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Abstract. With the introduction of Java 5.0 the type system has been
extended by parameterized types, type variables, type terms, and wild-
cards. As a result very complex types can arise. The term

Vector<? extends Vector<AbstractList<Integer>>>

is for example a correct type in Java 5.0.
In this paper we present a type unification algorithm for Java 5.0 type
terms. The algorithm unifies type terms, which are in subtype relation-
ship. For this we define Java 5.0 type terms and its subtyping relation,
formally.
As Java 5.0 allows wildcards as instances of generic types, the subtyping
ordering contains infinite chains. We show that the type unification is
still finitary. We give a type unification algorithm, which calculates the
finite set of general unifiers.

1 Introduction

With the introduction of Java 5.0 [1] the type system has been extended by
parameterized types, type variables, type terms, and wildcards. As a result very
complex types can arise. For example the term

Vector<? extends Vector<AbstractList<Integer>>>

is a correct type in Java 5.0.
Considering all that, it is often rather difficult for a programmer to recognize
whether such a complex type is the correct one for a given method or not.
This has caused us to develop a Java 5.0 type inference system which assists
the programmer by calculating types automatically. This type inference system
allows us, to declare method parameters and local variables without type anno-
tations. The type inference algorithm calculates the appropriate and principle
types.
Following the ideas of [2], we reduce the Java 5.0 type inference problem to a
Java 5.0 type unification problem. In [2] a type inference algorithm for a core SML

[3] bases on Robinson’s unification algorithm [4]. The Java 5.0 type unification



problem is given as: For two type terms θ1, θ2 a substitution is demanded, such
that

σ( θ1 )≤∗ σ( θ2 ),

where ≤∗ is the Java 5.0 subtyping relation.

The type system of Java 5.0 is very similar to the type system of polymorphically
order-sorted types, which is considered for the logical language TEL [5] and for
the functional object–oriented language OBJ–P [6].

In [5] the type unification problem is mentioned as an open problem. This causes
from the property, that in TEL subtype relationships between polymorphic types
having different arities (e.g. List(a) ≤ mytype(a,b)) are allowed, which means
that the subtyping relation contains infinite chains. In Java 5.0 subtype relation-
ships as mytype<a, b>≤∗ Vector<a> are also allowed. This means that there is
a similar problem.

In [7] we solved the type unification problem for a restricted set of type terms.
We considered only type terms without wildcards. This restriction guarantees
that in the subtyping relation there are no infinite chains.

In this paper we extend our algorithm to type terms with wildcards. The means
that the subtyping relation contains infinite chains. In this paper we show, that
the type unification is still finitary. Our type unification algorithm calculates the
finite set of general type unifiers.

This finitary property of the type unification leads to the property of the cor-
responding type inference algorithm, that sometimes more than one typing is
inferred for Java 5.0 methods (cp. [8]).

The paper is organized as follows. In the second section we formally describe
the Java 5.0 type system including its inheritance hierarchy. In section three we
present the type unification algorithm and give some examples. Finally, we close
with a summary and an outlook.

2 Java 5.0 Types

The base of the types are elements of the set of terms TΘ( TV ), which are given

as a set of terms over a finite rank alphabet Θ = Θ
(n)
n∈◆ of class names and a set

of type variables TV . Therefore we denote them as type terms instead of types.

Example 1. Let the following Java 5.0 program be given:

class A<a> implements I<a> { . . . }

class B<a> extends A<a> { . . . }

class C<a extends I<b>,b> { . . . }

interface I<a> { . . . }

interface J<a> { . . . }

class D<a extends B<a> & J<b>, b> { . . . }



The rank alphabet Θ = Θ
(n)
n∈◆ is determined by

Θ(1) = { A, B, I, J } and Θ(2) = { C, D }.

For example A<Integer>, A<B<Boolean>>, and C<A<Object>, Object> are type
terms.

As the type terms are constructed over the class names, we call the class names
in this framework type constructors.
If we consider the Java 5.0 program of Example 1 more accurately, we recognize
that the bounds of the type parameters b in the class C and the bounds of the
type parameter a in the class D are not considered. This leads to the problem
that type terms like C<C<a>, a> are in the term set TΘ( TV ), although they are
not correct in Java 5.0.
The solution of the problem is the extension of the rank alphabet Θ to a type
signature, where the arity of the type constructors is indexed by bounded type
variables. This leads to a restriction in the type term construction, such that the
correct set of type terms is a subset of TΘ( TV ). Additionally the set of correct
type terms is added by some wildcard constructions. We call the set of correct
types set of simple types STypeTS ( BTV ) (Def. 3).
Unfortunately, the definitions of the type signature (Def. 2), the simple types
(Def. 3), and the subtyping ordering (Def. 5) are mutually dependent. This is
caused by the fact, that the restriction of the set of simple types is defined
by bounded type parameters, whose bounds are also simple types. This means
that, for some definitions, we must assume a given set of simple types, without
knowing, how the set of simple types is exactly defined.

Definition 1 (Bounded type variables). Let STypeTS ( BTV ) be a set of
simple types. Then, the set of bounded type variables is an indexed set BTV =
(BTV (ty))ty∈I( STypeTS ( BTV ) ), where each type variable is assigned to an inter-
section of simple types.
I( STypeTS ( BTV ) ) denotes the set of intersections over simple types (cp. Def.
3). In the following we will write a type variable a bounded by the type ty as a|ty.
Type variables which are not bounded can be considered as bounded type variables
by Object.

Example 2. Let the following Java 5.0 class be given.

class BoundedTypeVars<a extends Number> {

<t extends Vector<Integer> & J<a> & I,

r extends Number> void m ( . . . ) { . . . }
}

The set of bounded type variable BTV of the method m is given as BTV (Number) =
{ a, r } and BTV (Vector<Integer>& J<a>& I) = { t }.

Definition 2 (Type signature, type constructor). Let STypeTS ( BTV ) be
a set of simple types. A type signature TS is a pair (STypeTS ( BTV ), TC)
where BTV is an indexed set of bounded type variables and TC is a (BTV )∗–
indexed set of type constructors (class names).



Example 3. Let the Java 5.0 program from Example 1 be given again. Then,
the corresponding indexed set of type constructors is given as TC(a|Object) =
{ A, B, I, J }, TC(a|I<b> b|Object) = { C }, and TC(a|B<a>&J<b> b|Object) = { D }.

In order to define the set of simple types, we have to introduce the implicit
type variables with lower and upper bounds first. Implicite type variables are
used in Java 5.0 during the capture conversion (Def. 4), where the wildcards
are replaced by implicit type variables. Implicit type variables cannot be used
explictly in Java 5.0 programs.
We denote an implicit type variable T with a lower bound ty by ty|T and with

an upper bound ty′ by T |ty
′

.
The following definition of the set of simple types is connected to the corre-
sponding definition in [1], section 4.5.

Definition 3 (Simple types). The set of simple types STypeTS ( BTV ) for a
given type signature (STypeTS ( BTV ), TC) is defined as the smallest set satis-
fying the following conditions:

– For each intersection type ty: BTV (ty) ⊆ STypeTS ( BTV )
– TC() ⊆ STypeTS ( BTV )
– For tyi ∈ STypeTS ( BTV )

∪{ ? }
∪ { ? extends τ | τ ∈ STypeTS ( BTV ) }
∪ { ? super τ | τ ∈ STypeTS ( BTV ) }

and C ∈ TC(a1|b1 ...an|bn ) holds

C<ty1, . . . , tyn> ∈ STypeTS ( BTV )

if after C<ty1, . . . , tyn> subjected to the capture conversion (Def. 4) resulting
in the type C<ty1, . . . , tyn>

1, for each actual type argument tyi holds:

tyi ≤
∗ bi[aj 7→ tyj | 16j 6n],

where ≤∗ is a subtyping ordering (Def. 5).
– The set of implicit type variables with lower or upper bounds belongs to

STypeTS ( BTV )

The set of intersection types over a set of STypeTS ( BTV ) is denoted by:
I( STypeTS ( BTV ) ) = { θ1 & . . .& θn | θi ∈ STypeTS ( BTV ) }

The following example shows the simple type construction, where the arguments
of the type constructors are unbounded, respectively, bounded by Object.

Example 4. Let the Java 5.0 program from Example 1 and the corresponding in-
dexed set of type constructors TC from Example 3 be given again. Let additional
Integer ∈ TC().

1 For non wildcard type arguments the capture conversion ty
i

equals tyi



The terms A<Integer> and A<I<Integer>> are simple types.
From Integer ∈ TC() follows Integer is a simple type. As A ∈ TC(a|Object) with
ty1 = Integer follows, that A<Integer> is a simple type. From this follows as
I ∈ TC(a|Object) with ty1 = I<Integer>, that A<I<Integer>> is also a simple
type.

After the definitions of the capture conversion and the subtyping relation, we
give another example, where the arguments of the type constructors are bounded
and wildcards are used.
In the following we will use ?θ as an abbreviation for the type term “? extends θ”
and ?θ as an abbreviation for the type term “? super θ”.

Before we can define the subtyping relation on simple types, we have to give
the defintion of the capture conversion (cf. [1] §5.1.10). The capture conversion
transforms types with wildcard type arguments to equivalent types, where the
wildcards are replaced by implicit type variables.

Definition 4 (Capture conversion). Let TS = (STypeTS ( BTV ), TC) be a
type signature. Furthermore, let be C ∈ TC(a1|u1

,... ,an|un ) and C<θ1, . . . , θn> ∈
STypeTS ( BTV ). Thus, the capture conversion C<θ1, . . . , θn> of C<θ1, . . . , θn>

is defined as:

– if θi = ? then θi = bi|
ui[aj 7→θj | 16j6n], where bi is a fresh implicit type

variable.
– if θi = ?θ

′
i then θi = bi|

θ′

i & ui[aj 7→θj | 16j6n], where bi is a fresh implicit type
variable with upper bound θ′i &ui[aj 7→ θj | 16j 6n]).

– if θi = ?θ′i then θi =θ′

i
|bi|

ui[aj 7→θj | 16j6n], where bi is a fresh implicit type

variable with lower bound θ′i and upper bound ui[aj 7→ θj | 16j 6n]).
– otherwise θi = θi

The capture conversion of C<θ1, . . . , θn> is denoted by CC( C<θ1, . . . , θn> ).

Example 5. Let the indexed set of type constructors TC from Example 3 be
given again. Then the following holds

CC( A<? extends Integer> ) = A<X|Integer>, as A ∈ TC(a|Object),
CC( C<? extends A<a>, a> ) = C<Y|A<a>&I<a>, a>, as C ∈ TC(a|I<b> b|Object),

CC( B<? super Integer> ) = B<Integer|Z|
Object>, as B ∈ TC(a|Object).

The inheritance hierarchy consists of two different relations: The “extends re-
lation” (in sign < ) is explicitly defined in Java 5.0 programs by the extends,
and the implements declarations, respectively. The “subtyping relation” (cp. [1],
section 4.10) is built as the reflexive, transitive, and instantiating closure of the
extends relation.

Definition 5 (Subtyping relation ≤∗ on STypeTS ( BTV )). Let TS =
(STypeTS ( BTV ), TC) be a type signature of a given Java 5.0 program and <

the corresponding extends relation. The subtyping relation ≤∗ is given as the
reflexive and transitive closure of the smallest relation satisfying the following
conditions:



– if θ < θ′ then θ≤∗ θ′.
– if θ1 ≤

∗ θ2 then σ1( θ1 )≤∗ σ2( θ2 ) for all substitutions σ1, σ2 : BTV →
STypeTS ( BTV ), where for each type variable a of θ2 holds σ1( a ) = σ2( a )
(soundness condition).

– a≤∗ θi for a ∈ BTV (θ1&...&θn) and 16 i6n

– It holds C<θ1, . . . , θn>≤
∗ C<θ′1, . . . , θ′n> if for each θi and θ′i, respectively,

one of the following conditions is valid:
• θi = ?θi, θ′i = ?θ

′

i and θi ≤
∗ θ

′

i.

• θi = ?θi, θ′i = ?θ
′

i and θ
′

i ≤
∗ θi.

• θi, θ
′
i ∈ STypeTS ( BTV ) and θi = θ′i

• θ′i = ?θi

• θ′i = ?θi

(cp. [1] §4.5.1.1 type argument containment)
– Let C<θ1, . . . , θn> be the capture conversions of C<θ1, . . . , θn> and

C<θ1, . . . , θn>≤
∗ C<θ′1, . . . , θ′n> then holds C<θ1, . . . , θn>≤

∗ C<θ′1, . . . , θ′n>.
– For an intersection type ty = θ1 & . . .& θn holds ty≤∗ θi for any 16 i6n.
– T |(θ1&...&θn) ≤∗ θi for any 16 i6n.
– θ≤∗

θ|T

It is surprising that the condition for σ1 and σ2 in the second item is not
σ1( a )≤∗ σ2( a ), but σ1( a ) = σ2( a ). This is necessary to get a sound type
system. This property is the reason for the introduction of wildcards in Java 5.0

(cp. [1], §5.1.10).
The next example illustrates the subtyping definition.

Example 6. Let the Java 5.0 program from Example 1 be given again. Then the
following relationships hold:

– A<a>≤∗ I<a>, as A<a>< I<a>
– A<Integer>≤∗ I<Integer>, where σ1 = [a 7→ Integer] = σ2

– A<Integer>≤∗ I<? extends Object>, as Integer≤∗ Object
– A<Object>≤∗ I<? super Integer>, as Integer≤∗ Object

Finally, we give a further example for the construction of simple types, where
the capture conversions and the subtyping relation are necessary.

Example 7. Let the type signature (STypeTS ( BTV ), TC) from Example 3 be
given, which is derived from the Java 5.0 program of Example 1.

1. If we extend the Java 5.0 program by the class declaration

class BJ<a> extends B<BJ<a>> implements J<a> { . . . }

then the type D<BJ<Integer>, Integer> is element of STypeTS ( BTV ). As
D ∈ TC(a|B<a>&J<b> b|Object) the following must be valid:

BJ<Integer>≤∗ B<a>[a 7→ BJ<Integer>, b 7→ Integer] (= B<BJ<Integer>>),

BJ<Integer>≤∗ J<b>[a 7→ BJ<Integer>, b 7→ Integer] (= J<Integer>),

and

Integer≤∗ Object[a 7→ BJ<Integer>, b 7→ Integer] (= Object).

This follows, as BJ<a>≤∗ B<BJ<a>> and BJ<a>≤∗ J<a>.



2. The type C<? extends A<a>, a> is a simple type. As C ∈ TC(a|I<b> b|Object) and
CC( C<? extends A<a>, a> ) = C<X|A<a>&I<a>, a> the following must be valid:

X|A<a>&I<a>≤∗ I<b>[a 7→ X|A<a>&I<a>, b 7→ a](= I<a>)

and
a≤∗ Object[a 7→ X|A<a>&I<a>, b 7→ a](= Object).

This follows directly from the subtyping definition.
3. The given type term D<A<Integer>, Integer> is no simple type. As D ∈

TC(a|B<a>&J<b> b|Object) it would be necessary that A<Integer> is a subtype of
B<A<Integer>> as well as of J<Integer>.
From the declaration (cp. Example 1) it is obvious that A<Integer> is neither
a subtype of B<A<Integer>> nor a subtype of J<Integer>.

As we consider elements of the extends relation, like BJ<c>< B<BJ<c>>, we rec-
ognize that there are elements of the extends relation, where the sub-terms of
a type term are not variables. As elements like this must be handled especially
during the unification (adapt rules, fig. 3), we declare a further ordering on the
set of type terms which we call the finite closure of the extends relation.

Definition 6 (Finite closure of < ). The finite closure FC( < ) is the re-
flexive and transitive closure of pairs in the subtyping relation ≤∗ with
C( a1 . . . an )≤∗ D( θ1, . . . , θm ), where the ai are type variables and the θi are
type terms.
If a set of bounded type variables BTV is given, the finite closure FC( < ) is
extended to FC( < , BTV ), by a|θ ≤

∗ a|θ for a|θ ∈ BTV .

Lemma 1. The finite closure FC( < ) is finite.

Now we give a further example to illustrate the definition of the subtyping rela-
tion and the finite closure.

Example 8. Let the following Java 5.0 program be given.

abstract class AbstractList<a> implements List<a> { . . . }

class Vector<a> extends AbstractList<a> { . . . }

class Matrix<a> extends Vector<Vector<a>> { . . . }

Following the soundness condition of the Java 5.0 type system we get
Vector<Vector<a>> 6≤∗ Vector<List<a>>,

but
Vector<Vector<a>>≤∗ Vector<? extends List<a>>.

The finite closure FC( < ) is given as the reflexive and transitive closure of
{ Vector<a>≤∗ AbstractList<a>≤∗ List<a>

Matrix<a>≤∗ Vector<Vector<a>>

≤∗ AbstractList<Vector<a>>

≤∗ List<Vector<a>> }.

Remark 1. The type system of polymorphic order-sorted types, which is consid-
ered for a logical language TEL [5] and for a functional object–oriented language
OBJ–P [9], is very similar to the Java 5.0 type system.



3 Type Unification

In this section we consider the type unification problem of Java 5.0 type terms.
The type unification problem is given as: For two type terms θ1, θ2 a substitution
is demanded, such that

σ( θ1 )≤∗ σ( θ2 ).

The algorithm solving the type unification problem is an important basis of the
Java 5.0 type inference algorithm.
In this section we will first present an overview of similar type unification prob-
lems. In the next part we will present the algorithm for the solution of the
Java 5.0 type unification problem.

3.1 Overview

In the last section we assert, that the type system of Java 5.0 can be considered
as polymorphic order-sorted types. Besides our functional language OBJ–P [9] for
example in the logical languages TEL [5] and PROTOS-L [10] polymorphic order-
sorted types are used. The logical language TEL allows subtype relationships
between polymorphic types having different arities (e.g. List(a) ≤ myLi(a,b)).
This implies that the subtyping relation contains infinite chains. The type sys-
tem of PROTOS-L was derived from TEL by disallowing any explicite subtype
relationship between polymorphic type constructors.
The given type inference algorithm and type unification algorithm, respectively,
in [5] are incomplete. They are even incomplete for the restricted type system
of [10].
In [5] the type unification problem of TEL without restrictions on the polymor-
phic type constructors is mentioned as an open problem.
If we compare the type system of TEL to the Java 5.0 type system, we assert that
these type systems are very similar. The Java 5.0 type system restricted to simple
types without parameter bounds (but including the wildcard constructions) has
the same properties considering type unification. The only difference is, that in
TEL the number of arguments of a supertype type can be greater, whereas in
Java 5.0 the number of arguments of a subtype can be greater. This means that
in TEL inifinite chains has a lower bound and in Java 5.0 an upper bound. Let
us consider the following example: In TEL for List(a) ≤ myLi(a,b) it holds:

List(a) ≤ myLi(a,List(a)) ≤ myLi(a,myLi(a,List(a))) ≤ . . .

In contrast in Java 5.0 for myLi<b, a> < List<a> it holds:

. . . ≤∗ myLi<?myLi<?List<a>, a>, a>≤
∗ myLi<?List<a>, a>≤

∗ List<a>

The open type unification problem of [5] is caused by these infinite chains. We
will present a solution for the open problem. The type unification problem is not
longer unitary, but finitary, which means that there is more than one general
unifier, but the number of general unifiers is finite.
Our type unification algorithm bases on the algorithm by A. Martelli and U. Mon-
tanari [11] solving the original untyped unification problem. There is another



unification algorithm in [4] which also solves the untyped unification problem.
This algorithm is the basis of the ML type inference algorithm [12, 2].

3.2 Type unification algorithm

The basis of the type inference algorithm is the type unification. As said before,
the type unification problem is given as: For two type terms θ1, θ2 a substitution
is demanded, such that σ( θ1 )≤∗ σ( θ2 ). σ is called an unifier of θ1 and θ2. In
the following we denote θ ⋖ θ′ for two type terms, which should be type unified.
As said before, our type unification algorithm is based on the unification algo-
rithm by Martelli and Montanari [11]. The main difference is, that in the original
unification an unifier is demanded, such that σ( θ1 ) = σ( θ2 ). This means that a
pair a

.
= θ determines that the unifier substitutes a by the term θ. In contrast a

pair a⋖θ and θ⋖a, respectively, leads to multiple correct substitutions. All type
terms smaller than θ and greater than θ, respectively, are correct substitutions
for a. This is the reason, that there are multiple unifiers.
During the unification algorithm ⋖ is replaced by ⋖? and

.
=, respectively. θ ⋖? θ′

means that the two sub-terms θ and θ′ of type terms should be unified, such that
σ( θ ) is a subtype of σ( θ′ ), which are allowed as arguments in type terms, as
defined in the fourth item of the subtyping definition (def. 5). θ

.
= θ′ means that

the two type terms should be unified, such that σ( θ ) = σ( θ′ ).
Now, we give the type unification algorithm.

1. Repeated application of the reduce rules (fig. 1), the erase rules and the swap
rule (fig. 2), and the adapt rules (fig. 3).

2. For each pair a⋖θ and a ⋖? θ, respectively, for all subtypes θ of θ, constructed
by pattern–matching with elements from FC( ≤∗ , BTV ), pairs a

.
= θ are

built.
3. For each pair θ ⋖ a and θ ⋖? a, respectively, for all supertypes θ′ of θ, con-

structed by pattern–matching with elements from FC( ≤∗ , BTV ), pairs
a

.
= θ′ are built.

4. The cartesian product of the sets from step 2 and 3 is built.
5. Application of the following subst rule

(subst)
Eq′ ∪ { a

.
= θ }

Eq′[a 7→ θ] ∪ { a
.
= θ }

a occurs in Eq′ but not in θ .

6. For all changed sets of type terms start again with step 1.
7. Summerize all results.

Now, we will give an explaination for the rules in fig. 1, 2, and 3. There is a
function grArg. The function determines the supertypes of sub-terms, which
are allowed as arguments in type terms. Now, we consider the rules explicitly:

reduce rules: The rules reduceUp, reduceUpLow, and reduceLow erase leading
wildcards, such that the reduction can be continued.



(reduceUp)
Eq ∪ { θ ⋖

?θ′ }

Eq ∪ { θ ⋖ θ′ }
(reduceUpLow)

Eq ∪ { ?θ ⋖
?θ′ }

Eq ∪ { θ ⋖ θ′ }

(reduceLow)
Eq ∪ { ?θ ⋖ θ′ }

Eq ∪ { θ ⋖ θ′ }

(reduce1)
Eq ∪ {C<θ1, . . . , θn> ⋖ D<θ′

1, . . . , θ′

n> }

Eq ∪ { θπ( 1 ) ⋖? θ′

1, . . . , θπ( n ) ⋖? θ′

n }
where
– C<a1, . . . , an>≤

∗ D<aπ( 1 ), . . . , aπ( n )>

– { a1, . . . , an } ⊆ BTV

– π is a permutation

(reduceExt)
Eq ∪ {X<θ1, . . . , θn>⋖? ?Y <θ′

1, . . . , θ′

n> }

Eq ∪ { θπ( 1 ) ⋖? θ′

1, . . . , θπ( n ) ⋖? θ′

n }
where
– ?Y <aπ( 1 ), . . . , aπ( n )> ∈ grArg( X<a1, . . . , an> )
– { a1, . . . , an } ⊆ BTV

– π is a permutation

(reduceSup)
Eq ∪ {X<θ1, . . . , θn>⋖?

?Y <θ′

1, . . . , θ′

n> }

Eq ∪ { θ′

1 ⋖? θπ( 1 ), . . . , θ′

n ⋖? θπ( n ) }
where

– ?Y <aπ( 1 ), . . . , aπ( n )> ∈ grArg( X<a1, . . . , an> )
– { a1, . . . , an } ⊆ BTV

– π is a permutation

(reduceEq)
Eq ∪ {X<θ1, . . . , θn>⋖? X<θ′

1, . . . , θ′

n> }

Eq ∪ { θπ( 1 )
.
= θ′

1, . . . , θπ( n )
.
= θ′

n }

(reduce2)
Eq ∪ {C<θ1, . . . , θn>

.
= C<θ′

1, . . . , θ′

n> }

Eq ∪ { θ1
.
= θ′

1, . . . , θn

.
= θ′

n }

Fig. 1. Java 5.0 type unification reduce rules with wildcards

The reduce1 rule follows from the construction of the subtyping relation ≤∗ ,
where from C<a1, . . . , an><D<aπ( 1 ), . . . , aπ( n )> follows C<θ1, . . . , θn>≤

∗

D<θ′1, . . . , θ′n> if and only if θ′i ∈ grArg( θπ( i ) ) for 16 i6n.

The reduceExt and the reduceSup rules are the corresponding rules to the
reduce1 rule for sub-terms of type terms.



(erase1)
Eq ∪ { θ ⋖ θ′ }

Eq
θ≤∗ θ′ (erase2)

Eq ∪ { θ ⋖? θ′ }

Eq
θ′ ∈ grArg( θ )

(erase3)
Eq ∪ { θ

.
= θ′ }

Eq
θ = θ′ (swap)

Eq ∪ { θ
.
= a }

Eq ∪ { a
.
= θ }

θ 6∈ BTV, a ∈ BTV

Fig. 2. Java 5.0 type unification rules with wildcards

(adapt)
Eq ∪ {D<θ1, . . . , θn> ⋖ D′<θ′

1, . . . , θ′

m> }

Eq ∪ {D′<θ
′

1, . . . , θ
′

m>[ai 7→ CC( θi ) | 16 i6n] ⋖ D′<θ′

1, . . . , θ′

m> }

where there are θ
′

1, . . . , θ
′

m with

– (D<a1, . . . , an>≤
∗ D′<θ

′

1, . . . , θ
′

m>) ∈ FC( < )

(adaptExt)
Eq ∪ {D<θ1, . . . , θn>⋖? ?D

′<θ′

1, . . . , θ′

m> }

Eq ∪ {D′<θ
′

1, . . . , θ
′

m>[ai 7→ CC( θi ) | 16 i6n] ⋖? ?D
′<θ′

1, . . . , θ′

m> }

where there are θ
′

1, . . . , θ
′

m with

– ?D
′<θ

′

1, . . . , θ
′

m>) ∈ grArg( D<a1, . . . , an> )

(adaptSup)
Eq ∪ {D′<θ′

1, . . . , θ′

m>⋖?
?D<θ1, . . . , θn> }

Eq ∪ {D′<θ
′

1, . . . , θ
′

m>[ai 7→ CC( θi ) | 16 i6n] ⋖? ?D
′<θ′

1, . . . , θ′

m> }

where there are θ
′

1, . . . , θ
′

m with

– ?D<a1, . . . , an> ∈ grArg( D′<θ
′

1, . . . , θ
′

m> )

Fig. 3. Java 5.0 type unification adapt rules

The reduceEq and the reduce2 rule ensures, that sub-terms must be equal,
if there are no wildcards (soundness condition of the Java 5.0 type system).

erase rules: The erase rules erase type term pairs, which are in the respective
relationship.

swap rule: The swap rule swaps type terms pairs, such that type variables are
mapped to type terms, not vice versa.

adapt rules: The adapt rules adapts type term pairs, which are built by class
declarations like

class C<a1, . . . , an> extends D<D1< . . . >, . . . , Dm< . . . >>.

The smaller type is replaced by a type term, which has the same outermost
type name as the greater type. Its sub-terms are determined by the finite
closure. The instantiations are maintained.



The adaptExt and adaptSup rule are the corresponding rules to the adapt
rule for sub-terms of type terms.

Now we give an example for the type unification algorithm.

Example 9. In this example we use the standard Java 5.0 types Number, Integer,
Vector, and Stack. It holds Integer< Number and Stack<a>< Vector<a>.
As a start configuration we use
{ (Stack<a> ⋖ Vector<?Number>), (AbstractList<Integer> ⋖ List<a>) }.

In step 1 the reduce1 rule is applied twice: { a⋖? ?Number, Integer⋖? a }

With the second and the third step we receive in step four:
{ { a

.
= ?Number, a

.
= Integer }, { a

.
= ?Number, a

.
= ?Number },

{ a
.
= ?Number, a

.
= ?Integer }, { a

.
= ?Number, a

.
= ?Integer },

{ a
.
= Number, a

.
= Integer }, { a

.
= Number, a

.
= ?Number },

{ a
.
= Number, a

.
= ?Integer }, { a

.
= Number, a

.
= ?Integer },

{ a
.
= ?Integer, a

.
= Integer }, { a

.
= ?Integer, a

.
= ?Number },

{ a
.
= ?Integer, a

.
= ?Integer }, { a

.
= ?Integer, a

.
= ?Integer },

{ a
.
= Integer, a

.
= Integer }, { a

.
= Integer, a

.
= ?Number },

{ a
.
= Integer, a

.
= ?Integer }{ a

.
= Integer, a

.
= ?Integer } }

In the fifth step the rule subst is applied:
{ { Integer

.
= ?Number, a

.
= Integer }, { ?Number

.
= ?Number, a

.
= ?Number },

{ ?Integer
.
= ?Number, a

.
= ?Integer }, {

?Integer
.
= ?Number, a

.
= ?Integer },

{ Integer
.
= Number, a

.
= Integer }, { ?Number

.
= Number, a

.
= ?Number },

{ ?Integer
.
= Number, a

.
= ?Integer }, {

?Integer
.
= Number, a

.
= ?Integer },

{ Integer
.
= ?Integer, a

.
= Integer }, { ?Number

.
= ?Integer, a

.
= ?Number },

{ ?Integer
.
= ?Integer, a

.
= ?Integer }, {

?Integer
.
= ?Integer, a

.
= ?Integer },

{ Integer
.
= Integer, a

.
= Integer }, { ?Number

.
= Integer, a

.
= ?Number },

{ ?Integer
.
= Integer, a

.
= ?Integer }{

?Integer
.
= Integer, a

.
= ?Integer } }

The underlined sets of type term pairs lead to unifiers.
Now we have to continue with the first step (step 6). With the application of
the erase3 rule and step 7, we get

Uni = { { a 7→ ?Number }, { a 7→ ?Integer }, { a 7→ Integer } }.

The following theorem shows, that the type unification problem is solved by the
type unification algorithm.

Theorem 1. The type unification algorithm determines exactly all general type
unifiers for a given set of type term pairs. This means that the algorithm is sound
and complete.

As step 2 and 3 of the type unification algorithm are the only possibilty, where
the number of unifiers are multiplied, we can according to lemma 1 and theorem
1 conclude as followed.

Corollary 1 (Finitary). The type unification of Java 5.0 type terms with wild-
cards is finitary.



Remark 2. If we consider infinite chains caused by pairs in the extends relation,
where the number of type variables in the subtype is greater than in the super-
type (cp. section 3.1), we see that all infinite subtypes are instances of a finite
number of subtypes. This means that for a ⋖ ty, where a is a type variable and
ty is an arbitrary type, there is an finite number of general unifiers, such that
all other unifiers are instances of them. For example for { x ⋖ List<a> } with
myLi<b, a>< List<a> there is one general unifier x 7→ myLi<b, a>. For all other
unifiers there are substitutions σ such that x 7→ σ( myLi<b, a> ).

Corollary 1 means that the open problem of [5] is solved by our type unification
algorithm.

4 Conclusion and Outlook

In this paper we presented an unification algorithm, which solves the type uni-
fication problem of Java 5.0 type terms with wildcards. Although the Java 5.0

subtyping ordering contains infinite chains, we showed that the type unification
is finitary. This means that we solved the open problem from [5].
The Java 5.0 type unification is the base of the Java 5.0 type inference, as the
usual unification is the base of type inference in functional programming lan-
guages.
We will extend our Java 5.0 type inference implementation [8] without wildcards
by wildcards, which means that we have to substitute the Java 5.0 type unifica-
tion algorithm without wildcards [7] by the new unification algorithm presented
in this paper.
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