N

HAL

open science

Editing with Style

Vincent Quint, Irene Vatton

» To cite this version:

Vincent Quint, Iréne Vatton. Editing with Style. ACM Symposium on Document Engineering, Do-

cEng 2007, Aug 2007, Winnipeg, Canada. pp.151-160. inria-00175596

HAL 1Id: inria-00175596
https://inria.hal.science/inria-00175596
Submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00175596
https://hal.archives-ouvertes.fr

Editing with Style

Vincent Quint
vincent.quint@inria.fr

) Irne Vatton
irene.vatton@inria.fr

INRIA
655 avenue de I'Europe
38334 Saint Ismier, France

ABSTRACT

HTML has popularized the use of style sheets, and the ad-
vent of XML has stressed the importance of style as a key
area complementing document structure and content. A
number of tools are now available for producing HTML and
XML documents, but very few are addressing style issues.
In this paper we analyze the requirements for style manip-
ulation tools, based on the main features of the CSS lan-
guage. We discuss methods and techniques that meet these
requirements and that can be used to efficiently support web
authors in style sheet manipulation. The discussion is illus-
trated by the recent developments made in the Amaya web
authoring environment.

Categoriesand Subject Descriptors

1.7 [Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages, Stan-
dards

General Terms

Design, Experimentation

Keywords

document authoring, web editing, style languages, CSS

1. INTRODUCTION

In the early days of the web, style was the first document
technology that was developed after HTML. Since that time,
the use of style sheets has become very popular for many
different types of documents. This includes the traditional
HTML page, but also all the documents that were made
possible later by the rise of XML and the many languages
based on it.

Style determine how documents are presented to readers.
Having a strong impact on the perception of web resources,
style is an important component of the web architecture [5].

Permission to make digital or hard copies of all or part of this work for

Separation of presentation from content is an architectural
principle that plays a key role in various facets of the web,
such as accessibility, device independence, ubiquity and mo-
bility.

To address the wide variety of documents and the different
ways they are used on the web, two languages were devel-
oped for specifying style in XML documents, namely CSS
[3] and XSL [2]. Although they have some common fea-
tures (notably many style properties), both languages are
quite different. In CSS, style properties are related directly
to document elements, while in XSL, the formatting pro-
cess first transforms the logical structure of a document into
a presentation-oriented structure, then it associates style
properties to this new structure and finally it formats it.

In this paper we focus on CSS, which is both simpler and
more widely used on the web. While some research has al-
ready been done on the manipulation of XSL in authoring
tools [11], it seems that CSS has received much less atten-
tion from the research community. As Marden and Mun-
son note in [8], “style sheet languages are terribly under-
researched”. Some authors discuss the design and the key
features of style sheet languages (see Hakon Lie’s thesis [6]
for a comprehensive review of languages, or [1] [7] for specific
languages). However, the issue of manipulating style sheets
from a user perspective is almost never addressed in the lit-
erature. Considerable efforts have been spent on tools for
generating and editing XHTML and various types of XML
documents, which have lead to a number of authoring tools.
This is not the case for style sheets. A style language such
as CSS may look simple at the first glance, but every web
developer knows how complex it is to create and maintain a
sophisticated and consistent set of style sheets for an entire
web site.

Creating and editing style sheets is indeed a complex task.
Many document editors for (X)HTML or XML simply ignore
that document authors and designers may wish to design the
style of a document at the same time as the document con-
tent. This is not contradictory to the architectural principle
mentioned above. Although content and style are clearly
separated in different resources using different languages,
it is common practice to manipulate the content and the
structure of a document through (or simultaneously with)
its presentation. That is the basis of WYSIWYG and di-

personal or classroom use is granted without fee provided that copies arerect manipulation, two paradigms widely used in document
not made or distributed for profit or commercial advantage and that copies editing.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
DocEng’ 07, August 28-31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008 ...$5.00.

In this paper, we discuss methods and techniques for ma-
nipulating CSS style sheets. The next section provides an
analysis of the main issues that arise when manipulating

style sheets. It also reviews the tools that are currently
available. Then, the main issues identified are addressed in
dedicated sections, starting with the creation and editing
of style sheets. This is followed by the debugging process:
when something goes wrong with the style of a document,
how to efficiently locate the cause of the problem and fix
it. The last section addresses the distributed nature of style
resources on the web and how local and remote style sheets
that affect the presentation of a document can be handled
consistently. Finally the conclusion summarizes the main
contributions and opens some perspectives.

2. ANALYSS

CSS is a simple language. By writing p{font-size:11pt}
in a style sheet, one can set the character size of all para-
graphs (p elements) in a HTML document. Specifying sim-
ple things is indeed simple. But, in addition to this ba-
sic functionality, CSS also provides several powerful mecha-
nisms. As a matter of fact, adding style rules to an existing
style sheet is not the only task an author may need to per-
form. In this section we review the various aspects of CSS
style sheets and the operations authors usually do.

We use the term author in a rather broad sense. In par-
ticular, we do not make a difference between the person
who creates the content of a document and the person who
specifies its style. Although this traditional separation of
concerns still applies in many cases, including on the web,
we have to recognize that the freedom brought by the web
for publishing documents has led a number of people to play
both roles at various degrees. So, we are interested in meth-
ods and techniques that may be used both by document
authors and graphic designers. Users who are writing a doc-
ument using existing style sheets should be able to change
a few specific style aspects for the current document, with-
out changing the style sheets themselves. Others should also
be able to update a set of style sheets that are not handling
well a particular case that they discover while writing. Some
other users should be able to create from scratch the whole
graphic form for a family of documents, and to make it avail-
able to a community, without writing a real document.

As a consequence, the manipulations an authoring tool
should facilitate concerning style sheets cover a broad range,
which includes creating, editing, debugging, maintaining,
sharing, reusing, publishing, reorganizing, etc.

2.1 |Issuesto beaddressed

Despite its apparent simplicity, CSS has some features
that may be problematic for web authors when manipulating
style sheets. A quick review of its main features may show
where the issues stand.

Style rules are the basic components of CSS style sheets.
A rule is constituted of three parts:

e a selector that selects the document elements that are
concerned by the rule,

e a property (font size, color, margins, etc.),

e a value that is assigned to the property for all selected
elements.

The selector is followed by curly braces that contain the
property and the value, which are separated by a semicolon.
The syntax of a rule is very simple. The selector identifies

the structural context in which the rule must be fired. Its
syntax is simple too (more details are provided in section
4.2). A property is identified by a name. This also is very
simple, but there are many different properties (113 in CSS
2.1) and users often have difficulty to remember them all
with the correct name. Providing help to choose properties
and to generate valid names is something useful.

Depending on the property, values are either a name taken
from a predefined list or a number followed by a unit. Units
are also predefined, and the list of valid units depends on
the property. A tool should help authors to follow these
constraints and to enter a valid value for each property.

Many properties are independent from each other: the
color of characters may be chosen freely whatever the font
of these characters, for instance. The values of some other
properties have to be chosen with some constraints: if the
same color is given to characters and their background (two
separate properties), the text will be unreadable, or hardly
readable if the contrast is too low. There are also sets of
properties whose values have to be chosen consistently to
obtain the desired result. Positioning belongs to that cate-
gory. To get the layout of Figure 1, the width of elements
A, B, and C should be set to fill up the whole width of the
containing element, and their position, top, left, right
properties must be assigned precisely, as well as the margin
property.

A B C
width: 150px; width: auto; width: 150px;
position: absolute; position: absolute; position: absolute;
top: 10px; top: 10px; top: 10px;
left: 10px; left: 170px; right: 10px;

margin-right: 170px;

Figure 1: Positioning three elements

One issue with these inter-related properties is that setting
all of them correctly requires some expertise. Another issue
is that the values of these properties come from rules that
are associated with different elements, and these rules are
usually scattered across the style sheet, often across several
style sheets. When modifying one rule, it is difficult to locate
the other rules that have to be updated accordingly.

Grouping is another interesting aspect of CSS. Rules may
be grouped in different ways:

e by selectors: Several property-value pairs applying to
the same elements may be grouped in a block sharing
the same selector. But a selector may appear several
times in the same style sheet, which makes it difficult
to find all the rules applying to an element.

e by properties: Several related properties may be sub-
sumed by a single shorthand property, which then has
a list of values, one for each of the atomic properties.
For instance, properties font-family, font-style and
font-size may be grouped under the name font. In
that case the property may have up to three values,
e.g. font: times italic 10pt;. This avoids ver-
bosity, but makes it complicated to search a given

atomic property in a style sheet. It also makes it more
difficult to enter a valid value for a shorthand property.

e by style sheets: Style rules and blocks are grouped in
web resources called style sheets. A style sheet may
contain all the rules that apply to a certain type of
document, but a modular approach is also possible.
With this approach, the style of a document type is
specified in multiple style sheets, each one for a differ-
ent aspect, or a different part of the document. Mod-
ular style sheets may be combined in different ways to
easily change the document style. This flexibility has
a downside: when handling the style of a document,
multiple style sheets have to be considered, and on the
web, these style sheets may reside on several remote
servers or on local storage.

Most style sheets are not part of the document, but are
linked to it. A general mechanism is available for all XML
formats: a XML processing instruction of the form
<?xml-stylesheet href="foo.css" type="text/css"7?>
associates the resource identified by href with the document
where it appears. Some languages have their own syntax for
associating style sheets. XHTML uses the link element for
that purpose. In XHTML, the following syntax is equiva-
lent to the PI above: <link href="foo.css" rel="style
sheet" type="text/css"/>. Using both syntaxes, several
style sheets may be linked to a single document.

A style sheet may itself refer to another style sheet, and
thus import style rules from another web resource. This is
achieved with the @import rule. As an example, the state-
ment @import url("bluish.css"); inserts the content of
resource bluish.css at its position. The imported content
may itself contain some @import statements.

Most of the style for a document is specified in separate
style sheets linked to the document. However, several docu-
ment languages such as XHTML or SVG provide means to
embed CSS style in the document itself:

e Any element in the document may have a style at-
tribute that contains a list of properties with their val-
ues. There is no selector: these properties apply to the
element itself and only to it.

e A style element may be present at the beginning of
the document. Like a style sheet, it contains a set of
style rules, possibly organized in blocks. These rules
apply to all elements in the document that match their
selectors.

The external style sheets may have different origins. User
agents (browsers for instance) have their own style sheets
that are used by default, when no other style is available.
Users may instruct their user agents to use their own style
sheets, where they express personal preferences such as font
size, color, font family etc., if the default style offered by the
user agent is not convenient. Web servers have their style
sheets that are shared by multiple documents to provide a
consistent look and to express a graphic identity for the site.
Document authors may wish to specify their own style for a
given document, while keeping some aspects of the site look.

With so many origins for style (agent, user, site, author),
conflicts often arise. For a given element in a document the
same property may be assigned different values by different
style sheets. The mechanism to solve these conflicts is known

as the cascade (hence the name Cascading Style Sheets).
The cascade is a set of rules that determine the priority
between several conflicting style rules. Priority is based on
three factors: origin, specificity of selectors and order of
appearance. The three factors are ordered in the sense that
the specificity is used only if the origin does not solve the
conflict, and order of appearance is used only if origin and
specificity are not sufficient. In addition it is possible to
override the order of the cascade by setting an indicator
!important for a particular style rule.

To take into account the heterogeneity of the web, a style
sheet may contain different sections for different kinds of
devices (screen, projection, hand held, braille, TV, etc.). In
a style sheet, an @media section gathers all style rules that
apply only to a particular kind of device. Similarly, the link
that associates a style sheet with a document may have a
media attribute that indicates that the referred style sheet as
a whole must be used only if the presentation device belongs
to a given class. The @import rule also can specify which
devices are concerned by the imported rules.

As the CSS language may be used for any XML document,
it can be used for compound documents, i.e. documents
that involve different languages to represent different kinds
of content. A typical compound document uses XHTML for
the main structure of the document and its textual parts,
MathML for the mathematical expressions and SVG for the
drawings. Each of these languages may use CSS. The issue
of inheritance of style properties across language boundaries
has then to be addressed. In a XHTML document, if the
font size is set by a CSS rule for the body element, all el-
ements in the document body inherit that font size, unless
another style rule states differently for some elements. For
a mathematical formula inside a paragraph, it will be the
same. As a consequence, the character size of a MathML el-
ement, a fraction for instance, will be determined by a style
rule from a style sheet intended for XHTML documents.

XHTML allows also external resources to be included by
reference, through the object element. When a SVG draw-
ing is included that way, it may inherit some properties from
the surrounding XHTML structure, in the same way as the
fraction in the previous example, but it may also come with
its own style sheets. Some properties are inherited from the
environment, some other are set by style sheets linked to the
SVG resource itself.

To summarize, style information may be internal or ex-
ternal to the document. When it is external, several mech-
anisms (processing instruction, link element, @import rule)
are used to refer to style sheets, which may be located on
different servers or locally. In all these style sheets several
rules may be conflicting. Conflicts are solved by the cas-
cade. On the other hand, some rules should not be consid-
ered, depending on the device used to present a document.
In addition, in compound documents, some properties are
inherited from "foreign” style sheets.

While these mechanisms offer both flexibility and power,
they make the task of an author very complex: when adding
or changing a style rule somewhere it is often not clear how
it will impact the presentation of a document. Conversely,
when some aspect of a document has to be changed, it is
often difficult to locate the rules that have to be modified.
In addition, the number of resources involved, as well as
their distribution, make their management a nightmare in
many situations.

Finally, browser implementation differences are often men-
tioned among the problems style designers have to face with
CSS. While this was certainly an important issue a few years
ago, the situation has much improved. A new version of the
language, CSS 2.1, was recently published to document all
CSS features that are implemented interoperably. In addi-
tion, the latest versions of the most popular browsers have
also fixed a number of discrepancies and provide a good
implementation of CSS 2.1. Choosing this version of the
language is a simple way to achieve interoperability.

Although the issues related to CSS syntax have to be con-
sidered (selector syntax, property names, valid values), it
appears that the most difficult problems an author has to
face are those related to the combinatorial aspects of CSS,
such as the distribution of resources, cascading, media se-
lection, inheritance, etc. After all, CSS is probably not as
simple as it seems to be.

2.2 Stateof theart

Even if literature is not abundant with publications on
these issues, some software tools try to cope with the needs
of CSS authors. In this section, we review the different kinds
of tools that are currently available and the service they
provide.

The most common aid XML editors provide for manipu-
lating style sheets mainly addresses syntax issues. Several
editors (Oxygen, CSSEdit, Style Master) include a CSS val-
idator that detects syntax errors. Some also assist users
in entering source code. Oxygen, for instance, provides an
assistant for entering CSS code. It proposes the valid val-
ues for a property or provides explanations about the use
of a property. CSSEdit automatically completes the syntax,
inserting colon, semicolon and braces where needed. Style
Master and Nvu provide a number of dialog boxes that gen-
erate the CSS syntax for the user when she has selected
properties and values from menus and input areas.

There are also “pure” CSS editors, i.e. tools that handle
only style sheets (not documents) and the CSS language,
such as CSSEdit, Style Master, and JustStyle. Most of them
can edit only one style sheet at a time, which does not help
much when multiple style sheets are linked to a document.
To check the style sheet under construction, users may use
a web browser and see the result on any HTML document
(but not on XML or compound documents, with these ed-
itors). This may help authors to find the relevant rules in
the style sheet when an element is selected in the HTML
document. Some restrictions apply however. For instance,
with CSSEdit, only one block is found, even if several blocks
are concerned, which strongly reduces the advantage of the
mechanism. Conversely, when a selector is clicked in the
style sheet, the corresponding elements are highlighted in
the HTML document, but the tool cannot edit the HTML
document, which serves only as a frozen testbed.

Specialized CSS editors, as well as Nvu or Dreamweaver
which are also HTML editors (but not XML editors), allow
authors to see the actual value of each style property for
any element the user selects in the HTML document. Some
of them can even show the style rule that was applied to
produce this value, but only if it is in the style sheet being
edited or in a local style sheet: they are unable to edit remote
style sheets.

Links play an important role in CSS, to connect style
sheets to documents, to import style sheets within other

style sheets, to associate background images, etc. Surpris-
ingly, none of the CSS editor we have reviewed provide any
help for entering correct URIs for all these links, while typos
are very frequent when typing cryptic addresses. It should
be noted however that Nvu provides some help to link style
sheets to HTML pages (but not to XML or compound doc-
uments).

This review of the available tools clearly shows that only
a small subset of the many issues presented above are ad-
dressed. These tools mainly (or even only, for some of them)
consider issues related to syntax and basic editing. A few
of them are addressing some aspects of debugging. Clearly,
more has to be done to really support web authors when
they are faced with real life issues related to style.

In the following sections, we present methods for helping
authors in style manipulation on the web. This is based
on the experience we have gained in developing Amaya [9],
where these methods have been implemented. Amaya is a
web authoring tool that allows users to create, publish and
update multiple web resources such as XHTML pages, XML
documents, SVG graphics, MathML equations, CSS style
sheets, and compound documents that use a combination of
these languages. Amaya closely follows W3C standards and
produce standard compliant documents. It allows authors to
directly manipulate the structure, content and presentation
of documents, but strictly speaking, it is not a WYSIWYG
editor: it takes advantage of the heterogeneous nature of
the web and allows documents to be presented differently
on different devices. Note that some aspects of style editing
in Amaya are presented in [10]; they are not discussed in
detail here.

3. CREATING AND EDITING

A CSS editing tool should be tightly integrated with a
document authoring tool. With word processors and docu-
ment formatting languages such as TEX, people are used to
manipulate style and content in the same environment. This
is an advantage whatever the task being performed. When
focusing on style, it is very convenient to be able to check
the impact of new style rules on different kinds of struc-
tures. Loading existing HTML or XML documents is not
sufficient. It should be possible to make small changes to
the loaded documents to check how a style sheet behaves
with some particular details of the document structure that
are not readily available in the loaded document. Chang-
ing these details immediately, in the same environment is
clearly more efficient than editing a document separately
and loading it in the style editor. Conversely, when editing
a document (its content and its structure), it is often neces-
sary to tweak the style sheets to cope with a few cases that
were not addressed correctly in the original design of the
style sheets. In this case too, using a unique environment
for editing documents and style is necessary.

3.1 Enteringand testing rules

Obviously, all the features offered by CSS-only editors
should be available in a document editor. The first of them
is assistance in style rule input. In Amaya we have cho-
sen to offer an alternative: authors are free to either type
in CSS syntax directly or to use dialogue boxes that gen-
erate the CSS code. They can enter CSS syntax as plain
text wherever the CSS language is used. At any time during
input, if they need assistance, they can use dialogue boxes

that generate CSS syntax for them at the current position,
which may be in a CSS style sheet, in the style element of
a XHTML or SVG document, or in the value of a style at-
tribute. Each of these dialogue boxes concerns a consistent
set of properties, such as Characters (font-family, font-style,
font-size, text-decoration, letter-spacing, etc.), Colors (color,
background-color, background-image, border-color, border-
width, border-style, etc.), Format (float, clear, display, visi-
bility, position, top, bottom, left, right). Grouping proper-
ties in dialogue boxes helps manipulating related properties
consistently: the Format box, for instance, gathers all prop-
erties that have an impact on positioning. In the Color box,
the colors of the foreground and the background are next to
each other, to clearly show the contrast of the chosen colors.
In the dialogue boxes a different tool is used for entering
the value of each property, both to cope with the type of
value to be entered and to make sure that users enter only
valid values. These tools vary from simple text input areas
to file selectors and color creation palettes (see Figure 2).

€55 Style x

Characters Colors I Euxesl Furmatl

color jj background-image ﬂE}
background-color A:];} background-repeat '_J ﬂ ::] L]
e ety St Z background-position | hd

T bordertop: width lJ style Z| coler l]__‘l
i border-bottomn: width VJ style :j color hd _‘J

B Choose calor X
[borderleft: wj .JM:J
: E Red: =
T borderright; wl r i 0 = Ree o 2 _L‘J
Saturation: |0 = Green: |0 I
[border: wi Ma\us:'—‘ﬂo = E\ua:r—ﬂo - _]__‘J
[~ Apply closes the d Color Name: [#000000

Palette-

N R T |
I | W [

X cancel

Figure 2: The color dialogue box

Rules entered through dialogue boxes are always syntacti-
cally correct, but as users are free to edit any part containing
style information, including syntax generated by dialogue
boxes, validity is not guaranteed. Therefore, modified CSS
rules are checked on some specific events: when the value of a
style attribute has been edited, when the author has made
changes in a style element, when a style sheet is saved, and
whenever the author wants to check the latest changes made
to a style sheet.

When editing a style sheet, the user may decide at any
time to apply this style sheet to some documents, to test
the rules she has just created or modified. In that case,
all documents that are currently loaded and that use the
style sheet, are reformatted and redisplayed according to
the current content of the style sheet. The style sheet is
validated and errors are reported to the user, who can then
check both syntax and semantics of her recent changes. All
error messages can be clicked to go to the corresponding
dubious statement.

It is useless, and even an hindrance, to apply a modified
style sheet too often. Even when a style rule is complete,
it may not make sense to apply it, because it is related to

some other rule that has not been entered or changed yet.
Therefore, the user should decide when the style sheet is
consistent enough to be applied safely.

To help authors test the style sheets they write for dif-
ferent devices, Amaya allows them to select a media type
that is then used for applying style rules. Amaya takes into
account only the rules that are associated with the current
media type. This feature combined with the previous one
(applying the current style sheets to all loaded documents)
has proven very efficient for developing style sheets with
multiple @media sections or with documents using the me-
dia attribute in their links to style sheets.

The fact that Amaya can handle several documents and
several style sheets simultaneously, be they local or remote,
is an advantage. Different documents, presenting different
structures can then be used simultaneously when validating
a style sheet under construction, thus covering more test
cases. Also, when several, inter-related style sheets have to
be modified, editing is facilitated, and consistency is easier
to check.

3.2 Classes

The class attribute from XHTML and some other XML
languages plays a key role in CSS. It is heavily used in selec-
tors to make a distinction between elements that have the
same name but are specialized in different ways, and then
need to be presented differently. To fully take advantage of
this mechanism, it is important for the author of an XHTML
document to know what classes are available for the docu-
ment being edited. For that purpose, Amaya builds a list of
all classes usable in each loaded document. It collects the
values of all class attributes that are carried by elements
in the document, as well as the classes that appear in the
selectors of all style sheets used by the document, includ-
ing the style element. This list is updated whenever new
selectors and new class attributes are created.

The list of available classes is displayed in a dedicated tool
(see Figure 4) that is used to put class attributes on docu-
ment elements. The user selects an element in a document,
clicks a class in the Class tool, and the editor creates a class
attribute on the selected element, assigns it the chosen name
as a value, and redisplays the selected element, taking into
account all style rules that are selected by the new class.

This feature greatly helps authors in using classes in their
documents. This is important for using style sheets more
efficiently, but classes are also heavily used in microformats.
Therefore, this mechanism has also proven to be very useful
for microformats. This is a typical example of the advantage
of editing style sheets and documents in the same environ-
ment.

3.3 Borrowing style

A simple way to develop a style sheet, in the very web
tradition, is to borrow from someone else’s style. Some style
designers copyright their work, but a lot of sites offer style
sheets that are freely available to anyone. If an author finds
on such a web site an attracting style that fits her own needs,
she can copy the relevant style rules. The issue then is to
identify the complete set of rules that produce the desired
effect. Even if it is produced by a single rule, locating the
exact rule that is applied may be tricky. If several rules
concur to produce the effect (see Figure 1), it is much more
complicated. This problem is actually the same as the de-

bugging problem discussed in the next section. The solution
to the debugging problem contributes to make it easier to
borrow style from existing style sheets.

Note that borrowing style is facilitated when the editor
can act as a browser too. In Amaya, authors can comfort-
ably access documents on the web, just by following links,
and they can locate that way documents with the desired
style. Like in any web user agent, the style sheets are down-
loaded at the same time as the document itself and they are
immediately available in the editor. It is then easy to copy
and paste style rules.

4. DEBUGGING STYLE SHEETS

An author may be faced with the debugging problem in
several situations. We have just seen the issue of borrowing
existing style, but it arises also while writing new style rules,
when the result is not exactly what was expected. Basically
the problem is to find what rules are involved in a particular
effect, be it desired (borrowing style) or not (a bug when
writing new rules).

41 Twolevels

This problem may be approached at two levels, i.e. at
the style sheet level or at the rule level, depending on how
style sheets are organized. In a modular design, different
style sheets are used for different concerns. For instance, a
style sheet may set all the colors for a document, another
is in charge of the layout and the third controls characters
(font, style, size, etc.). This typically makes it possible to
substitute the color style sheet by an alternate version, for
changing only the colors consistently, or to adopt a differ-
ent layout independently of colors or characters. But some-
times a monolithic or less structured approach is taken, and
all rules fall in the same style sheet, or the logic of their
distribution in different style sheets does not appear clearly.

In the clean, modular case, approaching the debugging
issue at the style sheet level works well. By removing or
disabling a single style sheet, a user can see if it is the style
sheet she is looking for. Repeating that operation with a
few style sheets allows an author to quickly find the style
sheet of interest. With well designed style sheets, this may
be enough, in particular when borrowing style.

To facilitate this approach, Amaya includes a feature that
allows users to selectively disable or enable the style sheets
associated with a document. Each style sheet that applies
to the document may be enabled/disabled, including the
internal style sheet contained in the style element and the
remote style sheets downloaded through the network.

When identifying a style sheet that way is not enough, or
when there is only one style sheet associated with a docu-
ment, the rule level approach has to be taken. The goal is
then to find a single rule or a limited set of rules, in one
or several style sheets. The process, from the user point of
view, is presented in detail in [10]. It allows the user to select
an element in a document and to see all the style properties,
with their values, that have been assigned to that element.
It also allows the user to find, in a single click, the exact rule
that has assigned each property to this element, as well as
the style sheet it belongs to.

The naive way to apply style sheets to a document consists
in traversing the whole XML structure and, for each element,
checking all selectors in all style sheets to collect the rules
that match this element. Then the cascade is applied to the

collected rules to keep only one rule per property in case of
conflict. While this method is easy and produces the right
result, it does not scale. With multiple, large style sheets,
browsing through all style sheets is a waste of computing
power. In addition, it does not help debugging unless the
origin of each rule applied to each element is recorded, which
is a waste of memory. A more efficient algorithm has to be
used to provide acceptable performances in an interactive
editing environment.

4.2 Algorithmsand data structures

The main issues that have to be addressed arise when

1. formatting and displaying documents: For each ele-
ment of the document structure, the relevant rules
have to be found quickly in the set of style sheets,
before applying them all to the element.

2. editing style sheets: When a style rule has been cre-
ated, deleted or modified in a style sheet, all elements
affected by that rule have to be found before that rule
to be applied to them.

3. debugging style sheets: For a given element in a doc-
ument, all style rules that affect that element have to
be found (see Figure 4).

Issues 1 and 3 are actually the same, as far as style sheets
are concerned: given an element, find all relevant rules. We
call that the direct case of rule application. Issue 2 is the
opposite: given a rule find all affected elements. We call it
the reverse case.

The relationship between elements and rules is defined by
selectors. Basically, the selector of a rule expresses condi-
tions that an element must satisfy to be affected by the rule.
The most general form of selectors is the contextual selector,
which consists of a sequence of simple selectors, separated
by symbols representing structural relationships. These re-
lationships are descendant (represented by a space), child
(represented by >) and immediate sibling (+). A simple se-
lector is the name of an element (or * which matches any
element) optionally followed by one or several conditions on
attributes, each of the form [att] or [att="val"]. Both
forms mean that the element must have an attribute att,
but the second requires in addition that this attribute have
a given value (there are a few options about value compar-
isons, but they can be ignored id we consider only the main
principles of algorithms). As attributes class and id are
often used in selectors, they receive a special notation: .foo
means [class="foo"] and #bar means [id="bar"].

As an example, in a XHTML document, the selector body
div.sect > p[lang="en"] selects all paragraphs having a
language attribute with value english that are children (>)
of a division with an attribute class=sect, the division being
itself a descendant (space) of an element body, whatever the
attributes of body.

Although all simple selectors in this kind of expression fol-
low the same syntax, the rightmost one can be considered
differently from the others. It is the main part of the selec-
tor: the selector above first and foremost selects paragraphs
in english. The other simple selectors in the expression are
additional conditions that are used to refine the selection ac-
cording to the structural context. Also, in a simple selector,
the main part is the element name and the attribute expres-
sions are additional conditions (except when the element

name is the universal selector *). So, a contextual selector
is best parsed a simple selector after the other, right to left,
and each simple selector is best parsed left to right (element
name first, then attributes).

4.2.1 Direct application of rules

Based on this observation, an efficient way of handling the
direct case of rule application is to associate the rules gov-
erned by a selector with the element of its rightmost part
and to consider all the rest of the selector as additional con-
ditions to be tested in the order indicated above. Note that
all conditions of a selector must be met for an element to
be selected, and their order is important. More precisely,
the order of simple selectors (right to left) must be followed,
because it reflects the order in which elements have to be
tested in the document tree, but the order of conditions on
attributes within a simple selector does not matter (in an
XML document, the order of attributes of an element is not
significant).

This principle is followed in Amaya. When a style sheet
is loaded, it is compiled. For each style sheet, the CSS com-
piler creates an element table with an entry for each ele-
ment defined in the DTD of the document, plus an entry
for the universal selector * (which matches any element).
This is illustrated by Figure 3. Selectors are parsed as in-
dicated above, and all the rules they govern are associated
with the entry of the element table corresponding to the el-
ement name of the rightmost part. As an example, all the
rules controlled by the selector above are associated with
entry for element p in the table. The rest of the selector is
stored as a list of conditions attached to the rule and the
specificity of the selector is added to each rule. This integer
is computed according to the CSS specification. It will be
used to determine the priority of rules in the cascade. To
each style rule is also added its !important indicator, as
well as its position in the source style sheet (identification of
the style sheet, plus line number). This will be used when
debugging a style sheet, to quickly display the relevant rule
in its style sheet.

List of style sheets for a document

A style sheet descriptor (element table)

Element1 —Property1l— Rule1 Rule2
list of conditions

Property2— Rule1 Rule2

list of conditions
Element2 —Propertyl— - -.....

Figure 3: Data structures

When compiling a style sheet, all rules controlled by se-
lectors that have the same element name in their rightmost
part are linked to the same entry of the element table, as
they are all candidate for application to the same elements
(their conditions tell whether they must really be applied to
a given element). These rules are sorted by properties: all
rules for the same property are linked together. This speeds
up the process of searching the rule that sets the value of a
given property for a given element instance.

If a selector appears that has already been encountered
in the current style sheet, the same entry of the element
table is selected (same selector implies same rightmost ele-
ment name). If a rule for the same style property is already
present in that entry with a list of conditions corresponding
to the selector, it is replaced by the new one, thus imple-
menting at compile time the step of the cascade correspond-
ing to the order of appearance of rules in a style sheet. The
!important indicator is taken into account to avoid overrid-
ing a more important rule encountered earlier. This is an
efficient way to merge blocks of rules that appear in several
places in a style sheet with the same selector. This saves
time when applying rules or when searching the rules that
were applied to a given element (debugging).

The list of conditions attached to each rule for represent-
ing its selector is ordered as mentioned above. It is simply
a linked list of simple tests, some of them complemented by
a move in the document tree to prepare the next test:

e [s attribute att present on the current element?

e [s attribute att present on the current element and is
its value val?

e [s the parent of the current element named el? Make
it the current element in that case.

e Is there an element named el among the ancestors of
the current element? Make that element the current
element if found.

With that data structure, applying style rules to an ele-
ment in a document is very simple. If there is only one style
sheet, go to the element table entry corresponding to the
element name and follow the linked list of properties linked
from that entry. For each of these properties, check the lists
of conditions of each rule. In a list of conditions, stop as
soon as a test fails. If the end of the list is reached (all con-
ditions are satisfied), keep the corresponding rule and link
it to the property table. This table, unique for the whole
system, collects links to the rules that are candidate for the
current element. It contains an entry for each style property
defined in the CSS language (the whole table is cleared each
time a different element is considered). If a rule is already
linked to the entry for a given property, the new rule replaces
the existing one only if its specificity is higher; otherwise the
new rule is ignored. This implements the specificity step of
the cascade.

When multiple style sheets are associated with a docu-
ment, each one is compiled and the element tables generated
by the CSS compiler are linked in the order or their origin,
the style sheet with the higher priority origin being linked at
the end of that chain (see top of Figure 3). When gathering
the rules to be applied to an element in a document, the
element tables are used as explained above, but in the order
of the chain built according to their origin. This implements

the step of the cascade related to the origin of style sheets:
a higher priority rule replaces a lower priority rule in the
property table.

Finally, when all style sheets have been handled, if the el-
ement has a style attribute, the style rules contained in this
attribute are put in the property table: they have the high-
est priority. When this is done, the property table contains
all the style rules that have to be applied to the element of
interest.

If the goal is to format and display the document, these
rules are immediately applied to the element and the prop-
erty table is cleared, ready for processing the next element.
If the goal is debugging, the property table is displayed in
a human readable form in a small window, called the de-
bugging window (see Figure 4). As the CSS compiler has
associated with each rule the information about the style
sheet it comes from and its position within this style sheet,
the editor can access immediately the actual rule that has
set each style property for the element of interest. The user
can click any of the properties displayed in the debugging
window. This opens up and displays the relevant style sheet,
highlighting the rule that has set the chosen property. The
user can then edit this rule, and she does so directly in the
style sheet, with the full context provided by the surround-
ing rules.

Q) XHTML = . 4
: ST Welcome to Amg

B | | | E] @ Home page

O
EEEEEE Release history 's Edi

W3C's Editor/Browser

\E‘ @ Amaya inthe Press

e Amaya is a Web editor, i.e. a tool |
B dtnbnies = update documents directly on the
O Apply class = are seamlessly integrated with the

access features in a uniform envir
original vision of the Web as a spa

“CSS Style - Amaya 9.55
applied to the element

.descriptionmain
here

i
o

TIOW 1O COmriouee
Open projects

0l |1
0 | ©
A | ¢
- |e
0 | =
o |= |H

increasing number of XML applica

Figure 4: Debugging a style sheet

The property table for an element contains only the prop-
erties that are set by the style rules applied to the element
itself. However, it happens often that an element inherits
style properties from its ancestors in the document struc-
ture, and it may be difficult for a user to figure out what
element in the hierarchy has fired a style rule that affects
the element of interest. Some CSS editors (Dreamweaver
for instance) display all properties for a given element in a
flat manner, and the user has to click each of them to see if
it is inherited and from what element.

The mechanism implemented in Amaya is different: when
the debugging window is open, like in Figure 4, it displays
only the properties that apply to the selected element itself,
not the inherited properties. This list is updated every time
the user selects a different element. To find inherited prop-
erties, users select ancestor elements in the document tree.
Travelling up the document structure is done in a single

keystroke in Amaya. This allows authors to quickly check
which of the ancestors sets a particular property. When
the property appears in the debugging window, clicking it
shows the corresponding rule in its style sheet, as we have
seen above.

Allowing users to retrieve easily a particular style rule has
an impact on the quality of style sheets. When authors are
unable to locate the rule they would like to change, it is
common practice to just add a new rule at the end of the
highest priority style sheet, thus taking advantage of the cas-
cade to override a faulty rule, which remains somewhere in
the style sheets. After several additions of that kind, style
sheets become bloated and unreadable, containing many un-
used rules.

4.2.2 Reverse application of rules

Now, consider the opposite problem: how to find the el-
ements affected by a given style rule of a given style sheet?
Based on the structures built by the CSS compiler, the an-
swer to that question is easy: for each loaded document, go
to the chain of element tables built by the CSS compiler and
look for the one that corresponds to the style sheet of inter-
est (the CSS compiler has associated each table with its style
sheet). If this element table is present for the document, it
means that the rule may affect the document. Otherwise,
the document does not use the style sheet, and can not be
affected. Take the rightmost element name in the selector
of the rule of interest, and traverse the document tree, look-
ing for elements of that name. It is not enough to check
all the conditions of the selector for these elements, as the
cascade may cause other rules, possibly in other style sheets,
to supersede the rule of interest.

Given the structure already built by the compiler, the
simplest way to solve the issue is to build, for each candidate
element, the table of all rules to be applied, in exactly the
same way as for a direct application. Then, it remains to
check whether the rule of interest is in this table or not. This
can be done quickly, because the table contains usually very
few rules: inherited properties are not there.

Finally, the algorithm that builds the property table for a
document element is the key point in editing and debugging
style sheets, as it makes it possible to solve the main issues
in a very efficient way that scales well with the size and the
number of style sheets associated with a document.

5. STYLESHEETSON THE WEB

Many CSS style sheets are shared web resources, exactly
like web pages. Style sheets can be accessed remotely. They
can be linked to several documents. They do not need to re-
side on the same server as the documents that use them.
They can import other style sheets from remote servers.
They may include style properties that use images (proper-
ties background-image and list-style-image), which are
external web resources. Manipulating style sheets requires
manipulating many web resources. More precisely, the main
actions authors should be able to perform on the web are:

e creating a new style sheet locally and publishing it on
a web server,

e downloading a remote style sheet to edit it locally, be-
fore uploading it back,

e copying a remote style sheet and saving it locally or
on another server after editing,

e importing local or remote style sheets in a style sheet,
e linking local or remote images to a style sheet,

e linking local or remote style sheets to a local or remote
document.

To enable all these operations, four basic services are nec-
essary:

1. downloading a remote resource (style sheet, document,
image),

2. uploading a local resource on a remote server,
3. creating links to resources,
4. updating links when linked resources are moved.

Operations 1 and 2 are symmetrical and involve remote
web access. The natural way to interact with resources on
the web is through the http protocol. These two actions are
based respectively on the GET and PUT methods of http.

Operation 3 covers the various links used in or to style
sheets, which have different forms. A style sheet is linked
to a document through a link element (HTML pages) or
a XML processing instruction (XML documents). A style
sheet is linked to another style sheet with the @import rule.
An image is linked to a property in a style sheet using a
url() value. Whatever the syntax used, there is always an
URI. Entering an URI by “hand” is both tedious and error-
prone. A comfortable and safe approach consists in desig-
nating the resource to be linked by clicking it on the screen,
instead of typing its URI. This method has two advantages:

e by requiring the resource to be displayed on the screen,
it allows the user to check that this is really the re-
source she means,

e by avoiding typing and using instead the address of a
resource that was successfully loaded, it ensures that
the URI is always correct.

This approach works well in Amaya, because the tool is
not only an editor for documents and style sheets, but also
a browser, both features being seamlessly integrated. Thus,
authors can access the resource of interest by browsing, using
bookmarks, following links and using search engines. When
the resource is on the screen, they create a link to it simply
by pointing at it. The tool is in charge of generating the
right syntax according to the type of link, and generating the
valid URI (when loading a resource, Amaya keeps its URI;
it can then easily return the URI when the user designates
the resource).

Operation 4 is involved when a resource is published on
the web for the first time (web page, style sheet, image) or
when it is saved to a different location (locally or remotely).
URIs in the various types of links have then to be created
or updated. As an example, like every editor, Amaya offers
a “Save As” command that can be used to save a resource
to a different location (local file or remote web server). A
frequent case is to save a web page to a new location, along
with it associated resources, i.e. the style sheets and im-
ages it uses, but also the style sheets and images linked at
multiple levels from the first level style sheets.

To execute this command, Amaya identifies all the re-
sources involved, simply by following the relevant links re-
cursively from the document. Then, it changes the URI of
all these links, to take into account the new location where
each resource will be saved. Finally, it saves all the resources
with http PUT. When saving a style sheet that imports
other style sheets and that uses images, the same processing
is done.

This capability of working directly on the web is very spe-
cific to Amaya. All the tools we have reviewed require that
(a part of) a web site be copied locally before editing it.
Style sheets are no exceptions. This is not only tedious,
but these local copies practically prevent users from work-
ing cooperatively, thus missing an important feature of the
web.

6. CONCLUSION

In this paper, we have reviewed the major style issues a
web author is faced with and we have presented solutions
that can be offered by an authoring tool. These include
methods for entering style properties, for retrieving the el-
ements affected by a style rule and for retrieving the rules
applied to a given element in a document, even when mul-
tiple style sheets are involved and when inheritance trans-
mits style. We have also proposed solutions to address the
difficulties related to the wide distribution of the multiple
resources that define the style of a document.

The proposed solutions have been implemented in Amaya.
By addressing most of the CSS issues and providing a com-
prehensive web authoring environment, Amaya constitutes
an original tool. As opposed to “pure” CSS editors, it allows
authors to work simultaneously on style, structure and con-
tent and to get a better understanding of the behaviour of
their style sheets on real documents. As opposed to HTML
editors that support style manipulation, it takes advantage
of its double role of browser and editor to work directly on
remote web resources. This makes it easy to share and reuse
style resources. Another significant difference with HTML
editors is that Amaya handles several XML formats, includ-
ing compound documents. As a consequence, the style edit-
ing techniques discussed in this paper are usable not only for
(X)HTML documents, but also for SVG, MathML, generic
XML, and documents that use several of these languages.

Progress on style editing has a consequence for XHTML
documents. Sophisticated CSS style sheets require that the
XHTML pages to which they are associated be very precisely
structured, to fully take advantage of the most complex se-
lectors. Classes combined with “structuring” elements such
as span and div play a key role in many style sheets. If they
are not used correctly in the XHTML page, a number of
style rules do not fire, and the document is poorly presented
or even unreadable. Templates [4] constitute an efficient way
to help authors to structure documents correctly and thus
to fully exploit the features offered by advanced style sheets.
Work on templates will then reinforce work on style.

Although some advances have been reported in this pa-
per, the issue of editing style still requires more efforts. For
instance, these authors are not aware of any technique that
could efficiently help users in building CSS selectors. The
issue of creating a consistent set of style rules for a few ele-
ments to correctly set their relative positions and sizes (see
Figure 1) is not fully addressed. The cascade also needs
more research.

7.

ACKNOWLEDGEMENTS

The authors are grateful to W3C for their continuous sup-
port and contribution to the development and distribution
of Amaya. The whole Amaya community is also acknowl-
edged for their valuable contribution to the evolution of the
software.

8.
[

REFERENCES

G. J. Badros, A. Borning, K. Marriott, and P. Stuckey.
Constraint cascading style sheets for the web. In UIST
’99: Proceedings of the 12th annual ACM symposium
on User interface software and technology, pages
73-82, New York, NY, USA, 1999. ACM Press.

A. Berglund. Extensible stylesheet language (XSL)
version 1.1. W3C Recommendation,
http://www.w3.org/TR/xsl/, 5 December 2006.

B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading
style sheets, level 2. W3C Recommendation,
http://www.w3.org/TR/CSS2/, 12 May 1998.

F. Campoy Flores, V. Quint, and I. Vatton.
Templates, microformats and structured editing. In
Proc. 2006 ACM Symposium on Document
Engineering, DocEng 2006, pages 188-197. ACM
Press, Oct. 2006.

[5]

[6]

[7]

8]

[9]

(10]

(11]

I. Jacobs and N. Walsh. Architecture of the World
Wide Web, Volume One. W3C Recommendation,
http://www.w3.org/ TR /webarch, Dec. 2004.

H. W. Lie. Cascading Style Sheets. Phd thesis, Faculty
of Mathematics and Natural Sciences, University of
Oslo, Feb. 2006.

P. Marden and E. Munson. PSL: An alternate
approach to style sheet languages for the world wide
web. Journal of Universal Computer Science,
4(10):792, 1998.

P. Marden and E. Munson. Today’s style sheet
standards: the great vision blinded. Computer,
32(11):123-125, Nov. 1999.

V. Quint and I. Vatton. Techniques for authoring
complex XML documents. In Proc. 2004 ACM
Symposium on Document Engineering, DocEng 2004,
pages 115-123. ACM Press, Oct. 2004.

V. Quint and I. Vatton. Towards active web clients. In
Proc. 2005 ACM Symposium on Document
Engineering, DocEng 2005, pages 168-176. ACM
Press, Nov. 2005.

L. Villard and N. Layaida. An incremental XSLT
transformation processor for XML document
manipulation. In WWW2002, the 11th International
World Wide Web Conference, pages 474-485. ACM
Press, May 2002.

