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Toward an abstract computer virology

G. Bonfante, M. Kaczmarek, and J-Y Marion

Loria, Calligramme project, B.P. 239, 54506 VandÏuvre-lès-Nancy C«edex, France,
and «Ecole Nationale Sup«erieure des Mines de Nancy, INPL, France.

Abstract. We are concerned with theoretical aspects of computer viruses.
For this, we suggest a new deÞnition of viruses which is clearly based on
the iteration theorem and above all on KleeneÕs recursion theorem. We
show that we capture in a natural way previous deÞnitions, and in par-
ticular the one of Adleman. We establish generic constructions in order
to construct viruses, and we illustrate them by various examples. We
discuss about the relationship between information theory and virus and
we propose a defense against some kind of viral propagation. Lastly, we
show that virus detection is ! 0

2 -complete. However, since we are able
to deal with system vulnerability, we exhibit another defense based on
controlling system access.

1 Introduction

Computer viruses seem to be an omnipresent issue of information tech-
nology; there is a lot of books, see [13] or [16], discussing practical issues.
But, as far as we know, there are only a few theoretical studies. This sit-
uation is even more amazing because the word Òcomputer virusÓ comes
from the seminal theoretical works of Cohen [4Ð6] and Adleman [1] in
the mid-1980Õs. We do think that theoretical point of view on computer
viruses may bring some new insights to the area, as it is also advocated
for example by Filiol [8], an expert on computer viruses and cryptology.
Indeed, a deep comprehension of mechanisms of computer viruses is from
our point of view a promising way to suggest new directions on virus de-
tection and defence against attacks. On theoretical approach to virology,
there is an interesting survey of Bishop [2] and we aware of the paper of
Thimbleby, Anderson and Cairns [10] and of Chess and White paper [3].

This being said, the Þrst question is what is a virus? In his Phd-
thesis [4], Cohen deÞnes viruses with respect to Turing Machines. Roughly
speaking, a virus is a word on a Turing machine tape such that when it
is activated, it duplicates or mutates on the tape. Adleman took a more
abstract formulation of computer viruses based on recursive function in
order to have a deÞnition independent from computation models. A recent
article of Zuo and Zhou [21] completes Aldemans work, in particular in



formalizing polymorphic viruses. In both approaches, a virus is a self-
replicating device. So, a virus has the capacity to act on a description of
itself. That is why KleeneÕs recursion theorem is central in the description
of the viral mechanism.

This paper is an attempt to use computability and information the-
ory as a vantage point from which to understand viruses. We suggest a
deÞnition which embeds AdelmanÕs as well as Zuo and ZhouÕs deÞnitions
in a natural way.

A virus is a program v which is solution of the Þxed point equation

! v (p, x) = ! B(v ,p ) (x) (1)

where B is a function which describes the propagation and mutation of
the virus in the system. This approach has at least three advantages
compared with others mentioned above. First, a virus is a program and
not a function. Thus, we switch from a purely functional point of view to
a more programming perspective one.

Second, we consider the propagation function, unlike others. So, we
are able to have another look at virus replications. All the more so since
B corresponds also to a system vulnerability. Lastly, since the deÞnition
is clearly based on recursion theorem, we are able to describe a lot of
kind of virus smoothly. To illustrate our words, we establish a general
construction of trigger virus in Section 3.3.

The results and the organization of the paper is the following. Section
2 presents the theoretical tools needed to deÞne viruses. We will focus in
particular in the s-m-n theorem and the recursion theorem. In section 3,
we propose a virus deÞnition and we pursue by a Þrst approach to self-
duplication. Section 4 is devoted to Adlemans virus deÞnition. Then, we
explore another duplication methods by mutations. We compare our work
with Zuo and Zhou deÞnition of polymorphic viruses. Lastly, Section 6
ends with a discussion on the relation with information theory. From that,
we deduce an original defense against some particular kind of viruses,
see 6.3. The last Section is about virus search complexity which turns out
to " 0

2 -complete. It is worth to mention that we conclude the paper on
some research direction to study system ßaws, see Theorem 14.

2 Iteration and Recursion Theorems

2.1 Programming Languages

We are not taking a particular programming language but we are rather
considering an abstract, and so simpliÞed, deÞnition of a programming



language. However, we shall illustrate all along the theoretical construc-
tions by bash programs. The examples and analogies that we shall present
are there to help the reader having a better understanding of the main
ideas but also to show that the theoretical constructions are applicable
to any programming language.

We brießy present the necessary deÞnitions to study programming
languages in an independent way from a particular computational model.
We refer to the book of Davis [7], of Rogers [15] and of Odifreddi [14].

Throughout, we consider that we are given a setD, the domain of the
computation. As it is convenient, we take D to be the set of words over
some Þxed alphabet. But we could also have taken natural numbers or
any free algebra as domains. The size|u| of a word u is the number of
letters in u.

A programming language is a mapping! from D ! (D ! D ) such
that for each program p, ! (p) : D ! D is the partial function computed
by p. Following the convention used in calculability theory, we write ! p

instead of ! (p). Notice that there is no distinction between programs and
data.

We write f " g to say that for each x, either f (x) and g(x) are deÞned
and f (x) = g(x) or both are undeÞned onx.

A total function f is computable wrt ! if there is a program p such
that f " ! p . If f is a partial function, we shall say that f is semi-
computable. Similarly, a set is computable (resp. semi-computable) if its
characteristic function is computable (semi-computable).

We also assume that there is a pairing computable function (, )
such that from two words x and y of D, we form a pair (x, y) # D .
A pair ( x, y) can be decomposed uniquely intox and y by two com-
putable projection functions. Next, a Þnite sequence (x1, . . . , xn ) of words
is built by repeatedly applying the pairing function, that is ( x1, . . . , xn ) =
(x1, (x2, (. . . , xn ) . . .)).

So, we wonÕt make any longer the distinction between an-uple and
its encoding. Every function is formally considered unary even if we have
in mind a binary one. The context will always be clear.

It is worth to mention that the pairing function may be seen as an
encryption function and the projections as decryption function.

Following Uspenski [19] and Rogers [15], a programming language!
is acceptable if

1. For each semi-computable functionf , there is a programp # D such
that ! p " f .



2. There is an universal programu which satisÞes that for each program
p # D , ! u (p, x) " ! p (x).

3. There is a programs such that

$p, x, y # D ! p (x, y) " ! ! s (p ,x ) (y)

Of course, the function ! s is the well-known s-m-n function written
S.

The existence of an acceptable programming language was demon-
strated by Turing [18].

KleeneÕs Iteration Theorem yields a functionS which specializes an
argument in a program. The self-application that is S(p, p) corresponds
to the construction of a program which can read its own codep. By
analogy with bash programs, it means that the variable$0 is assigned to
the text, that is p, of the executed bash Þle.

We present now a version of the second recursion theorem which is
due to Kleene. This theorem is one of the deepest result in theory of
recursive function. It is the cornerstone of the paper that is why we write
the proof. We could also have presented RogersÕs recursion theorem but
we have preferred to focus on only one recursion theorem in order not to
introduce any extra di!culties. It is worth also to cite the paper [11] in
which the s-m-n function and the recursion theorem are experimented;

Theorem 1 (KleeneÕs second recursion Theorem). If g is a semi-
computable function, then there is a programe such that

! e(x) = g(e, x) (2)

Proof. Let p be a program of the semi-computable functiong(S(y, y), x).
We have

g(S(y, y), x) = ! p (y, x) (3)

= ! S(p ,y) (x) (4)

By setting e = S(p, p), we have

g(e, x) = g(S(p, p), x) (5)

= ! S(p ,p ) (x) (6)

= ! e(x) (7)



3 The viral mechanism

3.1 A virus deÞnition

A virus may be thought of as a program which reproduces, and executes
some actions. Hence, a virus is a program whose propagation mechanism
is described by a computable functionB. The propagation function B
searches and selects a sequence of programsp = ( p1, . . . , pn ) among in-
puts (p, x). Then, B replicates the virus inside p. In other words, B is
the vector which carries and transmits the virus to a program. On the
other hand, the function B can be also seen as a ßaw in the programming
environment. Indeed, B is a functional property of the programming lan-
guage! which is used by a virusv to enter and propagate into the system.
We suggest below an abstract formalization of viruses which reßects the
picture that we have described above.

DeÞnition 2. Assume thatB is a semi-computable function. A virus wrt
B is a program v such that for eachp and x in D,

! v (p, x) = ! B(v ,p ) (x) (8)

The function B is called the propagation function of the virusv .

Throughout, we call virus a program, which satisÞes the above deÞ-
nition.

As we have said above, we make no distinction between programs and
data. However we write in bold face words ofD, like p, v , which denote
programs. On the other hand, the argumentx does not necessarily denote
a data. Nevertheless, in both cases,p or x refer either to a single word or
a sequence of words. (For examplex = ( x1, . . . , xn ).)

3.2 Self-reproduction

A distinctive feature of viruses is the self-reproduction property. This has
been well developed for cellular automata from the work of von Neu-
mann [20]. Hence, Cohen [4] demonstrated how a virus reproduces in the
context of Turing machines.

We show next that a virus can copy itself in several ways. We present
some typical examples which in particular illustrate the key role of the
recursion Theorem.

We give a Þrst deÞnition of self-reproduction. (A second direction
will be discussed in Section 5.) A duplication function Dup is a total



computable function such that Dup(v , p) is a word which contains at
least an occurrence ofv . A duplicating virus is a virus, which satisÞes
! v (p, x) = Dup(v , p). The existence of duplicating viruses is a conse-
quence of the following Theorem by settingf = Dup.

Theorem 3. Given a semi-computable functionf , there is a virus v such
that ! v (p, x) = f (v , p)

Proof. For set g(y, p, x) = f (y, p). Recursion Theorem implies that the
semi-computable function g has a Þxed point that we call v . We have
! v (p, x) = g(v , p, x) = f (v , p).

Next, let e be a code ofg, that is g " ! e. The propagation function
B induced by v is deÞned byB(v , p) = S(e, v , p), since

! B(v ,p ) (x) = ! S(e,v ,p ) (x) (9)

= g(v , p, x) = ! v (p, x) (10)

It is worth to say that the propagation function lies on the s-m-n S
function. The s-m-n S function specializes the programe to v and p, and
thus it drops the virus in the system and propagates it. So, in some sense,
the s-m-n S function should be be considered as a ßaw, which is inherent
to each acceptable programming language.

To illustrate behaviors of duplicating viruses, we consider several ex-
amples, which correspond to known computer viruses.

Crushing
A duplication function Dup is a crushing if Dup(v , p) = v .

This basic idea is in fact the starting point of a lot of computer viruses.
Most of the email worms use this methods, copying their script to

many directories. The e-mail worm ÒloveletterÓ copies itself as ÒMSKer-
nel32.vbsÓ. Lastly, here is a tiny bash program which copies itself.

cat $0 > $0 . copy

Cloning
Suppose that p = ( p1, . . . , pn ). Then, a virus is cloning wrt Dup, if
Dup(v , p) = ( d(v , p1), . . . , d(v , pn )) where d is a duplication function. A
cloning virus keeps the structure of the program environment but copies
itself into some parts. For example, we can think that p is a directory
and (p1, . . . , pn ) are the Þle inside. So a cloning virus infects some Þles
in the directory.



Moreover, a cloning virus should also verify that |d(v , p i )| % |p i |.
Then, the virus does not increase the program size, and so the detection
of such non-size increasing virus is harder.

A cloning virus is usually quite malicious, because it overwrites exist-
ing program. A concrete example is the virus named Ò4870 OverwritingÓ.
The next bash program illustrates of a cloning virus.

for FName in $ ( l s &. i n f e c t . sh ) ;do
LENGTH=Ôwc ' m . /$FName Ô
i f [ . / $FName != $0 ' a Ó193Ó' l e Ó${LENGTH% &./

$FName} Ó ] ; then
echo [ $0 i n f e c t . / $FName ]
cat $0 > . /$FName

f i
done

Ecto-symbiosis
A virus is an ecto-symbiote if it lives on the body surface of the program
v. For example, Dup(v , p) = v áp where áis the word concatenation.

The following bash code adds its own code at the end of every Þle.

for FName in $ ( l s &. i n f e c t . sh ) ;do
i f [ . / $FName != $0 ] ; then
echo [ $0 i n f e c t . / $FName ]
t a i l $0 ' n 6 | cat >> . /$FName

f i
done

The computer virus ÒJerusalemÓ is an ecto-symbiote since it copies
itself to executable Þle (that is, Ò.COMÓ or Ò.EXEÓ Þles).

3.3 Implicit viruses

We establish a result which constructs a virus which performs several
actions depending on some conditions on its arguments. This construction
of trigger viruses is very general and embeds a lot of practical cases.

Theorem 4. Let C1, . . . , Ck be k semi-computable disjoint subsets ofD
and V1, . . . , Vk be k semi-computable functions There is a virusv which



satisÞes for allp and x, the equation

! v (p, x) =

!
""#

""$

V1(v , p, x) (p, x) # C1
...

Vk (v , p, x) (p, x) # Ck

(11)

Proof. DeÞne

F (y, p, x) =

!
""#

""$

V1(y, p, x) (p, x) # C1
...

Vk (y, p, x) (p, x) # Ck

(12)

The function F is computable and has a codee such that F " ! e. Again,
recursion Theorem yields a Þxed pointv of F which satisÞes the Theorem
equation. The induced propagation function isV (v , p) = S(e, v , p)

4 Comparison with AdlemanÕs virus

AdlemanÕs modeling is based on the following scenario. For every pro-
gram, there is an ÒinfectedÓ form of the program.

The virus is a computable function from programs to ÒinfectedÓ pro-
grams. An infected program has several behaviors which depend on the
input x. Adleman lists three actions. In the Þrst (13) the infected program
ignores the intended task and executes some ÒdestroyingÓ code. So it is
why it is called injure . In the second (14), the infected program infects the
others, that is it performs the intended task of the original, a priori sane,
program, and then it contaminates other programs. In the third and last
one (15), the infected program imitates the original program and stays
quiescent.

We translate AdlemanÕs original deÞnition into our formalism.

DeÞnition 5 (AdlemanÕs viruses). A total computable function A is
said to be a A-viral function (virus in the sense of Adleman) if for each
x # D one of the three following properties holds:

Injure

$p, q # D ! A(p) (x) = ! A(q) (x) (13)

This Þrst kind of behavior corresponds to the execution of some viral
functions independently from the infected program.




















