Using Echo State Networks for Robot Navigation Behavior Acquisition

Cédric Hartland 1, 2 Nicolas Bredeche 1, 2
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : Robot Behavior Learning by Demonstration deals with the ability for a robot to learn a behavior from one or several demonstrations provided by a human teacher, possibly through tele-operation or imitation. This implies controllers that can address both (1) the feature selection problem related to a great amount of mostly irrelevant sensory data and (2) dealing with temporal sequences of demonstrations. Echo State Networks have been proposed recently for time series prediction and have been shown to perform remarkably well on this kind of data. In this paper, we introduce ESN to robot behavior acquisition in the scope of a mobile robot performing navigation tasks. ESN actually show comparable and even better performance with that of other algorithms from the literature in similar experimental conditions. Moreover, some properties regarding dynamics of ESN in the context of learning by demonstration are investigated.
Type de document :
Communication dans un congrès
ROBIO 07, Dec 2007, Sanya, China. pp.201-206, 2007
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00176817
Contributeur : Cédric Hartland <>
Soumis le : lundi 5 novembre 2007 - 10:44:52
Dernière modification le : jeudi 12 avril 2018 - 01:49:44
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 12:50:31

Fichier

Robio07-hartland-bredeche-fina...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00176817, version 1

Collections

Citation

Cédric Hartland, Nicolas Bredeche. Using Echo State Networks for Robot Navigation Behavior Acquisition. ROBIO 07, Dec 2007, Sanya, China. pp.201-206, 2007. 〈inria-00176817〉

Partager

Métriques

Consultations de la notice

346

Téléchargements de fichiers

205