Line transversals to disjoint balls - Archive ouverte HAL Access content directly
Journal Articles Discrete and Computational Geometry Year : 2008

Line transversals to disjoint balls

(1) , (2) , (2)
1
2

Abstract

We prove that the set of directions of lines intersecting three disjoint balls in $\mathbb{R}^3$ in a given order is a strictly convex subset of $\mathbb{S}^2$. We then generalize this result to $n$ disjoint balls in $\mathbb{R}^d$. As a consequence, we can improve upon several old and new results on line transversals to disjoint balls in arbitrary dimension, such as bounds on the number of connected components and Helly-type theorems.
Fichier principal
Vignette du fichier
Cone-journal.pdf (296.58 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00176198 , version 1 (02-10-2007)

Identifiers

Cite

Ciprian Borcea, Xavier Goaoc, Sylvain Petitjean. Line transversals to disjoint balls. Discrete and Computational Geometry, 2008, 39 (1-3), pp.158--173. ⟨10.1007/s00454-007-9016-z⟩. ⟨inria-00176198⟩
67 View
97 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More