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Abstract

Matrix computation algorithms often exhibit depen-

dencies between neighboring elements inside loop nests

such that the frontier between computed elements and

those to be computed wanders in form of a ‘wave’

through the matrix. Macro-pipelining techniques can

achieve an efficient parallelization of such algorithms

by overlapping communication and computation. Usu-

ally these techniques are limited to situations where all

the data to be processed fits into main memory, whereas

for larger data the I/O usage pattern for external stor-

age requires special attention. The work [5] presented

a first extension of the wavefront framework to these

so-called out-of-core problems. The present paper pro-

poses a redesign of their algorithm that minimizes both

overhead and perturbations coming from communica-

tions. To tackle the issue of non-contiguous I/O, we

also propose an optimized data layout. These two major

modifications of the original algorithm eventually allow

us to present a third improvement as our implementa-

tion shortens the transition phase between two consecu-

tive iterations of the wavefront algorithm. Experiments

performed with the PARXXL library show that we can

significantly reduce the time lost during inefficient I/O

operations and thus obtain faster computations.

1 Introduction

Macro-pipelining methods arose in the context of

parallel distributed memory computation with the goal

to improve application performance and memory capac-

ity, while still mastering the overhead due to commu-

nication. Unfortunately, classical improvement strate-

gies for parallelization such as the choice of a good data

distribution and the optimization of the communication
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layer to the lowest latency possible often do not show

the desired speedups because of dependencies between

computations and communications.

The two main ideas of macro-pipelining is to inte-

grate the data flow dependencies into the algorithm de-

sign and to use asynchronous communications. Thereby,

they allow for an overlap of computation and commu-

nication by reordering loops [8] and adding pipeline

loops. These techniques can be used for several applica-

tions with wavefront computations like the ADI [9, 12],

Gauss-Seidel [1], SOR [11], or Sweep3D [7, 16] algo-

rithms.

For these techniques an immediate access to the data

is crucial, but more and more applications express the

need of computation on very large data sets, data much

larger than what a conventional machine may store in

main memory. Such computations then are strongly

I/O bound because data must continuously be read, pro-

cessed and written back to an external storage device,

usually disk. They are referred to as out-of-core com-

putations for which data is required to be loaded in a

block-by-block pattern, where the block size has to be

chosen so that the storage device access is improved.

But even for the best block size, I/O may still be pretty

slow because of a particular access pattern that an im-

plementation might issue. Consider for instance data

that is loaded with an inadequate pattern with respect

to an I/O prefetching policy at system level, which usu-

ally expects data to be loaded in row-major order. Then

each data block is fetched separately and the latency of

the disk device dominates the I/O times. If on the other

hand the data is loaded in the same order as the system

fetches the blocks, the I/O times are only limited by the

bandwidth of the device, and thus generally orders of

magnitude faster.

A generic out-of-core wavefront algorithm in which

communications and computations are overlapped by

I/O have been proposed in [5] targeting distributed plat-

forms. The original strategy using three different mem-
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ory blocks in a cyclic way allows the overlap while sat-

urating the disk resource. The distributed-memory im-

plementation of such combination of macro-pipelining

and out-of-core computing techniques allows to handle

very large data but also shows several limitations that

we propose to address in the present work. Indeed part

of the performance study of [5] investigates the origins

of the overhead of the implementation with regard to

a simple read/write of the data. For the most favor-

able block size, the overhead can be decomposed into

three equivalent parts. One third is induced by the non-

contiguous read of a specific part of the data, another

third comes from communication costs between neigh-

bors while loading the pipeline and the final third reflects

the perturbations induced by the asynchronous commu-

nications in the steady-state phase of the pipeline.

In this paper we propose to redesign the algorithm

of [5] in order to reduce the synchronization overhead

and address the aforementioned issues. For a simpli-

fication of the arguments and the implementation, we

will describe our algorithms in terms of shared-memory.

This redesign will allow us to minimize both overhead

and perturbations coming from communications. To

tackle the issue of non-contiguous I/O, we also pro-

pose an optimized data layout. These two major mod-

ifications of the original algorithm eventually allow us

to present a third improvement as our implementation

shortens the transition phase between two consecutive

iterations of the wavefront algorithm.

In Section 2, we summarize existing related work.

In Section 3, we describe the application that we use

as an illustration of our algorithm design modifications.

Section 4 details our optimized data layout while Sec-

tion 5 addresses communication and synchronization is-

sues. Section 6 shows experimental results for the opti-

mized layout and the Livermore loop 23 on a Grid’50001

node. We conclude and present some future work in Sec-

tion 7.

2 Related Work

The work presented in this paper is related to several

research fields in high performance computing. First

it considers a specific class of parallel algorithms that

use macro-pipelining techniques to exhibit parallelism

in matrix computations. Models and implementations of

such algorithms have been proposed both for distributed

memory [1, 7, 9, 11, 12, 16] and shared memory ma-

chines [2]. But these works focus on data that fit into

1https://www.grid5000.fr

memory. The present work addresses the issue of out-

of-core computation in which the size of the data needed

to perform a given computation exceeds the memory ca-

pacity of the computing platform. To efficiently handle

such large data, two approaches can be followed. A sys-

tem approach will modify the virtual memory manager

of the operating system [4] or act on the file system [3] to

reduce the impact of loading data from secondary stor-

age devices.

In [15] the authors propose a programming frame-

work to ease the implementation of processing pipelines

on out-of-core data. But the most connected work is [5]

in which an implementation of a pipeline algorithm

on out-of-core data is proposed. It relies on an origi-

nal strategy using several memory blocks accessed in a

cyclic way to overlap computation, communication, and

I/O and thus achieve a saturation of the disk resource

which is the bottleneck. This work targets distributed

memory clusters.

The originality of the present work with regard to [5]

is twofold: First, we introduce an optimized data lay-

out to decrease the time needed to load data from

disk. This kind of technique has been successfully used

in [13, 14, 17]. Then, we relax the synchronization con-

straints between the processors to improve the commu-

nication/computation overlap.

Another difference from previous experimental work

in this context is that our implementation does not use

raw file-I/O (POSIX read/write) to access the ex-

ternal storage device, but the performing file-mapping

facilities (mmap) in combination with the normalized

memory access advisory interface (posix_madvise).

Portable and efficient access to these system features is

provided through the PARXXL library [6]. PARXXL

handles data through chunks. These objects indirectly

represent the data which may be given as disk files, stack

memory or POSIX’ shared segments. A chunk then

controls when, how and how much data is mapped into

the address space of the process and provides means to

access this data in RAM.

3 The Target Application

We applied our approach to a wavefront algorithm,

the Livermore loop 23 [10], which corresponds to the

computation of an implicit hydrodynamics kernel. This

algorithm is one of the Livermore loops which is part

of the LinPack benchmark collection. This is one of

the benchmarks used by the TOP500 to classify the 500

most powerful computers in the world. This algorithm is

applied on every element of a 2D-matrix with a depen-
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dency to four neighbors: North, South, East and West.

The algorithm is then applied again until convergence is

reached, which typically occurs after several dozens of

iterations.

The left part of Figure 1 presents the pseudo-code of

the Livermore loop 23 for a single iteration while the

right part of this figure shows the steps of the update of

a single element of the data matrix. Elements of five co-

efficient matrices (zb, zu, zv, zr and zz), denoted by

white rectangles labeled by matrix name and row, col-

umn indices, are needed by the computation. Four of

them are multiplied (1) by the neighbors of the currently

computed element. Two neighbors (North and West, in

light gray) have already been updated and the other two

(South and East, in dark gray) will be updated by further

iterations. The results are then summed (2) with the fifth

coefficient and the current element value is subtracted

(3). This result is eventually multiplied by a constant (4)

before being added to the current element (5).

The algorithm of the Livermore loop 23 is similar

to most wavefront algorithms, as it shows data depen-

dencies in the four directions. This allows the use of

a pipeline-aware slicing of the data to achieve parallel

computations. Still, this algorithm has its own speci-

ficity as it does not only rely on a single data matrix, but

also on five coefficient matrices. This means that for a

specific data matrix size, the total data memory footprint

is actually six times bigger. Consequently data matrices

handled in this paper are in-core as they fit into mem-

ory but applying this particular algorithm on such data

remains an out-of-core computation because of the co-

efficient matrices.

4 An Optimized Data Layout

In this section we propose an optimized layout de-

signed to improve I/O operations relying on a classic

data distribution. Figure 2 shows what corresponds to

the different notations used in this paper to describe the

Livermore loop 23 algorithm when data are distributed

following a row-major distribution on a ring of P pro-

cessors. Each processor owns M/P rows of the data.

Each row contains N elements. In case of an out-of-

core data, this (M/P ) × N block is stored on disk.

The right part of Figure 2 describes which part of the

(M/P ) × N block of data stored on disk is actually

loaded in memory. A coarse grain wavefront approach

will divide the computation of an iteration in ⌈N/NB⌉
steps. A MB × NB block will thus only be loaded in

memory at a given moment. Therefore four parts of this

block have to be distinguished. Two of them are needed

P3

P2

P1

P0
N

M/P=MB

M/P

B0 Bn...

Right Frontier (RF)

Top Frontier (TF)

NB
Left Frontier (LF)

Bottom Frontier (BF)

Figure 2. Notations used in wavefront al-

gorithms.

before the beginning of a block update. Processors P1

to PP−1 have to send the first row of a block to their

left neighbor in the ring. We denote this row as the Top

Frontier (TF). The first column of the next block to up-

date, denoted as Left Frontier (LF), is also needed. The

other two special parts of a block correspond to updated

data that cannot be written on disk at the end of the step.

The first one, denoted as Right Frontier (RF), is needed

to compute the next step of the current iteration on the

same processor. The second one is the Bottom Fron-

tier (BF), that has to be sent to the right neighbor to al-

low it to update its data.

A classic row-major data layout, as shown by Fig-

ure 3(a), can cause a significant overhead as reading an

entire block or a single vertical frontier implies several

small reads and disk head moves. Our idea is to change

the matrix representation so that loading a block or any

single frontier can be done in only one read operation.

This is done by changing the order in which elements of

the matrix are stored on disk. In this new representation,

we store the elements of TF first, then we store elements

of LF, elements that are not in any frontier, elements of

RF and finally elements of BF. Figure 3(b) shows this

transformation for a n × n block (top indices are rows

and bottom indices are columns). This new optimized

data layout duplicates the four elements located at the

corners of the block, but allows to read the entire block

or any frontier in a single read operation, as elements are

stored contiguously on disk. This reading pattern gives

much better performance because it is compliant with

the system’s prefetching policy. Indeed the very com-

mon system policy expect data to be read linearly and

thus performs readahead prefetching according to that

policy. The fact that our optimized layout allows any

kind of read (frontiers and blocks) linearly helps to get

the best of the system prefetching features.
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f o r i = 2 , N − 1

f o r j = 2 , M − 1

q = d a t a [ i −1][ j ] · zb [ i ] [ j ]

+ d a t a [ i ] [ j −1] · zv [ i ] [ j ]

+ d a t a [ i ] [ j +1] · zu [ i ] [ j ]

+ d a t a [ i + 1 ] [ j ] · z r [ i ] [ j ]

+ zz [ i ] [ j ]

− d a t a [ i ] [ j ]

d a t a [ i ] [ j ] += 0 .175 · q

done

done

i,j
zb

*
1

i−1,j

zv
i,j *

1
i,j−1

zu
i,j *

1
i,j+1

zr
i,j *

1
i+1,j

zz
i,j

2
i,j 0.175*

4

5

3

Figure 1. Livermore loop 23 algorithm.
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(a) Row-major.
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(b) Optimized.

Figure 3. Row-major and Optimized Data
Layouts.

Although the initial rewriting we propose implies the

duplication of some data, the extra storage space needed

is negligible compared to the total storage space used

by the entire matrix. For an N × M matrix divided

into blocks of size NB × MB, the space overhead for

an algorithm involving block frontiers of thickness T is

4 · T 2 · sizeof(element) · N/NB · M/MB bytes. In

the particular case of the Livermore loop 23, the thick-

ness is equal to 1. Table 1 shows the space overhead

for a 2 GiB matrix depending on the block size. For

the larger block sizes that turned out to be the most effi-

Block size Space overhead

4096 × 4096 512 Bytes 2.38e-05 %

512 × 512 32 KiB 0.0015 %

64 × 64 2 MiB 0.098 %

8 × 8 128 MiB 6.25 %

Table 1. Space overhead, 16384×16384 ma-

trix of double (2 GiB).

cient in the experiments (see below) this memory over-

head is clearly negligible. But we can see that even for

very small blocks (8x8), the induced space overhead is

low (6.25%).

A similar layout is used for the coefficient matrices,

but as the algorithm does not need to transfer frontiers

for these matrices, the layout simply consists in storing

the elements block-wise instead of row-major, thus al-

lowing a complete block load in a single read operation.

This layout is called block layout. As we will show in

Section 6, the use of a row-major layout strongly de-

grades the performance of the macro-pipeline and the

block layout is sometimes used instead. We will thus

compare our optimized layout to the block layout both

in terms of matrix rewriting and computation time.

Figure 4 shows the processing time needed for

switching from row-major layout to both block layout

and our optimized layout. This operation is referred to

as preprocessing. The figure also shows the reverse op-

eration referred to as postprocessing. The time required

to perform these operations appears to be very low and

almost the same for all kind of operations, except pre-

processing the optimized layout. The time overhead for
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Figure 5. The impact on the communication/computation overlap.
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Figure 4. Layout preprocessing for block
and optimized layouts, 16384×16384 matrix
of double.

this processing is due to the particular I/O pattern which

is the consequence of reading vertical frontiers (LF and

RF) in a row-major layout matrix.

The preprocessing and postprocessing operations are

only required to be performed before and after running

the application, if it is designed to work with the tar-

get layout. As the application is an iterative process,

the time gained from using a better layout largely com-

pensates the time spent to reshape the matrix to and

from this layout, when compared to the overall time of

computation with a row-major layout and no pre/post-

processing at all.

5 Improved Communications

The data dependency of the Livermore loop 23 algo-

rithm requires that data is transferred between a pair of

processors in both ways: the first processor needs the

second’s TF to start computing and the second needs the

first’s BF after it has been computed, as shown in Fig-

ure 6.

i−1

i

i

i+1

i+1

i+2Pk

BFTF

Pk+1

Figure 6. Communication pattern for wave-
front algorithms.

This communication pattern requires to communicate

data in both ways. To avoid network issues, communi-

cation in [5] has been done half-duplex by first sending

each processor’s entire first row of data to its left neigh-

bor in the processor ring. This row of data regroups all

TFs the previous processor will need, thus allowing only

BFs to be sent between two processors during an iter-

ation. This communication scheme, as shown in Fig-

ure 5(a), induces a flush state at the end of the pipeline

(when all processors need to send their entire row) and

a loss of time waiting for the pipeline to be refilled.

Our implementation of the Livermore Loop 23 algo-

rithm aims at reducing the impact of the communication

overhead on total processing time. Therefore we have

to ensure that the data is communicated asynchronously

once it is ready, in particular every TF is made available

to the target once the corresponding block has been com-

puted. It is no longer necessary to communicate the en-
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tire first row of data at once, and thus the target processor

does not have to wait for that entire row to start the next

iteration of the outer loop. In our shared memory im-

plementation, as all processors are sharing the same ad-

dress space, communication thus reduces to filling some

memory and then allowing the recipient to read the data,

as shown in Figure 5(b). This is realized by the data ab-

straction of PARXXL called chunks, see Section 2. In a

shared memory context this facility of PARXXL allows

for a direct (but controlled) mutual access of the pro-

cesses or threads to their respective data. Sending and

receiving data is done by writing (resp. reading) some

chunk and notification is done by a local rendez-vous

between the sender and the recipient.

6 Experimental Results

The new communication pattern allows continuous

computation without flushing the pipeline at the end of

an iteration. It is thus possible for each processor to start

a new iteration immediately after the end of the previous

one. Figure 8 shows such a situation, where processors

P0 and P1 have started the n + 1th iteration while pro-

cessors P2 to P5 are finishing the nth iteration. This sit-

uation we called wave chaining is as if two waves were

traversing the matrix at once. By increasing the number

of computing threads per processors it would be possi-

ble to increase the number of simultaneous waves even

more. On the other hand, more blocks would reside in

memory simultaneously and thus the block size would

have to be tuned differently.

n+1
th

wave

nth wave

P0
P1
P2
P3
P4
P5

Figure 8. Wave chaining: two waves are

traversing the matrix at once.

We implemented the Livermore Loop 23 algorithm

using block layout and optimized layout, and the

PARXXL library. In particular, the use of file mapping

for accessing data allows very good I/O performance.

The library also proposes very useful features, including

data extraction (used for frontiers purpose) and shared

memory communication with cross-pointers and local

rendez-vous.

Figure 7(a) shows the execution time for one iter-

ation of the algorithm on a 16384 × 16384 matrix of

double precision elements for each of these implemen-

tations. Such a matrix has 214 × 214 × 23 = 231 bytes

(2 GiB) and the whole problem consisting of 6 such ma-

trices (12 GiB) did not fit into the (2 GiB) RAM of our

bi-processor (each with two cores) target machine.

This figure also represents the execution time for one

iteration of the sequential algorithm. In this particular

implementation, there is no block concept, so we rep-

resented for all block sizes subsequently tested with the

other implementations the value of the sequential execu-

tion. This value is the upper limit above which the use of

parallelism fails to improve performance. For example,

applying macro-pipelining on a row-major matrix leads

to performance at best ten times worse than the sequen-

tial execution time. The poor results observed in this

case show that using a more adapted layout is the key to

performance.

For the two tested layouts, the figure shows that there

is a block size which gives better results. This situa-

tion is common to pipelined algorithms for out-of-core

problems, where the I/O device bounds the performance

for both very big and very small blocks because of disk

bandwidth and/or latency.

For the best case, we can observe that the use of

the optimized layout gives a 20% improvement over the

block layout, for a single iteration. This is repeated for

each iteration of the wavefront algorithm, which leads to

an overall significant performance gain.

Figure 7(b) shows that wave chaining also brings bet-

ter performance. The avoidance of flushing state allows

iterations to start and finish earlier. This leads to an-

other performance gain of 20%. But Figure 7(b) also

shows that the average processing time for one iteration

is higher when performing more than one iteration at

a time. This may be due to the impact of using a sin-

gle disk for storing data. In fact, when a new wave is

started, part of the processes require data to be accessed

at the beginning (B) of the file while the rest of the pro-

cesses require data to be accessed at the end (E) of the

file. These accesses are performed by threads running in

parallel and thus can occur interleaved in any possible

way. If the interleaving pattern is an alternating B-E,

then the disk head spends most of the time to go back

and forth in the file, which can lead to a severe loss of

time per iteration. This may be avoided by increasing
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Figure 7. Execution times for matrices of 16384 × 16384 doubles.

the number of disks and slicing data to be stored across

the disks. This may allow a new wave to start accessing

its data on another disk than data accessed by the current

wave.

7 Conclusion and Future Works

In this paper we addressed the issue of parallelizing a

wavefront algorithm on large matrices that do not fit into

memory. We focus on a well known algorithm, the Liv-

ermore loop 23, which is part of the LinPack benchmark

suite. To reduce the unavoidable I/O overhead of such

an out-of-core computation we proposed an optimized

data layout, at the cost of a negligible space overhead,

thereby allowing the I/O operations needed by the algo-

rithm to be contiguous. The use of the PARXXL library

to access data through advanced mapping also helps to

get more efficient I/O operations.

We compared our optimized data layout to the more

common block layout, which is generally used to re-

place original row-major layouts. Our experimental re-

sults show that using our optimized data layout improves

performance by 20% for the best block-size case.

Thus our goal of providing a better execution envi-

ronment by combining an optimized data layout with ad-

vanced mapping features is fully reached. Besides these

improvements, we think that it is possible to get even

better results by increasing the number of storage de-

vices, especially for shared-memory architectures. This

should help to open up the bottleneck consisting of one

single hard disk that is used for multiple accesses to the

same file and would allow efficient wave chaining.

We expect our data model to scale to other architec-

tures, including supercomputers and distributed environ-

ments, both at cluster and grid level. Since this data

model is not algorithm or problem dependent, it also

makes an automatic data distribution mechanism possi-

ble. This would then simplify the algorithm design for

a lot of similar problems. A cellular automaton, based

on some algorithm description (including data and block

sizes, frontier thickness,. . . ) could describe the data de-

pendency and a problem specific subroutine would be

used to attack each individual block.
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