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Reconstruction de la forme et des propréetés de € ectance d'une
scene tridimentionnelle a partir d'images multiples avec des
conditions d'éclairage connues

Résunt : Nous cveloppons une &thode variationnelle permettant de reconstruire conjointe-
ment la forme tridimensionnelle et les praiés de e ectance de la surface d'une estea par-

tir d'images de cette e prises de plusieurs points de vue. Nous supposons que les conditions
d'illumination sont xées et connues et que les @&as sont comptement calikkes. La nethode
consistea minimiser une fonctionnelle de@bglobale par rapporg la fois, la forme et laé ectance.
Contrairemena la plupart des gthodes pEcedentes reconstruisant seulement la forme de surfaces
Lambertiennes, la éthode propd=e ici consiére des surfaces dichromatiquésgrales.

Mots-clés : vision tridimensionnelle, reconstruction de la forme et detlaatance d'une sene,
surface non lambertienne athode variationnelle.



Shape and Re ectance Recovery using Multiple Images 3

1 Introduction

Recovering the three-dimensional scene shape using multiple images is one of the major research
topics in computer vision. Many methods have been proposed to solve the problem during these
last two decades; refer to [[15] for an evaluation of various recent methods. However, most of them
pay little attention to the re ectance properties of scenes, usually assuming perfectly Lambertian
surfaces.

To reduce errors due to non-Lambertian surfaces, Bhat and Nayar [1] analyzed the physics of
specular re ection and the geometry of stereopsis, which leads to a relationship between stereo
vergence, surface roughness, and the likelihood of a correct match. Zickleri et al. [23] presented the
Helmholtz stereopsis to overcome the specular re ection problem. However, these two approaches
require specialized camera con gurations. Some other works [11, 19, 21] also tried to handle non-
Lambertian surfaces in the shape reconstruction. However, they rely on some pre-processing and/or
specularity-independent photo-consistency measures that are practically hard to use in the case of
multiple light sources with different colors. Moreover, they do not recover the surface re ectance.

There are a few works to recover scene geometry and re ectance from known illumination con-
ditions and/or prior knowledge on the shape, while Yu and Malik [22] showed how to recover illumi-
nation from known scene geometry and re ectance. Samaras et al. [14] proposétipe method
(succession of several independent processes) for the computation of object shape and re ectance
characteristics for non-constant albedo and non-uniformly Lambertian surfaces using 3D models.
Recently, Birkbeck et al! [3] proposed a method that recovers diffuse and specular re ectance with
changing lights and viewpoints. Our goal is to provide a shape and re ectance estimation method that
is global and completely model basedlas [4]. Also, we want to provide a method that improves the
robustness to non-Lambertian effects by directly incorporating a physically based specular model
in the mathematical formulation of the problem. By incorporating a complete photometric image
formation model, we also exploit proli cally all the photometric phenomena. Also, we thus aim to
provide a method that allows to naturally manage with a set of images under with several lighting
conditions.

Let us note that actually there already exist recent works that provide solutions in this direction
[4], [25]. In [25], Yu and Xu proposed a global and model-based method for recovering the 3D
shape and the re ectance properties of a non-Lambertian object. Nevertheless, in this last paper, the
authors constrain the object to be made lsiragle material that is to say that the parameters of
the re ectance (in particular the albedo) are the same for all the points of the object surface. So, the
method in[[25] is a “Multiview Shape From Shading” method, similarly as the one proposed by Jin
et al. [10] who focuses on the Lambertian case.

Our method provides a multiview stereo/shape from shading algorithm similaily to![10} 7, 12,
18,126] which allow to recover 3D shapes from Lambertian shading [10,/7, 12] as well as specular
shadingl[18, 26]. Nevertheless, contrary to these previous works|[10,/7,/12] 18| 26, 25], in our work,
we do not want to restrain ourself to a single material: in other words, the re ectance properties
of the object can spatially (strongly) change. In effect, now a day, more and more objects are now
printed and so it is fundamental to be able to recover textured and patterned objects. In return, of
course, we will not be able to recover lighting conditions as done [10], and we have to use a parallel
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4 Yoon, Prados, Sturm, Et al.

process which return them. In this work, we assume that lighting conditions are known in advance.
Practically, we can use spherical objects with the reference white color to capture the directions and
the colors of light sources.

In short, in this work, we develop a variational method to recover the shape and the re ectance
of a scene surface using multiple images, assuming that illumination conditions are xed and known
in advance. The proposed method can handle quite general dichromatic surfaces exhibiting specular
re ection, and the output of this work is the complete description of a scene surface, which can be
used to synthesize novel views with arbitrary illumination conditions.

The paper is organized as follows. We rst present the modeling of scene introduce the re ection
model and the image formation process in Segtioh 2.4. We then formulate the problem in Section 3
and de ne cost functions in Secti¢f 4. Shape evolution and re ectance estimation are described in
Sectior{ $ and experimental results for test image sets are shown in $éction 7. We then summarize
and conclude the work in Sectibh 8.

2 Modeling Assumptions and Notations

We assume here that the scene can be decomposed into two entities: the foreground, which corre-
sponds to the objects of interest, and the background; these are de ned more precisely below. The
foreground is composed by a set of (bounded and closed) 2D manifoRfs dfhese surfaces are
represented b$.

2.1 Lighting conditions

We assume that the scene is illuminated by a nite number of distant point light sources. We com-
plete them by adding an ambient light term (which partially accounts for interre ections and other
complex phenomena), with constant energy radiated isotropically in all directions. Note that, based
on Wiener's theorems|, [17] shows that such a light distribution can approximate arbitrarily well any
positive distribution on the sphere. Ligtbe the number of illuminants angd 2 S? andL; 2 R® be

the direction and the intensiyf thej ™ illuminant, respectivelyL 2 RC is the intensit@ of the
ambient illumination.

2.2 Cameras, image data and visibility

Image data are generated by pinhole cameras. The perspective projection, from world to image
coordinates, performed by th& camera, is represented by : R® | R2. R? is the
image domain of thé" camera (i.e. the area covered by the pixels). It is split into two parts: the
pixels corresponding to the foregrounds = ;\ (S), and the other pointsig = i n
(associated to the background). : ; ! R is the image of the true scene, captured byithe
camera ¢ = 1 for a gray-scale image, ard= 3 for a color image). We denotethe set of input
images:l = flq;l; 10,0 lieg andlig are the restrictions of the functidnto & and s,

INon-normalized color vector, i = 3.

INRIA



Shape and Re ectance Recovery using Multiple Images 5

respectively. In other respects, we consider the visibility functigrde ned by: s (X) =1 if X
is visible from thei'™ camera ands, (X) = 0 otherwise.S; denotes the part @8 that is visible
from thei®™ camera and i;sl is the backprojection from thd" camera ont@: i.e. for all points
X2 i, i;sl(x) is the closest point 08 along the ray joiningX to the optical center of thig"
camera.

2.3 Modeling the background

As suggested by [20], to be sure that the estimated foreground surface does not shrink to an empty
set (which is indeed the global optimum for most cost functionals used in other works) it is crucial

to de ne and characterize the background. The choice of model is dictated by the scenario and
the applications. For example, in 20, 7], the background is characterized by its radiance which is
constrained to be constant or strongly regular. At the opposite extreme, when the background is quite
irregular, one can assume that one has at his disposal the background images, i.e. the images of the
scene captured by the same cameras without foreground objects. Due to lack of space, we only deal
here with the latter scenario. Therefore, in addition to the imagese assume that we detain the
background imagels= fI7; ; Th. 0. Finally, we de nelfr andlig analogously tdi andlig .

2.4 Modeling the foreground surface

In this work, we model the foreground object(s) by its sh&pand its re ectanceR. We denote
=( S;R).
Contrary to most previous stereovision methods, we want to go beyond the Lambertian model.
In order to get a solvable minimization problem without too many unknown variables, we chose to
represent the re ectance by a parametric model. Of course the chosen model directly depends on the
applications aimed at; as an example, we consider the popular Blinn-Phong shading model. In this
context, and assuming thigt(x) is equal to the radiance of the surfageat pointX = i;Sl(x) in

the direction of thé™ camera, the imagds are then decomposed as
li = lig + lis + lia; (1)

whereliq, lis, andlj; are images with the diffuse, specular, and ambient re ection component of
I, respectively.

Diffuse re ectionis caused by the subsurface scattering of light and it is independent of viewing
direction. By using the cosine law, this image component is described as

X

lia (x) = L (X)) a(X)L; n(X) Iy @)
j=1

where ¢(X) 2 R® is the diffusion albed®at pointX, n(X) is the normal vector to the surfa&
atX and ; represents the light visibility functionS, ; being the part of5 visible from thej th
illuminant, we dene ; (X)=1if X 2 §;, ,(X) =0 otherwise.

RR n° 6309



6 Yoon, Prados, Sturm, Et al.

Specular re ectionis caused by the surface re ection, as with a mirror. This component is

expressed as
Xi

s(X
ls() = 1,(X) s()L; n(x) hy (x) > 3)
j=1
wherehj (X) is the bisector of the angle between the view ofithecamera and thg" illuminant
atX, s(X)2 R%and (X) 2 R* are the specular albedo and the shininess parameter adoint
Theambient illuminatioris assumed to be uniform in the scene and modeled as

lia (x) = a(X)La; (4)

wherelL , is de ned above.
By combining the diffuse, specular, and ambient re ection, we get the image formation equation
as

li(x) = X L (XL (X5n(X)) + a(X)La; ®)
j=1
where
Li (X;n(X)) = L§ (X;n(X))+ L (X;n(X))
=Lj a(X) n(X) I (6)
Ly 5(X) n(X) hy () 0
In the sequel, in order to simplify the notations, we de®te ( Rq4; Rs), whereRy = 4 and
Rs=( s s)-

3 Problem Formulation

From a probabilistic point of view, the goal of this work is to estimate the sBagad the re ectance
R of a scene surface, that maximizeP ( jl) for givenl. By Bayes' rule, the problem is then
formulated as PUi) PO)
. ] .
P( = —F57— = PUj) PO
P() @
P(IjS;R) P(S) P(R)

under the assumption th&tandR are independent. HerB,(Ij) = P(ljS;R) is a likelihood and
P (S) andP (R) are priors on the shape and re ectance respectively.

3.1 Likelihood

If ; and illumination conditions are given, we can produce a synthetic im4ge corresponding

to an input imagé; by using the current estimation of. Here, the correct estimation of will

produce the same images as the input images under the given illumination conditions (modulo noise
of course). This allows us to measure the validity of the current estimation by comparing input

INRIA



Shape and Re ectance Recovery using Multiple Images 7

images with generated ones. When assuming an independent identical distribution (i.i.d) of noise in
the observations, the likelihood can be expressed as

) Ye Ye
PUj]) _ exp () = exp (1) s (8)
i=1 i=1
where () = (Ii;1i()) is afunction of , measuring the dissimilarity between two imagdges

andl;.

3.2 Prior on surface shapes

A typical and reasonable prior for the surface sh&pe about the area or about the smoothness of
a surface. When using the surface area for the prids,dhis expressed as

P(S) _ exp (S) : 9)

R
Here, (S) is the monotonic increasing function of the surface aged whered is the Euclidean
surface measure.

3.3 Prioronre ectanceR

R is composed of two component®,= ( Rq; Rs). We express our prior @&(R) = P(Rg)P (Rs)

under the assumption thRy andRs are independent. Her®,(R4) andP (Rs) can be assumed
uniform in general so thd® (R) is constant. However, unfortunately, estimating reliable specular

re ectance for all surface points with the uniform prior is very dif cult unless there are enough
observations exhibiting specular re ection at every surface point. For that reason, we need some
speci ¢ prior on specular re ectance to be able to infer it inspite of the lack of observﬁtidns

is physically valid to assume that specular re ectance varies smoothly within each homogeneous
material surface patch. It is, however, also very dif cult to partitioraccording to the types of
materials. Instead, we use the diffuse re ectance of a surface as a soft constraint to parétidn

de ne the prior on the surface re ectance as

P(R) _exp !'(R) (20)

where! (R) is a function of the intrinsic gradient of the diffuse and specular re ectance of a surface.
This function will be de ned below.

2We will discuss some special cases that do not need any speci ¢ prior on the surface re ectancﬂn Sec. 6.

RR n° 6309
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4 Cost Functions
Based on the derivations in S¢¢. 3, the problem is formulated as
P( i _PU}) PO

- e () exp (S) (11)

exp I (R)
and it can be expressed in terms of cost functions as

Etotal () = Edata () + Eshape (S) + Erefl (R)
Re (12)
= i+ (S+ 1 (R):
i=1

This shows that maximizing the probability (Ef]. [11)) is equal to minimizing the total cost (Eq.

2)).

4.1 Data cost function

The current estimation of gives a segmentation of the input imajgeinto foregroundl = and
background g and we can synthesidg according to the above image formation model. As for
lig , itis generated according to the available background model. In this paper, as mentioned in Sec.
, we use actual background images,liw=Fg . ()= (li;1;) is then rewritten as

(i;1)= e(ieslie)+ s(lis;li)
F(lirslie)+ B(lis:MB) (13)
"B L)+ (T

where ¢ (e ;lie) = (i lig) F(lie ;e ). Since (Ii; 1) is independent of , the data
cost function is written as

Xe N
Edaa () = F(lie;lie)+ C; (14)
i=1

P n P n H
whereC = 5, G = 5 (l;;7) is constant.

4.1.1 Similarity Measure

When computing , any statistical correlation among color or intensity patterns such as the sum of
squared differences (SSD), cross correlation (CC), and mutual information (MI) can @ used

3In fact, we do not need to use any sophisticated measure because we also recover the surface re ectance. Instead, we can
use the simple pixel-wise measure.

INRIA
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any case, can be expressed as the integral over the image plane as
z

(li;1i) = e(x)d i; (15)
whered ; is the surface measure ap¢k) is the contribution ak to ;. The data cost function is
then given as

xe Z

Edata () = e(x)d i + C; (16)
i=1 iF
whereé&(x) = e Ii(x);1;i(x) e li(xX);(x) . We adopt the derivations proposed|ini[13] for
e, and@e.

4.1.2 Decoupling appearance from surface normal

As shown in Eq. [(p), surface appearance (i.e., the data cost function) is dependent on both the
surface normal and position, and this makes the problem hard to solve and unstable. To resolve this
problem, we introduce an auxiliary unit vector eldsatisfyingkvk = 1 as in [4], which is used for
the computation of surface appearance. To penalize the deviation between the actual normal vector
n and the auxiliary normal vectaor, we add a new term

Z Z

Edev() = (X)d = = kn(X) v(X)kid

ZS 2 S

. 1 (n(X) v(X)))d;

17)

to the cost function, whereis a control constant.

4.2 Shape area cost function

By using the area of a surface for the prior, the shape area cost function is simply de ned as
Z

Eshape (S) = (S) = Sd: (18)

where is a control constant.

4.3 Re ectance discontinuity cost function

Based on the assumption on surface re ectance in[Sef. 3.3, we de ne a discontinuity cost function
of surface re ectance as z

Erert (R)=!(R)= f(X)d; (19)
S
where is a control constant.(X) is de ned as

f(X)= Rq(X) Rs(X) ; (20)

RR n° 6309



10 Yoon, Prados, Sturm, Et al.

where Ry(X) and Rg(X) are de ned in terms of the magnitude of the intrinsic gradients of
diffuse re ectance and specular re ectance respectively as

kr st(X)kz

Rg(X) = 1 v

(21)

Rs(X) = krs s(X)K2+ krs s(X)k? (22)

with a pre-de ned constamllﬂ r s denotes the intrinsic gradient de ned &n

The proposed discontinuity cost function of surface re ectance makes the discontinuities of spec-
ular re ectance generally coincide with the discontinuities of diffuse re ectance, which is physically
valid in general. Accordingly, surface points that do not have enough specular observations get as-
signed specular re ectance inferred from the specular re ectance of neighboring surface points.

4.4 Total cost function

By combining the cost functions de ned in the previous sections, the total cost function is given by

Etotal () = Edata()+ Edev()

23

+ Eshape (S) + Erefl (R): ( )
Here, it is worthy of notice theEgev () , Eshape (S), andEer (R) are de ned over the scene
surface whileE 4312 () is de ned as an integral over the image plane. By the change of variable

di(X) n(X)

di= zi(X)3

d; (24)

wheren(X) is the outward unit surface-normal vector)at d; (X) is the vector connecting the
center of theiy, camera andX andz(X) is the depth ofX relative to theiy, camera, we can
replace the integral over the image plane by an integral over the surface:

xe £ _
Eaa ()= C 6 220100 4
i=1 S Zi(X)
Xe di(X) n(X) (29)
=c - si(X)é(x)W d
When denotingy(X;n(X)) : R® I Ras
|
. | !
g(X:;n(X)) = Sied' L : (26)

4M  3for gray-level images anil 9 for color images.

INRIA



Shape and Re ectance Recovery using Multiple Images 11

Eq. (23) is simply rewritten as
4
Eora ()= C+  g(X;n(X))d: (27)
S

Here, although the total cost function is an integral over the surface, it does not suffer from the
usual minimal surface bias: most functionals used in multiple stereo have an empty set as globally
optimal surface, since they do not “explain” all pixels in the input images. Our approach, like
[20], takes into account all pixels in the cost function, using both the estimated foreground and the
available background information.

5 Scene Recovery

Scene recovery is achieved by minimiziBg., while updatingS andR. Unfortunately,S andR

are highly coupled and, therefore, it is very complicated to estimate all unknowns simultaneously.
To ef ciently solve the problem, we adopt an alternating scheme, upd&tiiog a xed R and then

R for a xed S. This procedure is repeated urffil,;;; No longer decreases afdandR no longer
change.

5.1 Shape estimation — Surface evolution

When assuming tha is given,Ey is a function ofS. In this case, the gradient &gy (S) is
given according to the derivation inl[5] ard [16] as

rSEtotaI (S):(rsg) n+29H+rS On. (28)

whereH is the mean curvature amy represents the gradient on the unit sphere.
Accordingly, the gradient descent surface evolution that minimizes the total cost function is
characterized by the normal velocity of the evolution given as

St= ((rsg9 n+2gH+rs Gn): (29)

In this work, we derive the gradient descent ows corresponding to the cost functions respec-
tively. The nal gradient descent ow is then given by

Si= S data + S dev + S shape + S refl n (30)

5.1.1 Gradient descent ow for the data cost

According to the form oEgqa () , St is given as

data

R a Si
S data = ﬁ(r S S di)+ ? @ér sl d; (31)
i=1

RR n° 6309



12 Yoon, Prados, Sturm, Et al.

This includes both the variation related to the camera visibility changes (the rsttermipEq. (31))
and the variation related to the image changes (the second term jn Eq. (31)), which also includes the
variation due to the light visibility changes. By using E@ (5! is expressed as

Xi
rsli=  f(rs)by+ 1, (rskijl)g+(rs a)la; (32)
j=1

wherer gL =r SLi‘j‘ +r sLﬁ . Here, it is worthy of notice that the gradient descent ow for

the data cost is not dependent on the image gradient, which is sensitive to image noise, but on the
shape/re ectance estimation.

5.1.2 Gradient descent ows for the normal deviation cost and the shape area cost

St 4o, (Originating fromEgey () ) is computed as

St oo =( 2H + (rs V)) (33)
andS; shape (from Eshape (S)) is the mean curvature ow
St shape = 2R (34)

5.1.3 Gradient descent ow for the re ectance discontinuity cost

By using the derivation iri [9], we get the following equation for surface evolution.

Sin = 2 M a) (R)

(35)
(m(s)+ m(s) (Ra)
Here,
m(s)= Il rss n +krg sk?H ; (36)
m(s)= Il rss n +krs k°H ; (37)
m(a)= llrsgq n +krg gk®H ; (38)

wherell(t) is the second fundamental form for a tangent vettith respect ta.

5.2 Updating the auxiliary vector eld v

The computed gradient descent ows minimize the total cost with respect to given re ectance and
v. We then update the auxiliary vector eidto minimize the total cost with respect to given shape

INRIA
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and re ectance. The that minimizes the total cost satis es the following equation.
!

@g Re @ d; n
— = @e— + n)=0 39
@- | 5@®g s (M (39)
Here, @: is given as
X
%: L dli+ s s(v hy) T thy (40)
i=1
We updatey by performing gradient descent using the following PDE, with the consteint
1 ]
@ _ Xe @i di n
ot s, @e@ - +( n) (41)

i=1

5.3 Re ectance estimation

Here, we estimatR for a xed S, still minimizing the total cost function. Sind&gey aNdEspape doO

not depend ol at all, we seek an optim& by minimizing(Egata () + Erert (R)). Here, because

it is also complex to estimate diffuse and specular re ectance at the same time due to the high
coupling between them, we alternatively estimate surface re ectance one by one while assuming
that the rest are given. We repeat the procedure until they no longer change.

5.3.1 EstimatingRy

For givenS andRs, we estimate 4 that minimizes the following.

Z
Xe d n
Edata + Erert = s @ IZ'3
S i=1 2' (42)
k k
+ 1 rSTd Rs d

Here, 4 that minimizes the total cost function will satisfy the Euler-Lagrange equation given as

Re @i di n 2
s@g, 727 T m

Rs s ¢=0; (43)
i=1

where s denotes the Laplace-Beltrami operator de ned on the su&aad% is given as

@ _X
— = LLy (v 1))+ La: (44)
@d i J J

RR n° 6309



14 Yoon, Prados, Sturm, Et al.

We solve the PDE by performing gradient descent using the following PDE.
!
@ _ X @din , 2

@_ S @e@7d Zi3 M Rs S d (45)

i=1

5.3.2 EstimatingRs

We then estimat®s = ( 5; ) for givenS andRq in the same mannerg that minimizes the total
cost function will satisfy the Euler-Lagrange equation given as
!

Ke @ d n
@6 2 =0; 46
- S @S Zi3 S s d ( )
where 2= is given as
@ _X :
@;: LJLj (V hij) . (47)

j=1
We again solve the PDE by performing gradient descent using the following PDE to get the
solution of Eq. [(4).

s Re i d;

s Zi3

S s d (48)
i=1

s is also estimated in the same manner by solving the PDE as

Re i di n
2= T saegt ssoa (@9)
i=1
where 2L is given as
@ _X
@ = |_ij S(V hij) S|I’1(V hij): (50)
s .

6 Single-material surface case

When dealing with a single-material surface, itis possibletoge{) = sand s(X)= ¢ for

all surface points. In this case, the discontinuity cost function of surface re ectinge(R), can

be excluded becau$éX ) in Eq. [20) is zero everywhere on the surface. Hence the gradient descent
ow is then given by

St = St data + St dev + St shape n (51)

INRIA
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and the PDE used for the estimation @f, Eq. [45), is simpli ed as

@ X @ di n,

o |, *%ey (52

In addition, s and s are computed by performing gradient descent using the following PDEs.

7 !
@s _ Re @ di n

@ s, %@,z ¢ (53)
7 !
@s _ Re @i di n

@t s 5@, 75 ¢ &9

i=1

Table 1: Performance of the proposed method

] I accuracy (mm - 90%) | completeness (% - 5.0MM) €mgae |
dragon || shape =mm,q =, dg=, b=, dr= dr =
bunny 0.004765 89.8748 1.24

7 Experiments

Instead of implementing the surface evolution directly, we have implemented the gradient descent
surface evolution in the level set framework, in which the topological changes of surfaces are handled
automatically. The camera and light visibility are computed by using the OpenGL. To verify the
proposed method, we generated synthetic images by specifying illumination conditions and surface
re ectance for 3D models with various geometries. The algorithm starts from the visual hull obtained
by rough silhouette images to reduce the computational time and to avoid local minima. We used
the simplel 2-norm to compute the image similarity,

7.1 Results for the Lambertian case

In these experiment§128 128 128)grids were used except the “dragon” imag@]sEigure[jr

shows one of 32 input images and the synthesized image generated by using the estimated shape (and
shading) and re ectance. We can generate the images of the scene with different lighting conditions
as shown in Fid.]2 by using the estimated shape and re ectance. The results for the “torus” image set
are also shown in Fig)] 3 and the results for more complex object is shown in|Fig. 4. We can see that
the images synthesized by using the estimation closely resemble the input images while the shading
and the re ectance are successfully separated. The image synthesized by using the estimated shape
and re ectance with different lighting conditions and a different viewpoint is shown in[Fig. 5.

5160 80 128) grids was used for the “dragon” image set.
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(a) inputimage (b) estimated re ectance

(c) estimated shading (d) synthesized image

Figure 1: Estimation results for a “sphere” image set

(a) original input image (b) synthesized image

Figure 2: Scene synthesis under different lighting conditions
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(a) inputimage (b) synthesized image

Figure 3: Estimation results for a “torus” image set

The estimated shape is quantitatively evaluated in terms of accuracy and completeness as in
[15]. We used 95% for accuracy and the 10.0mm error for completeness. Here, beside the shape
evaluation, we also evaluated the estimated re ectance in the same manner. For each point on a es-
timated surface, we found the nearest point on the surface and compute the distance and re ectance
differences and vice versa. In addition, for the more quantitative evaluation of surface shape and re-
ectance, we computed the average of the differences between input images and synthesized images
using thel. ?-norm as

1 1
€image = Fci:l K ik |i(X) |i(X) kd i; (55)

R
whereA = i d i. The performance of the proposed method is summarized in E'Flble 2.

Table 2: Performance of the proposed method
] [ accuracy (95%) (shapear, ¢, ) | completeness (10.0mm) (shape,, dg, ) | €mgae |
sphere 14.04mm, 0.0254, 0.0189, 0.0167 97.17%, 0.0228, 0.0175, 0.0161 0.6026
dragon 2.63mm, 0.0897, 0.0734, 0.0655 99.88%, 0.0658, 0.0575, 0.0543 5.4812

7.2 Experiments in the general case

To verify the proposed method in the general case, we assigned the uniform re ectance for the
“dragon' image set for the simple evaluation of results. However, we estimated re ectance at every
point on a surface without using the fact of uniform re ectance. The “dragon' and the “bunny'
models used for experiments and ground truth light shading and surface re ectance maps are shown
in Fig. [6. Three point light sources with different colors were placed. We took 32 images for the
“dragon’ model and 16 images for the “bunny' model as inputs for recovery.
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W

(a) inputimage (b) synthesized image

(c) true re ectance of (a) (d) estimated re ectance of (a)
(e) true shading of (a) (f) estimated shading of (a)

Figure 4: Estimation results for a “dragon” image set
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(a) inputimage (b) synthesized image
(c) true re ectance of (a) (d) estimated re ectance of (a)
(e) true shading of (a) (f) estimated shading of (a)

Figure 5: Synthesized image with different lighting conditions and a different viewpoint
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(a) input model (b) diffuse shading
(c) specular shading (d) diffuse re ectance
(e) specular re ectance (f) shininess

(g) ambient re . comp. of an input im¢h) diffuse re . comp. of an input image
age

INRIA

(i) specularre . comp. of aninputimage

Figure 6: Input models and ground truth shading and re ectance maps
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The initial estimations (shape + re ectance) and the re ned outputs are shown ifi|Fig. 7 and in
Fig.[8. Input images and corresponding synthesized images are also shown for comparison. We can
see that the images synthesized by using the estimation closely resemble input images.

The computational time depends on the number of images and grids. For instance, the “dragon’
image set took about 90 minutes when using 32 ima@eés, 96 96) grids, and the linux machine
with 2.66GHz CPU and 2G memory.
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(a) initial shape - "bunny’ (b) nal shape - "bunny'
(c) input image (d) ambient re . comp.
(e) diffuse re . comp. (f) specular re . comp.

Figure 8: Results for the “bunny' model
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8 Conclusion

In this paper, we have presented a variational method that recovers both the shape and the re ectance
of scene surfaces using multiple images. Scene recovery was achieved by minimizing the global cost
functional alternatively. As a result, the proposed method produced the complete description of a
scene surface.

The main contribution of this paper lies in proposing a solution for dealing with general dichro-
matic surfaces by utilizing illuminant conditions. We modeled the scene and image formation using
know information about cameras and illuminants. We then formulated the problem via Bayes' rule
and de ned global cost functional in terms of data, shape, and re ectance cost functions. Especially,
we presented an ef cient re ectance discontinuity cost function to make the problem tractable in
spite of the lack of specular re ection observation. In addition, we derived analytic formula for
surface evolution and re ectance estimation.
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A Appendices

A.1 Notations

e :asetofsurfacesinascene f ; g

C

« : foreground surface in, described by its shape and re ectance aq S;R)

« C : background surface in, described by the shape and re ectance &s= ( S¢;R°)

* S: the shape of

* R:thereectance of ,R =(Rg;Rs)

* Ry : the diffuse re ectance (albedo) of, R4 = dﬁ, 05 451

* Rs : the specular re ectance of, Rs = ( s; s)

* 5 : the coef cient of the specular re ection of,05

sH 1
* s :the shininess constant of the specular re ection of s = 0

* nc : the number of cameras (= the number of images)

e 0;j : the view direction of théy, camera

« ; : the perspective projection performed by thecamera, ; : R®! R?

« i :the image plane of thie, camera

e & :aregionin ; correspondingt®, i = i\ i(S)

e g :aregionin ; as( i i )[Z]

« |; : an image captured by thg camera with foreground surfacés,: ; R?! Rdﬂ

» | : asetof input images with foreground surfades, f11;12;

;Incg

 I7 : animage captured by thg camera without foreground surfaces (i.e., backgound im&ge),

R? 1

Rd

» I": a set of input images without foreground surfades, f I7; I;
R? 1

: an image region ih; correspondingtoir , li¢ :
: an image region ith; correspondingtois , lig :
: an image region iy correspondingtoir , [ :
: animage region iffii correspondingtois , s :

* S : the part ofS visible from thei, camera

iF

iB

iF

. i;sl : the inverse projection from thig, camera ontc,

* X :apointonS

R? |

R? |

R? |

1.
s -

e Xj : apointinthey image plane correspondingXo, x; 2

iF

Mg

IS

i(X28)

8For colorimages, g = (g ; dg: db). We useRgy and ¢ interchangeably in this work.

7

i= F# [ B F\ B =,

8d = 1 for a gray image and = 3 for a color image
9The mapping from a surface point to an image point is characterized andl;: ; andl; represent the geometric
mapping (related t&) and the photometric mapping (relatedR®9 between points respectively.
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* n(X) : an outward unit surface-normal vectonét

* n; : the number of illuminants

* |j : the direction of thg illuminant

e L; : the intensity of thé illuminant

* La : the intensity of the ambient illumination

* 4 :the coefcient of the ambient re ectionof ,05 ;5 1

A.2 Intrinsic gradient on the manifold S

The intrinsic gradient of a functioh : S! R onthe(n 1)-dimensional manifols embedded
in R" can be simply de ned as the projection of the gradient of a function onto the maSfatdin
[2]. Whenn denotes a unit normal vector 8f r sf can be computed simply as

rsf=rf n'rf n (56)

wheref™: R" | R represent a differentiable function whose restrictioSts f .
On the other hand, whe®iis parameterized usingandv in R®, the intrinsic gradient 08, r g

, can be expresses as

1

Su Su Su Sy fu

rSf:[Su;Sv] Su S\/ Sv S\/ fv

(57)

A.3 Laplace-Beltrami operator

The Laplace operator is a second order differential operator in-thenensional Euclidean space,

de ned as the divergence of the gradient. The Laplacian can be extended to functions de ned on
Riemannian and pseudo-Riemannian manifolds. This is named the Laplace-Beltrami operator. Ac-

cording to the de nition, the Laplace-Beltrami operator is expressed as

st =rs (rsf) (58)
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