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Line transversals to disjoint balls

Ciprian Borcea Xavier Goao¢ Sylvain Petitjeah

Abstract

We prove that the set of directions of lines intersecting¢hdisjoint balls ifiR? in a given order is a
strictly convex subset &2. We then generalize this resultitadisjoint balls inR?. As a consequence, we
can improve upon several old and new results on line tragal®to disjoint balls in arbitrary dimension,
such as bounds on the number of connected components andtyfmitheorems.

1 Introduction

Helly’s theorem [11] of 1923 opened a large field of inquingidmated now ageometric transversal theary
A typical concern is the study of ali-planes (also called-flats) which intersect all sets of a given family of
subsets (oobjects in R?. These are the-transversalof the given family and they define a certain subspace
of the corresponding Grassmannian. True to its origin,sivarsal theory usually implicateonvexityin
some form, either in its assumptions, its proofs or mostyikeoth.

In what follows,k = 1 and the objects will be pairwise disjoint closed balls withitary radii in R.
Our main result is the following convexity theorem:

Theorem 1. The directions of all oriented lines intersecting a giveritdifiamily of disjoint balls irR? in a
specific order form a strictly convex subset of the spBére.

As a first consequence, the connected components in the epéine transversals correspond to the
possiblegeometric permutationsf the given family, where a geometric permutation is untberd as a pair
of orderings defined by a single line transversal with its twigntations. This is not true in general, not
even forn > 4 disjoint line segments iR3.

Before discussing other implications, we want to emphattiaé thekeyto our theorem resides in the
case othree disjoint balls irlR3, and the approach we use to settle this case is geometrigatty revealing,
in that it shows the nuanced dependency of the convexitygutpn thecurve of common tangents the
three bounding spheres.

1.1 Relation to previous work

Helly's theorem [11] states that a finite famify of convex sets ifrR? has non-empty intersection if and
only if any subfamily of size at most + 1 has non-empty intersection. Passing frém= 0 to k = 1,

one of the early results is due to Danzer [7] who proved thdtsjoint unit disks in the plane have a line
transversal if and only if every five of them have a line trarsal. Hadwiger’s theorem [10], which allows
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arbitrary disjoint convex sets in the plane as objects, gibtie importance of therder in which oriented
line transversals meet the objects: when every three abjete an oriented line transversal respecting
some fixed order of the whole family, there must be a line trarsal for the family.

This stimulated interest in comparing, for arbitrary direiem, two equivalence relations for line
transversals: a coarse ormggometric permutatigndetermined by the order in which the given disjoint
objects are met (up to reversal of orientation) and a finer iso&py determined by the connected compo-
nents of the space of transversals.

In general, ford > 3, the gap between the two notions may be wide [8], and famfities/hich the two
notions coincide are thereby “remarkable”. The first exarsif such families are “thinly distributed” balls
in arbitrary dimension, as observed by Hadwiger [9]. Thée, work of Holmsen et al. [13] showed that
disjoint unit balls inIR3 provide remarkable cases as well. They verified the conygxiperty in the case
of equal radii, and their method can be extended to the lalgss of “pairwise inflatable” bafsn arbitrary
dimension [5], inviting the obvious question regardingjai® balls of arbitrary radii. The significance of
this problem is also discussed in the recent notes [18, p-1198] where one can find ample references to
related literature.

Our solution for the case of arbitrary radii is based on a nppre@ach, suggested by the detailed study
of the curve of common tangents to three spheréR3i2]. The main ideas are outlined in Section 3 as a
preamble to the detailed proof in Sections 4 to 6.

In dimension three particularly, there are connectiondwiher problems in visibility and geometric
computing. Changes of visibility (or “visual events”) ineemne made of smooth obstacles typically occur for
multiple tangencies between a line and some of the obstfdésTritangent and quadritangent lines play
a prominent role in this picture as they determine the 1- addr@ensional faces of visibility structures. An
attractive case is that of four balls &® which allow, generically, up to twelve common real tang€agj.
Degenerate configurations are identified in [3]. Variatiomssuch problems, where reliance on algebraic
geometry comes to the forefront, are surveyed in [21]. See abrief account in [1].

1.2 Further implications

Danzer's theorem [7] motivated several other attempts tegdize Helly's result fok = 1, that is, for line
transversals. Whereas Helly's theorem only requires catywehe case: = 1 appears to be more sensitive
to the geometry of the objects. In particular, Holmsen anddu®ek [14] showed that no such theorem
holds in general for families of disjoint translates of awexset, not even with restriction on the ordereng
la Hadwiger. Our Theorem 1 has consequences in this diregiir@sented below in Section 7.

Hadwiger's proof of his Transversal Theorem [10] relies be bbservation that anyinimal pinning
configuration that is, any family of objects with an isolated line transa that would become non-isolated
should any of the objects be removed, has 3i¢he objects are disjoint convex sets in the plane. Thedrem
implies that any minimal pinning configuration of disjoiralls inR¢ has size at mogtd — 1 (Corollary 14).

A generalization of Hadwiger's theorem for families of disjt balls then follows (Corollary 15).

A family of balls isthinly distributedif the distance between the centers of any two balls is at tedse the sum of their radii.
2 family of balls ispairwise inflatablef the squared distance between the centers of any two Isalisleast twice the sum of
their squared radii.



2 Preliminaries

Notations and prerequisites

For any two vectors, b of R3, we denote bya, b) their dot product and by x b their cross product.
These expressions will retain their algebraic meaning whandb are complex vectors.

The space of directions iR? is the real projective spad®’ = P?(R) envisaged either as the space
of lines through the origin (and then the direction of a lisegiven by its parallel through the origin) or
as the “plane at infinity” in the completioB®> = R? U P? (and then the direction of a line is simply its
point of intersection with the plane at infinity). A non-zerectoru € R? may also stand for the direction
(uq : ug : ug) it defines inP?.

Convexity inP? is relative to the metric induced by the standard metric efgphere through the iden-
tification S? /Z, = IP2. All considerations can be pulled-back$6 by orienting the lines.

In following our convexity arguments related to three disjdalls inR3, it may be helpful to bear in
mind that the regions d? determined by directions of line transversals are alwaysained in the simply-
connected side of some smooth cénibVhen testing convexity, one may use affine ch&tsand verify
locally, then globally, that the boundary curve “stays oa $ame side of its tangent”. If this property were
to fail at some point, one must have iaflection pointthere or, in one word, #iex

We denote byBy, B;, B, three balls inR? with respective centers), c1, c; and squared radii, s1, so,
sk = r2. Since degenerate cases are eventually shown to follow fhengeneric case (Lemma 10), we
assume here that we have a non-degenénategle of centers

Direction-sextic

The directions of common tangent lines Ry, B1, B, make up an algebraic curve of degree sixPif
which we call thedirection-sexticand denote by. To take advantage of symmetries in expressingve
introduce the edge vectoes; = c; — c¢; and denote by;; = (e;;, e;;) their squared norms. For a direction
u e R3\ {(0,0,0)}, we put:

¢ = g(u) = (u, ),
t” = tjl = <e” X u7eij X u> = 5Z]q _ <eij7u>2-
Thus inP?(C), the equatiort;; = 0 gives the two tangents from; to the imaginary conig = 0.
Proposition 2. The direction-sextic foB3y, By, B> can be given by means of the Cayley determinant:

1 1 1 1

0 gso gs1 gs2
qso 0 t()l t()g = 0.
gs1 tor 0 t12
qs2 to2 tiz 0

o =o(u) = det

— == = O

Proof. One way to find the equation of the direction curve is to begi & description of lines ifR> by
parametergp, u) € R3 x P2, wherep is the orthogonal projection of the origin on the given linadu is

*The complement of any proper non-empty conic in the realgotije plane consists of two connected components, one
homeomorphic to a Mdbius strip and the other to a disc.



ball B2

ball B1

Figure 1: Left: The trace of three ballBy, B1, B, on their plane of centers. Right: A planar depiction
(hatched area) of(B;ByB2). The direction-sextic is drawn in thick grey, the Hessiarliack, and the
conics of inner special bitangents in thin grey.

the direction of the line. Witley = 0 and abbreviations:

a; = a;(u) = (¢; X u,¢; x u) + (s — s;){u, u),
= tOi + (80 - 8i)Q7 1= 17 27

affine common tangents obey the system (see e.g. [3] or [16]):

ai(u)
2(u,u)’

<p7 Ci> = 1= 1> 27 <p7u> = 07 <p7 p> = S0-

The direction-sextic is obtained by eliminatipgfrom this system. The fact that the resulting equation
allows the stated Cayley determinant expression is giveataral explanation in [2], but can be directly
verified by computation. O

The direction of aroriented linecan be represented either by a point on the unit sphere ohédy t
wholeray emanating from the origin and passing through that pointr €pression “cone of directions”
stems from the latter representation, which converts éguesbf convexity inS? into equivalent questions
of convexity inR3. In the projective context, it will be understood that we méze image vi&?/Z, = P2,

Cone of directions

The cone of directions<'(ByB; Bs) of By, By, Bs is the set of directions of all oriented line transversals
to these balls which meet them in the stated ordBs: < B; < By. The boundary ofK(ByB1B>)
consists of [5, Lemma 9] certain arcs of the direction-gextand certain arcs of directions ofner special
bitangentd.e. tangents to two of the balls passing through their isi@ilitude center [12]. Figure 1 offers
an illustration of a cone of directions. The plane of theymetmust be conceived as an affine pigéec P2.

We recall the fact that a common tangent (here called bitathder two disjoint spheres (more precisely,
the boundary of two disjoint balls) passes through theieirsimilitude center if and only if it is contained
in a common tangent plane which has the two spheres on opsidés. If a transversal for the two balls
has the direction of an inner special bitangent, it mustaftie that bitangent. The cone of directions for

4



a pair of disjoint balls is bounded precisely by their innpesal bitangents. |2 they trace a (circular)
conic.
The points ofo that appear on the bounda®y ( By B; B2) can be characterized as follows:

Proposition 3. The direction of a tritangenf meeting the three ball®,, B1, B in the prescribed order
belongs t&) K (BB Bs) if and only if¢ intersects the triangle of centeegc;ca.

Proof. The set of directions of common transversals to disjoiniskiala proper subset .

Assume that is neither parallel to the plane of centers, nor containeat in

If ¢ does not intersect the triangle of centers, then, in theeptefl configuration of*, there is a linex
through two of the projected centers, separating the foétfiafm the third projected center. When moving
¢ parallel to itself and closer ta, along a perpendicular to the latter, all distances to ¢emtecrease. This
shows that there are lines paralleldintersecting the open balls, and therefore the directiofiisfnot on
the boundary.

On the other hand, when the tritangéntersects the triangle of centers in a pathtthere is no motion
of ¢ parallel to itself which can decrease all distances to tiéers. Indeed, reasoning fn with respect to
the triangle of projected centers, this would decreaserelisaover edges, while these areas have a constant
sum. This shows that no other transversal bo&n have its directidh Looking now in the plane spanned
by ¢ and the normat to the plane of centers &, the rotation of/, with centerP, brings its direction inside
K (BB B2) when approaching the plane of centers, and takes it ouk§{d& B B2) when approaching.
Indeed, when rotating towards the plane of centers all iigtsi to centers decrease, while increasing in the
opposite sense. Some other transversal with directiondesihandr (and parallel to thé, v-plane) cannot
exist since by the same argument of rotating towards theepdicenters, one would obtain a realization of
the direction of? not passing througt. Thus, the direction of is in 0K (ByB1 B3).

If ¢ is parallel to the plane of centers (but not contained irwg,may consider any parallel plane which
is closer tocycico thant is, and find in this plane transversals to the open balls lghtal/. Thus,/ cannot
be on the boundary.

Finally, if £ is in the plane of centers, we look at the “section configardtiraced in that planeEither
all three discs are on one side#dnd ther? does not cross the triangle of centers and is not on the boynda
or ¢ has two discs on one side with the third on the other side arsl anass the triangle of centers. Then, it
is actually an inner special bitangent for two pairs of bédisd an outer special bitangent for the third pair)
and belongs to the boundary. O

Proposition 4. For three disjoint balls, we have:

(i) the cone of directionds (ByB; Bs) consists of a single point if and only if there is a tritangeoh-
tained in the plane of centers and tracing in it a pinned placanfiguration, that is, the disc traced
by By is on the opposite side of the tritangent from the discs ttdneB, and B-;

(i) in all other cases, the cone of directiods( By B; Bs) is the closure of its interior.

Proof. (i) Sufficiency: the plane intersecting the plane of censdosg the tritangent and perpendicular to
it, will have B; on one side, an®, and By on the other. An oriented transversal meetiig first, then
By, and thenBs; must be contained in this separating perpendicular plamgttaus coincide with the given
tritangent. Necessity is covered by our arguments in (ii).

40ne could conclude from here using [5, Lemma 9], which shdwasa direction ofX (B, B B2) is in the interior if and only
if there is a line transversal to the open balls with thatatios.



(i) Suppose we are not in case (i), and the centers are rgiiedi If we have a transversélwith
direction belonging to the boundary &f (B, B;B2), we may assume the transversal is not in the plane
of centers, since a non-pinned planar case is clear. But#teerd its reflection in the plane of centers
define a plane perpendicular to the latter and all lines betwtbem (passing through their intersection)
have directions belonging to the interior, because albdists from centers decrease.

The case of collinear centers is trivial; there is only onergetric permutation (given by the line of
centers) and the cone of directions is a disc-like regiomded by a conic. O

Corollary of the proof. Cones of directions and connected components of trandsdmsahree disjoint
balls inR? arecontractible

Indeed, the argument above shows that we may contract fitseteegment i ( By B1 B2) consisting
of directions in the plane of centers, and then contractsbignent.

Obviously, the same holds true at the level of the conneatetponents in the space of transversalg]

Hessian and flexes

The Hessianof the direction-sectie is defined as the determinant of the matrix of second devisiti

H(o) = H(o)(u) = det ( 8325%).

The Hessian curve, or simply “the Hessian”, is the projectiurve defined by the zero-set of this determi-
nant.

The Hessian of a direction-sextic for three ballsRifis thus an algebraic curve of degree twelve. The
intersection betweea and its Hessiarl{ (o) consists of all singular points ef and all flexes o# [4].

3 Outline of the proof

Ford = 2 the convexity theorem is elementary, anddar 3 it is easily reduced to the case of three disjoint
balls inR3. Thekey propertyused to settle this case is the following:

Proposition 5. For disjoint balls By, By, Bs, any arc of their direction-sextie which belongs to the bound-
ary 0K (ByB1 B3) contains no flex or singularity ef between its endpoints.

The convexity of the cone of directions (B, B, Bs) can then be inferred from the known fact that a
simpleC!-loop inR? ¢ P? with no inflection (in Euclidean terms: with positive curvet on its algebraic
arcs) bounds a convex interior [22].

Thus, what is essential for this approach, is to obtain safitacontrol over the flexes of. At first sight,
the fact that the intersection of and the Hessial (o) in P?(C) has, counting multiplicities¢ x 12 =
72 points, leaves little hope for the possibility of “trackingll flexes. However, there is another way to
exploit the Hessian: fix a direction and consider the balffigumations which have a tritangent with that
direction and give the same planar configuration of four fgoimhen projecting, tangent and centers, on
some orthogonal plane; evaluate the Hessians of the comdsp direction-sextics and determine which
can vanish for the given direction.

The important point is that one can anticipate, from the fafthe equations, that the computations
must result in polynomials of low degree, which will be sutbjen their turn, to geometric control.

The unfolding of this scenario is presented below and ire®k certain amount of explicit computations.
Although no part is too complicated to be done by hand, we halied on Maple [17] in a few instances.
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4 Absence of flexes and singularities

4.1 The Hessian test

Following Proposition 3, we need only consider directiohngents to the three balls that cross the triangle
of centers and are not directions of inner special bitargyelthen projecting along such a tangent on a
perpendicular plane, the projected centers form a triangfgaining the point image of the tangent as an
interior point. One may start with the latter planar confagion, a triangle and an interior point, and ask
which ball configurations yield this picture (by projectialong a common tangent intersecting at the interior
point)? Since the radii of the balls are given, one has onl{iftd the vertices of the triangle in the normal
direction and obtain all the desired configurations.

We equipR? with a coordinate frame such that the triangle lies in thaﬂqaliasL C R? and has its vertices
atcyg = 0,¢y, €, With the understanding that there is a point inside, withasgd distances; to these
vertices. Then, we use three real parametegsy; andzo, to describe the possible positions of the three
centers:

co =Cg+ xpe3, €y =C;+x1€3, Co2 = Co+ T2€3.

We use Proposition 2 to express the corresponding direstatico and its Hessiait/ (o) as functions
of x = (z9, 71, 72) € R3 depending oy, ¢1, €2, S0, 51, s2. Proposition 5 is now equivalent to proving that

H(5)(0,0,1) #0

holds for all initial data (triangle and interior point) aad (z, 21, x2) corresponding to disjoint balls.

4.2 A quadric and a quartic

We have reduced the probe for flexes to the study of a polyridomation of x (and parameters) which can
be explicitly computed.
The parameters involved are the following:

Co = (07 0, 0)7 C1 = (aa 0, 0)7 Co = (b> ¢, 0)7
the triangle of center&e, ¢4, ¢2) having interior point:

> Pi€;  p1€1 + P2y
p= Z;‘Z: Sp Po,P1,p2 > 0.
(3 (A

Letvy, = P — Ck- Thensy, = T‘]% = <Vk,Vk>.
The computation gives the result:

212520,666
————|Ho(x) + Hy(x)],
5 (200 + Hi()
whereH, and H4 have degree respectively 2 and 4xin= (zo, x1,22):
Hy = Hy(x) = —a’c® (Hpk:) > pipi(wi — x5)°,
Hy = Hy(x) = > pisi(es — zp)*(z; — 2p)?,

with cyclic products and sums fdt, j, k} = {0, 1,2}. Thus, away from{0, 0,0), Hs is negative andi, is
positive. The aim is now to show that ball disjointness isugtoto ensure the positivity dif; + Hy.

H(0)(0,0,1) =

7



4.3 Hyperboloid and octant

We can further transform these expressions by retainingaesnmeters the (positive numbegs)andg; =
pjrj, and renaming the squares = (z; — x;)?. This gives:

Hy = Hy(z) = —a’c (Hpk) szpﬂk,
Hy = Hy(z ZkakzzZ]

From now on, assume that p; = 1. We have to replacé\ = a?c?, which is four times the squared
area of the triangl€y, ¢y, 2, by its expression in terms @f andg;.

Lemma 6. We have:

A=a2? = 4H 5 with Q= (2¢7q; — qi).

Proof. This is an elementary computation, which may be conductddllasvs. By the definition ofv;, we

have
Zpivi =0.

From (> p;vi, v;) = 0, we obtain a linear system fa¥;, v;),i # j:

Pi(Vi, Vi) + pj(Vj, Vi) = —DPk(Vk, Vi) = —DkSk,
with solutions:
_ 2. 2_ .2 .2
pkskz pz Si — DS 4y — 4 — 4
2pip; 2pip;
Four times the squared area of a triangl&;, ¢; is a Gram determinant:

<Vza VJ>

Q
4pZp

(Vi, Vi)  (Vi,Vj)

(Vi, vj) (v},v;) ':Sisﬂ' (vi,vj)? =

where@ = > (2¢? qj — g3). Hence the area of the trianglg, ¢1, €2 is:

1/2
1/2 Q
_Q Z pip; 411k’

resulting in:

__Q
AT1ps
O

Several new substitutions will be in order for the studyFbf + H,4. Since a positive factor won't affect
sign considerations, we will use the symba! for any positive multiple ofd, + H4. We have found above:

«H = «H(z) = ——QZ ot > prdiziz,

with the shorthand) = " (2¢? qj — qi). We putp;p;zj, = q,%wk and obtain, up to a positive factor:

xH = xH(w :——Qquwaqukazwa
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With one more positive rescaling, ang = ﬁ, we have:
i1

«H = «H(w Zwlw] Zakwk.

We can turn now to the conditions expressing the fact thaspineres with centeks = ¢; + z;e3 and radii
r; are disjoint. They are:

2L = (JL‘Z — .I‘j)Q > (7“,‘ + ’I”j)2 — 52']' = (’I”Z' + Tj)2 — <V,’ —Vj,V; — Vj>,
that is,
qp — (¢ — q5)°
bibj
In w-coordinates, thedisjointness conditioridsecome

wk>1_<u>
dk

Note that from)_ p;v; = 0 it follows thatq; = ||p;v;|| > 0 are the lengths of the three edges in a
triangle, and therefore the latter expressions are peditywthe triangle inequality.

The purpose now is to study the position of the octant definyetthé disjointness conditions relative to
the affine quadric ifR? defined by« H (w) = 0. We use first a translation by, in order to absorb the linear

part inxH:
«H = *H(W) = Z( ﬂl Zﬂzﬂ]a

2L >

with 3 respecting:
. 1

This makes
1
> BB = 1 > (ak + ai — aj)(ar, — a; + a;),
1
= 3 2 (2aia, — o)

and results in

2 3
Zﬂzﬂ] ( 19[ ) 2(2%% ) = 43% 1>0.

Thus, with translated coordinatés = wy — G, we have dyperboloid of two sheets

«H = «H(t) =Y tit; — 43Hq =0,

which lies on the positive side of its asymptotic congt;t; = 0.

Lemma 7. > t;it; = 0 is a circular cone with axig, = t; = t». The two components of its smooth
points circumscribe the positive and negative open octamtsch are both contained in the positive part
Z tﬂfj > 0.



The open octant defined by our disjointness conditiops> 1 — (%)2 is a translate of the open
positive octant, and its position relative to the hypermblaH (w) = 0 is determined by the position of its
vertexV. Continuing to refer here ter-coordinates, we have:

Lemma 8. The pointV = (1 — (*2%)%)o<k<2 is 0N the “positive side” of the hyperboloieH (w) = 0
and on the “positive side” of the plang’ t;, = > (wy — Gx) = 0, that is:

-4\’ Q
«*H(V) >0 and Z(l—( qu ]>>>m2qi.

Proof. A Maple assisted computation shows thai(V) factors as

_ 311 + g5 — a)?

*HV) 411 q; ’

from which the first inequality follows.

The second inequality, which determines on which of the tamgonents of the positive side of the
hyperboloidV lies, is satisfied forjy = ¢1 = ¢2, and by continuity, must be satisfied for any other triangle
edges, since verteé¥ cannot “jump” from one component to the other. O

It is now clear, geometrically, that the octant where thgodlisness conditions are satisfied and the
hyperboloid indicating a flex or a singularity for the copeading configuratiomave no point in common
This completes the proof of Proposition 5.

5 Convexity of the cone for 3 balls inR?

We consider now thredisjoint closed ballsBy, By, B, described by parameters: centegscy, co and radii
ro,71,72. We shall prove first the convexity of any cone of directionghe genericcase i.e. when the
centers and radii are in the complement of a proper algeldiset. Then, we will show that the generic
case implies the general case.

Lemma 9. The direction conés (By B By) of a generic triple of disjoint balls ifR? is strictly convex.

Proof. If 0K (ByB1B>) is made only of directions of inner special bitangentscstonvexity is immediate,
sinceK (ByBj B») is then an intersecion of convex regions bounded by conitser@ise, genericity allows
us to assume that the direction-sextits non-singular at all its contacts with any of the three cerleter-
mined by inner special tangents. Since the direction-sedcessarily lies on the simply-connected side of
each of the three conics, these contacts are tangency pointicho K ( By B Bs) is locally convex. Thus,

if we start at some point o K (B, B, B2) and follow the boundary curve, we obtain, by Proposition 5, a
differentiable simple loop of clas§, which is, locally, always on the same side of its tangentr dfty
affine planeR? c PP? covering the loop, and any Euclidean metric in it, this mgamsitive curvature on all
its algebraic arcs and this implies [22] that our simple |dmunds a compact convex set. In fattctly
convex because of non-vanishing curvature. By Proposition 4 gn@arollary, this strictly convex set is
K(ByB1B>). O

The passage from the generic case to the general case isdrased
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Lemma 10. Let B = (B, By, B2) be a configuration of three disjoint closed balls, and sugpos
K (ByB1B2) has non-empty interior. IB is the limit of a sequence of configuratio$”) with a convex
cone of directions for the given ordering, thé&h( B, B; B2) is convex as well.

Proof. By Proposition 4, it is enough to prove that, for any two psimtthe interior, the (geodesic) segment
joining them is contained i ( By B1 B2).

Take two interior points. By assumption, for sufficientlydar, the segment joining them is contained
in all corresponding cones fd8(). Consider one point of the segment, and project the spherigoe
ration along the direction defined by the point, on a perpardr plane. We have to prove that the disks
representing the projected balls have at least one poirgrimaon.

Suppose they don't. Then so would discs with the same ceatetsadii increased by a small> 0.
But then we can find, for sufficiently large configurations3(*) with centers projecting less thari2 away
from those of3 and corresponding radii with less thay2 augmentation. Then the point of the segment
cannot be in the respective cones of directions, a contiadic

Note that strict convexity still follows from non-zero cature on smooth arcs for non-collinear centers,
while for collinear centers it is obvious because of rotagiosymmetry. O

Lemmas 9 and 10 immediately imply Theorem 1 for the case etthalls inR>:

Proposition 11. The directions of all oriented lines intersecting thregalist balls inIR3 in a specific order
form a strictly convex subset of the sphéfe

6 Convexity of the cone forn balls in R?

The convexity result of Proposition 11 generalizes to &ibjtn andd as follows:

Proof of Theorem 1Recall that, for any collection of balls iR?, a direction will be realized by some
transversal if and only if the orthogonal projection of thall® on a perpendicular plane has non-empty
intersection. By Helly’s Theorem in the plane, the directimone for a sequence af > 3 balls is the
intersection of the direction cones of all its triples. Thtise direction cone of. ordered3-dimensional
disjoint balls is strictly convex for any.

Given a sequencé of n disjoint balls inR¢, let K be its direction cone for a prescribed order of
intersection. Letx andv be two directions ink, £, and/,, be two corresponding line transversals andHet
denote theg-dimensional affine space these two lines span ®space containing their planar span, should
the lines be coplanar).

E N S is a collection of3-dimensional disjoint balls whose corresponding diretione is convex on
S2. Thus, for any direction on the small arc of great circle jognu andv there exists an order-respecting
transversal taS, because it already exists ifi. It follows that K is convex, and again, from the three
dimensional case, strictly convex. O

Let us emphasize the importance of the assumption that te dva disjoint. Figure 2 illustrates a
transition from convex to non-convex direction cones asdldisjoint balls move and allow an overlap.
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ball B2

Figure 2: a. The trace of three disjoint balls on the planeeoiters, with ball3; moving on the horizontal
axis towards ballBy;. The small square is used for close-ups below. b. ¢. d. Thetin-sextic (in thick
gray), its Hessian (in black) and arcs of inner special lgigart conics, when ball8, and B; are disjoint
(b), tangent (c) and intersecting (d).
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7 Implications

This section explores some consequences of Theorem 1. aBiregults were proven for the case of unit
balls in [5] and, with Theorem 1, the proofs carry through. ¥es omit all arguments here and point to the
relevant lemmata in [5].

7.1 Isotopy and geometric permutations

An immediate corollary of Theorem 1 is the correspondendeaibpy and geometric permutations for line
transversals to disjoint balls:

Corollary 12. The set of line transversals todisjoint balls inR? realizing the same geometric permutation
is contractible.

The proof given by Cheong et al. [5, Lemma 14] for disjointtualls immediately extends, with Theo-
rem 1, to the case of disjoint balls.

Smorodinsky et al. [20] showed that in the worst casgisjoint balls inR¢ admit©(n¢~!) geometric
permutations. The same bound thus applies for the numbesrofected components of line transversals,
improving on the previous bounds 6f(n3*€) for d = 3 and of O(n??~2) for d > 4 due to Koltun and
Sharir [15]. If the radii of the balls are in some intenjal ] where~ is independent of. andd, then
the number of components of transversal®ig/'°¢ "), following the bound on the number of geometric
permutations obtained by Zhou and Suri [23]. These restdtsammarized as follows:

Corollary 13. In the worst case, disjoint balls inR? have© (n?~!) connected components of line transver-
sals. If the radii of the balls are in the intervl, +], wherey is independent of andd, this number becomes
O(y'87).

7.2 Minimal pinning configurations

A minimal pinning configurations a collection of objects having an isolated line transaketat ceases
to be isolated if any of the objects is discarded. An impdrtdap in the proof of Hadwiger's transversal
theorem [10] is the observation that, in the plane, any mahipmning configuration consisting of disjoint
convex objects has cardinaliB; Cheong et al. [5, Proposition 13] proved that any minimahpig con-
figuration consisting of disjoint unit balls iR¢ has cardinality at mostd — 1. With Theorem 1, the same
holds for disjoint balls of arbitrary radii:

Corollary 14. Any minimal pinning configuration consisting of disjointlban R¢ has cardinality at most
2d — 1.

7.3 A Hadwiger-type result

A result in the flavor of Hadwiger's Transversal Theorem [fie®rem 1] generalizes to disjoint balls of
arbitrary radius:

Corollary 15. A sequence of disjoint balls inR? has a line transversal if any subsequence of size at most
2d has an order-respecting line transversal.

The “pure” generalizations [5, 13] of Helly’s theorem, iveithout additional constraints on the ordering
a la Hadwiger, use the fact that > 9 disjoint unit balls have at mo&tgeometric permutations [6]. Since
the latter is not true for balls of arbitrary radii [20], obtang a Helly-type theorem for line transversals in
this case requires different arguments.
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