S � a)L a ; (32)

wherer SL ij = r SL d
ij + r SL s

ij . Here, it is worthy of notice that the gradient descent �ow for
the data cost is not dependent on the image gradient, which is sensitive to image noise, but on the
shape/re�ectance estimation.

5.1.2 Gradient descent �ows for the normal deviation cost and the shape area cost

St
�
�
dev (originating fromEdev (
) ) is computed as

St
�
�
dev = ( � 2�H + � (r S � v )) (33)

andSt
�
�
shape (from Eshape (S)) is the mean curvature �ow

St
�
�
shape = � 2�H: (34)

5.1.3 Gradient descent �ow for the re�ectance discontinuity cost

By using the derivation in [9], we get the following equation for surface evolution.

St
�
�
ref l = � 2�

� 1
M

m(� d)� (Rs)

� (m(� s) + 
m (� s)) � (Rd)
� (35)

Here,

m(� s) =
�

II
�
r S � s � n

�
+ kr S � sk2H

�
; (36)

m(� s) =
�

II
�
r S � s � n

�
+ kr S � sk2H

�
; (37)

m(� d) =
�

II
�
r S � d � n

�
+ kr S � dk2H

�
; (38)

whereII( t ) is the second fundamental form for a tangent vectort with respect ton.

5.2 Updating the auxiliary vector �eld v

The computed gradient descent �ows minimize the total cost with respect to given re�ectance and
v . We then update the auxiliary vector �eldv to minimize the total cost with respect to given shape
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and re�ectance. Thev that minimizes the total cost satis�es the following equation.

@g
@v

=

 

�
n cX

i =1

� Si @2ê
@�I i

@v
d i � n
zi

3

!

+ ( � � n) = 0 (39)

Here,@�I i
@v is given as

@�I i

@v
=

n lX

j =1

� L j L j

�
� d l j + � s � s (v � h ij ) � s � 1 h ij

�
: (40)

We updatev by performing gradient descent using the following PDE, with the constraintkvk =
1.

@v
@t

=

 

�
n cX

i =1

� Si @2ê
@�I i

@v
d i � n
zi

3

!

+ ( � � n) (41)

5.3 Re�ectance estimation

Here, we estimateR for a �xed S, still minimizing the total cost function. SinceEdev andEshape do
not depend onR at all, we seek an optimalR by minimizing(Edata (
)+ E ref l (R)) . Here, because
it is also complex to estimate diffuse and specular re�ectance at the same time due to the high
coupling between them, we alternatively estimate surface re�ectance one by one while assuming
that the rest are given. We repeat the procedure until they no longer change.

5.3.1 EstimatingRd

For givenS andRs, we estimate� d that minimizes the following.

Edata + E ref l =
Z

S

��
�

n cX

i =1

� Si ê
d i � n
zi

3

�

+ �
�

1 �
kr S � dk2

M

�
�
�
Rs

� �
d�

(42)

Here,� d that minimizes the total cost function will satisfy the Euler-Lagrange equation given as

�
n cX

i =1

� Si @2ê
@�I i

@�d

d i � n
zi

3 +
2�
M

�
�
Rs

�
� S � d = 0 ; (43)

where� S denotes the Laplace-Beltrami operator de�ned on the surfaceS and @�I i
@�d

is given as

@�I i

@�d
=

n lX

j =1

� L j L j (v � l j ) + L a : (44)
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We solve the PDE by performing gradient descent using the following PDE.

@�d
@t

=

 

�
n cX

i =1

� Si @2ê
@�I i

@�d

d i � n
zi

3

!

+
�

2�
M

�
�
Rs

�
�

� S � d (45)

5.3.2 EstimatingRs

We then estimateRs = ( � s; � s) for givenS andRd in the same manner.� s that minimizes the total
cost function will satisfy the Euler-Lagrange equation given as

 

�
n cX

i =1

� Si @2ê
@�I i

@�s

d i � n
zi

3

!

� 2�
�
� S � s

�
�
�
� d

�
= 0 ; (46)

where @�I i
@�s

is given as

@�I i

@�s
=

n lX

j =1

� L j L j (v � h ij ) � s : (47)

We again solve the PDE by performing gradient descent using the following PDE to get the
solution of Eq. (46).

@�s
@t

= �
n cX

i =1

�
� Si @2ê

@�I i

@�s

d i � n
zi

3

�
� 2�

�
� S � s

�
�
�
� d

�
(48)

� s is also estimated in the same manner by solving the PDE as

@�s
@t

= �
n cX

i =1

�
� Si @2ê

@�I i

@�s

d i � n
zi

3

�
� 2�


�
� S � s

�
�
�
� d

�
; (49)

where @�I i
@�s

is given as

@�I i

@�s
=

n lX

j =1

� L j L j � s (v � h ij ) � s ln (v � h ij ) : (50)

6 Single-material surface case

When dealing with a single-material surface, it is possible to set� s(X ) = � s and� s(X ) = � s for
all surface points. In this case, the discontinuity cost function of surface re�ectance,E ref l (R), can
be excluded becausef (X ) in Eq. (20) is zero everywhere on the surface. Hence the gradient descent
�ow is then given by

St =
�

St
�
�
data + St

�
�
dev + St

�
�
shape

�
n (51)
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and the PDE used for the estimation of� d , Eq. (45), is simpli�ed as

@�d
@t

= �
n cX

i =1

� Si @2ê
@�I i

@�d

d i � n
zi

3 : (52)

In addition,� s and� s are computed by performing gradient descent using the following PDEs.

@�s
@t

=
Z

S

 

�
n cX

i =1

� Si @2ê
@�I i

@�s

d i � n
zi

3

!

d� (53)

@�s
@t

=
Z

S

 

�
n cX

i =1

� Si @2ê
@�I i

@�s

d i � n
zi

3

!

d� (54)

Table 1: Performance of the proposed method
accuracy (mm - 90%) completeness (% - 5.0mm) eimgae

dragon shape = mm,� dr = , � dg=, � db=, � dr =, � dr =,
bunny 0.004765 89.8748 1.24

7 Experiments

Instead of implementing the surface evolution directly, we have implemented the gradient descent
surface evolution in the level set framework, in which the topological changes of surfaces are handled
automatically. The camera and light visibility are computed by using the OpenGL. To verify the
proposed method, we generated synthetic images by specifying illumination conditions and surface
re�ectance for 3D models with various geometries. The algorithm starts from the visual hull obtained
by rough silhouette images to reduce the computational time and to avoid local minima. We used
the simpleL 2-norm to compute the image similarity,e.

7.1 Results for the Lambertian case

In these experiments,(128 � 128� 128) grids were used except the “dragon” image set5. Figure 1
shows one of 32 input images and the synthesized image generated by using the estimated shape (and
shading) and re�ectance. We can generate the images of the scene with different lighting conditions
as shown in Fig. 2 by using the estimated shape and re�ectance. The results for the “torus” image set
are also shown in Fig. 3 and the results for more complex object is shown in Fig. 4. We can see that
the images synthesized by using the estimation closely resemble the input images while the shading
and the re�ectance are successfully separated. The image synthesized by using the estimated shape
and re�ectance with different lighting conditions and a different viewpoint is shown in Fig. 5.

5(160 � 80 � 128) grids was used for the “dragon” image set.
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16 Yoon, Prados, Sturm, Et al.

(a) input image (b) estimated re�ectance

(c) estimated shading (d) synthesized image

Figure 1: Estimation results for a “sphere” image set

(a) original input image (b) synthesized image

Figure 2: Scene synthesis under different lighting conditions
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(a) input image (b) synthesized image

Figure 3: Estimation results for a “torus” image set

The estimated shape is quantitatively evaluated in terms of accuracy and completeness as in
[15]. We used 95% for accuracy and the 10.0mm error for completeness. Here, beside the shape
evaluation, we also evaluated the estimated re�ectance in the same manner. For each point on a es-
timated surface, we found the nearest point on the surface and compute the distance and re�ectance
differences and vice versa. In addition, for the more quantitative evaluation of surface shape and re-
�ectance, we computed the average of the differences between input images and synthesized images
using theL 2-norm as

eimage =
1
nc

n cX

i =1

1
A

Z

� i

k
�
I i (x) � �I i (x)

�
kd� i ; (55)

whereA =
R

� i
d� i . The performance of the proposed method is summarized in Table 2.

Table 2: Performance of the proposed method
accuracy (95%) (shape,� dr , � dg , � db ) completeness (10.0mm) (shape,� dr , � dg , � db ) eimgae

sphere 14.04mm, 0.0254, 0.0189, 0.0167 97.17%, 0.0228, 0.0175, 0.0161 0.6026
dragon 2.63mm, 0.0897, 0.0734, 0.0655 99.88%, 0.0658, 0.0575, 0.0543 5.4812

7.2 Experiments in the general case

To verify the proposed method in the general case, we assigned the uniform re�ectance for the
`dragon' image set for the simple evaluation of results. However, we estimated re�ectance at every
point on a surface without using the fact of uniform re�ectance. The `dragon' and the `bunny'
models used for experiments and ground truth light shading and surface re�ectance maps are shown
in Fig. 6. Three point light sources with different colors were placed. We took 32 images for the
`dragon' model and 16 images for the `bunny' model as inputs for recovery.
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(a) input image (b) synthesized image

(c) true re�ectance of (a) (d) estimated re�ectance of (a)

(e) true shading of (a) (f) estimated shading of (a)

Figure 4: Estimation results for a “dragon” image set
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(a) input image (b) synthesized image

(c) true re�ectance of (a) (d) estimated re�ectance of (a)

(e) true shading of (a) (f) estimated shading of (a)

Figure 5: Synthesized image with different lighting conditions and a different viewpoint
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(a) input model (b) diffuse shading

(c) specular shading (d) diffuse re�ectance

(e) specular re�ectance (f) shininess

(g) ambient re�. comp. of an input im-
age

(h) diffuse re�. comp. of an input image

(i) specular re�. comp. of an input image

Figure 6: Input models and ground truth shading and re�ectance maps
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The initial estimations (shape + re�ectance) and the re�ned outputs are shown in Fig. 7 and in
Fig. 8. Input images and corresponding synthesized images are also shown for comparison. We can
see that the images synthesized by using the estimation closely resemble input images.

The computational time depends on the number of images and grids. For instance, the `dragon'
image set took about 90 minutes when using 32 images,(96� 96� 96) grids, and the linux machine
with 2.66GHz CPU and 2G memory.
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(a) initial shape - `bunny' (b) �nal shape - `bunny'

(c) input image (d) ambient re�. comp.

(e) diffuse re�. comp. (f) specular re�. comp.

Figure 8: Results for the `bunny' model
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8 Conclusion

In this paper, we have presented a variational method that recovers both the shape and the re�ectance
of scene surfaces using multiple images. Scene recovery was achieved by minimizing the global cost
functional alternatively. As a result, the proposed method produced the complete description of a
scene surface.

The main contribution of this paper lies in proposing a solution for dealing with general dichro-
matic surfaces by utilizing illuminant conditions. We modeled the scene and image formation using
know information about cameras and illuminants. We then formulated the problem via Bayes' rule
and de�ned global cost functional in terms of data, shape, and re�ectance cost functions. Especially,
we presented an ef�cient re�ectance discontinuity cost function to make the problem tractable in
spite of the lack of specular re�ection observation. In addition, we derived analytic formula for
surface evolution and re�ectance estimation.
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A Appendices

A.1 Notations

• � : a set of surfaces in a scene,� = f 
 ; 
 C g

• 
 : foreground surface in� , described by its shape and re�ectance as
 = ( S; R)

• 
 C : background surface in� , described by the shape and re�ectance as
 C = ( SC ; RC )

• S : the shape of


• R : the re�ectance of
 , R = ( Rd ; Rs )

• Rd : the diffuse re�ectance (albedo) of
 , Rd = � d
6, 0 5 � d 5 1

• Rs : the specular re�ectance of
 , Rs = ( � s ; � s )

• � s : the coef�cient of the specular re�ection of
 , 0 5 � s 5 1

• � s : the shininess constant of the specular re�ection of
 , � s = 0

• nc : the number of cameras (= the number of images)

• oi : the view direction of thei th camera

• � i : the perspective projection performed by thei th camera,� i : R3 ! R2

• � i : the image plane of thei th camera

• � iF : a region in� i corresponding toS, � iF = � i \ � i (S)

• � iB : a region in� i as(� i � � iF )7

• I i : an image captured by thei th camera with foreground surfaces,I i : � i � R2 ! Rd 8

• I : a set of input images with foreground surfaces,I = f I 1 ; I 2 ; � � � ; I n c g

• ~I i : an image captured by thei th camera without foreground surfaces (i.e., backgound image),~I i : � i �
R2 ! Rd

• ~I : a set of input images without foreground surfaces,I = f ~I 1 ; ~I 2 ; � � � ; ~I n c g

• I iF : an image region inI i corresponding to� iF , I iF : � iF � R2 ! Rd

• I iB : an image region inI i corresponding to� iB , I iB : � iB � R2 ! Rd 9

• ~I iF : an image region in~I i corresponding to� iF , ~I iF : � iF � R2 ! Rd

• ~I iB : an image region in~I i corresponding to� iB , ~I iB : � iB � R2 ! Rd

• Si : the part ofS visible from thei th camera

• � � 1
i;S : the inverse projection from thei th camera ontoS, � � 1

i;S : � iF ! Si

• X : a point onS

• x i : a point in thei th image plane corresponding toX , x i 2 � i = � i (X 2 Si )

6For color images,� d = ( � dr ; � dg ; � db ). We useRd and� d interchangeably in this work.
7� i = � iF [ � iB ; � iF \ � iB = ;
8d = 1 for a gray image andd = 3 for a color image
9The mapping from a surface point to an image point is characterized by� i andI i : � i andI i represent the geometric

mapping (related toS) and the photometric mapping (related toR) between points respectively.
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• n(X ) : an outward unit surface-normal vector atX

• n l : the number of illuminants

• l j : the direction of thej th illuminant

• L j : the intensity of thej th illuminant

• L a : the intensity of the ambient illumination

• � a : the coef�cient of the ambient re�ection of
 , 0 5 � a 5 1

A.2 Intrinsic gradient on the manifold S

The intrinsic gradient of a functionf : S ! R on the(n � 1)-dimensional manifoldS embedded
in Rn can be simply de�ned as the projection of the gradient of a function onto the manifoldS as in
[2]. Whenn denotes a unit normal vector ofS, r S f can be computed simply as

r S f = r ~f �
�

nT r ~f
�

n (56)

where ~f : Rn ! R represent a differentiable function whose restriction toS is f .
On the other hand, whenS is parameterized usingu andv in R3, the intrinsic gradient onS, r S

, can be expresses as

r S f = [ Su ; Sv ]
�

Su � Su Su � Sv

Su � Sv Sv � Sv

� � 1 �
f u

f v

�
(57)

A.3 Laplace-Beltrami operator

The Laplace operator is a second order differential operator in then-dimensional Euclidean space,
de�ned as the divergence of the gradient. The Laplacian can be extended to functions de�ned on
Riemannian and pseudo-Riemannian manifolds. This is named the Laplace-Beltrami operator. Ac-
cording to the de�nition, the Laplace-Beltrami operator is expressed as

� S f = r S � (r S f ) (58)
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[2] M. Bertalḿ�o and L-T. Cheng and S. Osher, G. Sapiro. Variational Problems and Partial Dif-
ferential Equations on Implicit Surfaces.Journal of Computational Physics, 174 (2):759–
780,2001.
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