Stochastic diffeomorphisms and homogenization of multiple integrals

Antoine Gloria 1
1 MICMAC - Methods and engineering of multiscale computing from atom to continuum
Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : In a recent work, Blanc, Le Bris and Lions have introduced the notion of stochastic diffeomorphism together with a variant of stochastic homogenization theory for linear and monotone elliptic operators. Their proofs rely on the ergodic theorem and on the analysis of the associated corrector equation. In the present article, we provide another proof of their results using the formalism of integral functionals. We also extend the analysis to cover the case of quasiconvex integrands.
Type de document :
Article dans une revue
Applied Mathematics Research eXpress, Oxford University Press (OUP): Policy H - Oxford Open Option A, 2008, 2008 (abn001), pp.1-23. 〈10.1093/amrx/abn001〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00176568
Contributeur : Rapport de Recherche Inria <>
Soumis le : vendredi 5 octobre 2007 - 10:04:06
Dernière modification le : vendredi 25 mai 2018 - 12:02:03
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 18:42:10

Fichiers

RR-6316.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Gloria. Stochastic diffeomorphisms and homogenization of multiple integrals. Applied Mathematics Research eXpress, Oxford University Press (OUP): Policy H - Oxford Open Option A, 2008, 2008 (abn001), pp.1-23. 〈10.1093/amrx/abn001〉. 〈inria-00176568v2〉

Partager

Métriques

Consultations de la notice

247

Téléchargements de fichiers

222