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Abstract: This report presents a joint study of biological and computational vision.
First we brie
y review the most common models of neurons and neural networks and

the function of cells in the V1/V2 areas of the visual cortex. Subsequently, we present the
biologically plausible models for image segmentation that have been proposed by Stephen
Grossberg and his collaborators during the previous two decades in a series of papers. We
have implemented the B.C.S. (Boundary Contour System) and F.C.S. (Feature Contour
System) models that form the basic building blocks of this model of biological vision,known
as FACADE ( Form And Colour and DEpth) theory. During their implementation, we faced
several problems, like a large number of parameters and instability with respect to these;
this was not traded o� with a higher performance when compared to classical computer
vision algorithms.

This has led us to propose a simpli�ed version of the B.C.S./F.C.S. system, and to
explore the merits of using nonlinear recurrent dynamics. The biologically plausiblemodel
we propose is paralleled with classical computational vision techniques, while a link with
the variational approach to computer vision is established.

By interpreting the network's function in a probabilistic manner we derive an algorithm
for learning the network weights using manually determined segmentations excerpted from
the Berkeley database. This facilitates learning the terms involved in the variational criterion
that quanti�es edge map quality from ground truth data. Using the learned weight s our
network outperforms classical edge detection algorithms, when evaluated on the Berkeley
segmentation benchmark.
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R�esum�e : Ce rapport prsente une �etude conjointe de la vision biologique et de la vision
algorithmique. Nous nous int�eressons plus particuli�erement aux mod�eles biologiquement
plausibles li�es au processus de segmentation d'images tel que propos�e par S. Grossberg et
ses coll�egues.

Dans une premi�ere partie r�edig�ee sous forme de tutoriel, nous abordons le probl�eme de
la mod�elisation du comportement et de la dynamique d'un neurone. Nous abordons ensuite
le cas plus complexe d'un r�eseau de neurones avant de nous focaliser plus particuli�erement
sur la classe des neurones qui interviennent dans le cortex visuel et plus sp�eci�quement dans
les zones corticales V1/V2.

Nous r�esumons ensuite de mani�ere synth�etique les travaux de S. Grossberg et sescoll�egues
sur la mod�elisation biologiquement plausible du processus de segmentation. Lamise en
oeuvre de ses mod�eles B.C.S. (Boundary Contour System) et F.C.S. (Feature Contour Sys-
tem) qui forment la base du mod�ele de vision biologique FACADE (Form And Colour and
DEpth) est pr�esent�ee et discut�ee. Nous mettons en lumi�ere certaines di�cult�es pos�ees par la
mise en oeuvre de ces mod�eles et proposons ensuite quelques modi�cations qui les simpli�ent
tout en permettant de mieux les controler et d'am�eliorer sensiblement la qualit�e des r�esultats
de segmentation obtenus. Le mod�ele simple et biologiquement plausible de segmentation que
nous proposons est ensuite mis en parall�ele pour comparaison avec certaines approches clas-
siques propos�ees en Vision Algorithmique. Un lien avec les approches variationnelles plus
r�ecemment introduites en Vision conclut en�n ce rapport illustr�e par plusieurs exemples de
rsultats obtenus sur diverses images r�eelles.

D'une interprtation probabiliste de la fonction opre par le rseau, une mthode d'apprentissage
supervise des coe�cients de ce rseau est propose en se basant sur des images segmentes
manuellement extraites de la base de donnes d'images segmentes de Berkeley. Cela permet
notamment de dterminer partir de donnes terrain les termes du critre variationnel qui quan-
ti�e la qualit des cartes de contours. En utilisant ces coe�cients appris, notre rseau, appliqu
au benchmark de segmentation de Berkeley, se comporte bien mieux que les algorithmes de
dtection de contours classiques.

Mots-cl�es : Vision par Ordinateur, Vision Biologique, R�eseaux des Neurones, Boundary
Contour System, Feature Contour System, Processus de Lignes, Processus des Surfaces,
Approches Variationnelles en Vision par Ordinateur, Groupement Perceptuel.
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1 Introduction

A considerable part of research in the computer vision community has been devoted to
problems of low and mid-level vision, and speci�cally image segmentation, that can be
summarized as the problem of breaking an input image into a set of homogeneous pieces.
Even though this may seem to be a trivial task for a human, since we perform this task
e�ortlessly, it is an intrinsically di�cult one, as 3 decades of research have proven.

Despite the progress that has been made in the last decades, the human visual system
outperforms the state-of-the-art in image segmentation, since it is robust tonoise, clutter,
illumination changes, etc; therefore, its mechanisms could serve as a pool of ideas and a
point of reference for computer vision research.

In this report, we shall try to establish a link between systems that have beenproposed
as modelling the mechanisms of low and mid-level biological vision tasks like image seg-
mentation and some well-established computer vision techniques. Our starting point will
be the system developed by S. Grossberg and his collaborators through a seriesof papers;
this system is based on both edge and surface-based information to perform segmentation,
and results in the formation of piecewise continuous surfaces. Later on we shall present a
recurrent variation of these networks and exploit the link between recurrent networks and
variational techniques for image segmentation. Even though these links have been estab-
lished in previous work [93, 91, 66], our work elaborates on these connections and tries to
exploit the interplay between the neural architectures and the computation they perform.

The plan of this presentation is the following: in section 2, we present in a purely tutorial
manner some elementary background material on neural computation: the dynamics of a
neuron cell, the dynamics of an ensemble of cells and the most common neurons that are
involved in the visual pathway are brie
y presented. In section 3, we present the architecture
proposed by S. Grossberg for the problems of edge detection and image smoothing and our
comments on this model. In section 4, we describe a simpler, yet more e�cient model,
which uses recurrent intra-layer connections and less processing stages and yields better
results than the original model when applied to both synthetical and real images. An
interpretation of the proposed model in computer vision terms is presented that o�ers a
di�erent perspective on our model, making a link with variational techniques. In Section
5, based on a probabilistic interpretation the network's function we derive analgorithm for
learning the network weights using manually determined segmentations. Using the learned
weights our network outperforms classical edge detection algorithms; for training and testing
we use the Berkeley segmentation dataset. In the last section, we summarize themost
important contributions of our work and present possible directions for future research.

In Appendix A, the link between recurrent networks, variational techniques and statis-
tical physics is reviewed. In Appendix B, we prove that the network we proposed decreases
a Lyapunov function and in Appendix C some implementation details are given.

One of our objectives has been to make this report self-contained, and accessible to
someone who may not have a background in biological vision; therefore a largepart of this
report serves a tutorial purpose and a well knowledgeable reader can go directly to sections
4&5 and Appendixes B and C to read about the model we propose.

INRIA
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The notation used in this report is as follows:

ˆ Vectors and matrices are denoted by bold capital letters. If we have multiple matrices
with similar role but di�erent elements, we shall use superscripts to di�erenti ate among
them; e.g. if W is the kernel of an oriented edge detection �lter, W � will be used to
indicate the kernel used for edge detection at direction� .

ˆ Time varying quantities are written with capital letters. We shall use t he 1 subscript
for their steady-state values, in case it is not clear from the context.

ˆ Brackets are used to index with discrete variables [i; j; k; : : : ], parentheses for continu-
ous (t; v; : : :).

ˆ Constants, parameters etc. are denoted by small letters, usually from the beginning
of the alphabet. Elements of constant vectors and matrices (e.g. connection weights)
are indexed using subscripts.

ˆ In section 2, subscripts are commonly used to label variables (e.g.Vm : membrane
voltage, etc.). Sometimes capital letters will be used for constants, due to convention,
e.g. Vexc denotes a steady excitation voltage,R a constant resistance.

ˆ Whenever some quantities are involved in identical equations curly braces are used
to compactly write these equations; e.g. in (34) we mean that the equation holdsfor
both S+ and S� .

2 Neural Computation & Biological Vision Essentials

Our goal in this section is to introduce some widely used concepts and terms from models
of neurons, neural networks and biological vision, trying to clarify the distinctions and the
similarities between the models presented hereafter. The �rst subsection deals with the
function of an isolated neuron and the way it reacts to an excitatory/inhibitor y input, the
second subsection examines the behavior of an ensemble of neurons and their collective
computational properties; in the last subsection those visual cortex cells that are most
commonly deemed important for the purpose of image segmentation are brie
y presented.

2.1 Single Cell Dynamics

In this subsection some of the aspects of the dynamics of a single cell will be presented.
Starting with the simplest of all models, that of a passive membrane, we willsubsequently
study the Hodgkin-Huxley equations and how they account for the creation of spikes, and
present the two most common approximations to the dynamics of a neuron, namely the
integrate-and-�re and the mean �ring rate models of a neuron. This presentation is by no
means complete; most of the exposition here follows [61] & [17] and the interested reader
can �nd a wealth of material in there.

RR n ° 6317
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2.1.1 Single Neuron Terminology

In �g. 1 we see a sketch of a neuron: Manyaxonsleave thesoma(body) of a neuron, and end

Outside

Inside

Vm

R

V
rest

a

b
b a

        = V - V   < 0

I

C

m       inside       outsideV   = V           - V

rIc

-

+

(a) (b)

Figure 1: (a) A sketch of a neuron, fromwww.cog.brown.edu/courses/cg0001/lectures/visualpat hs.html
(b)The passive membrane model of a neuron

up near other neurons, whose state they in
uence at theirsynapses(contacts) located at the
dendrites (treelets) of the `receiver' neuron. The `emitter' neuron is calledpresynaptic and
the `receiver' is calledpostsynaptic. The state of a neuron can be observed by its potential,
which is negative (' � 70mV ) when the neuron is in isolation, i.e. when it receives no
input from other neurons. This is achieved by a complicated mechanism that constantly
pumps ions (charged elements, e.g.K + - Potassium, Na+ - Sodium, Cl � - Chloride) in
and out of the neuron's soma throughchannels located at the neuron's membrane, keeping
its potential negative in equilibrium. The communication between neurons is e�ectuated
when the presynaptic neuron generates aspike, i.e. rapidly increases and then lowers its
potential, which travels along its axons; when this spike arrives at the synapses, it results in
the release of a chemical, termedneurotransmitter . This causes a change in the postsynaptic
neuron's conductance to certain ions, which in turn results in an increase, or decrease in the
postsynaptic neuron's potential, depending on the neurotransmitter released. We saythat
the synapse isexcitatory in the �rst case and that the postsynaptic neuron is depolarized
and that the synapse isinhibitory in the second case and the cell ishyperpolarized.

Models of increased sophistication have been introduced for neurons and their interac-
tions. A common mathematical model that is used in all of them is that of an electrical
circuit, due to both its suitability for modeling a neuron (which is a cell with v arying poten-
tial) and the relative ease with which the behavior of an electrical circuit canbe understood.

INRIA
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2.1.2 The Passive Membrane Model

The passive membrane is probably the simplest model of a neuron, shown in �g. 1(b). The
fact that a neuron in steady state is charged negatively inside relative to itsoutside is
modeled by an electrical circuit with a capacitor C parallel to a voltage source, equal to
the resting potential Vrest . The capacitor models the neuron's membrane that is charged
by the voltage source. Ionic currents across the neuron membrane surface are modeledby
a resistor in series with the voltage source, which accounts for the increase/decrease in the
ionic currents due to a change in the neuron's potential. At steady stateI r = 0 ! Vm =
Vrest ' � 70mV .

Using this simple RC circuit for a neuron injecting a current into the neuron can be mod-
eled by a current source parallel to the other network elements, as seen in �g. 2. A current

Vrest

R

Outside

Inside

I
C

IVm
c

r
I inj

A

-

+

Figure 2: Injecting current into a neuron

that results in an increase in the membrane potential (i.e. the membrane is depolarized) is
called by convention a positive current and, conversely, a negative current hyperpolarizes
the membrane. Using the passive membrane model and by applying Kircho�'s current law
at node A in �g. 2, we �nd the following equation for the membrane potential:

� I C � I R = I inj !

C
dVm

dt
+

Vm � Vrest

R
= I inj !

�
dV 0

dt
= � V 0+ RI inj ; (1)

where V 0 = Vm � Vrest ; � = RC

where Vrest = � 70mV . 1 Equation (1) is known as the membrane equation and can
be analyzed using linear system analysis techniques like the Impulse/Step Response and

1The polarity of the source is shown in the diagrams for illust ration purposes; as above, in all of the
following equations, we shall write down the equations for t he electrical circuits as if all the voltage sources
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Fourier Analysis. Speci�cally, if we consider a step current applied to the system att = 0,
i.e. I inj = I 0H (t) where H is the step (or Heavyside) function:

H (t) =
�

0; t < 0
1; t � 0

then by inspection the response of the system (the membrane potential) can be seento equal

Vm (t) = Vrest + RI 0(1 � e� t=� ); t � 0

The potential of the membrane asymptotically reaches the valueVrest + RI 0 with a speed
that decreases asRC increases. In general, the response of the system to an inputI (t)
equals

Vm (t) = Vrest +
Z t

�1
I (u)h(t � u)du where h(t) =

1
C

e� t=�

i.e. h(t) is the impulse response of the system. Analysis of the system in the frequency
domain reveals that the system acts as a low pass �lter, since its frequency response is

~V(f ) =
R ~I inj

1 + i2�f �
! k ~V (f )k =

R ~I injp
(1 + (2 �f � )2)

This is the kind of behavior we were expecting to see from a system like that of�g. 2:
rapid 
uctuations in the injected current I inj are not fully `followed after' by Vm , due to RC
circuit, so the membrane potential is determined by the low frequency components of the
injected current.

Synaptic Excitation and Inhibition of a Passive Membrane

Our analysis up to now was concerned with the way a neuron would respond to an injected
current, assuming there is a single current through the membrane, which is modeled by a
voltage source in series with a resistance. This ionic current's role is to bring the mem-
brane potential back to its steady state value and is therefore termed aleakagecurrent.
Apart from this current there are however other ions that are being constantly pumped
in and out of a neuron. The di�erence in the concentrations inside/outside the neuron of
these ions determines the potential of the neuron and any neural mechanism that changes
the neuron's potential using chemical synapses achieves this by changing the membrane's
permeability to these ions. This is achieved at neuron synapses, and therefore this type of
excitation/inhibition is called synaptic. In an electrical circuit this is modeled by adding
voltage sources in parallel to the circuit, in series with modi�able conductances, asshown
in �g. 3. The equations for the membrane potential that are derived by Kirchho�'s current

had their positive pole looking into the inner side of the neu ron and use negative voltage values for sources
of di�erent polarity (e.g. Vrest ' � 70mV , here). This is a commonly used convention in electrical cir cuit
models of neurons.
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Figure 3: Synaptic excitation and inhibition of a passive membrane.

law are:

� I c = I i + I e + I r !

C
dVm

dt
= ge(Vexc � Vm ) + gi (Vinh � Vm ) + ( Vrest � Vm )=R (2)

= � gVm + I d; where (3)

g = ge + gi + 1=R; Id = geVexc + gi Vinh + Vrest =R

where Vexc � Vrest , Vinh � Vrest . ge and gi model the permeability of the neuron to speci�c
ions which determine whether the neuron will be hyperpolarized or depolarized. Note that
for steady g and I d (3) is equivalent to (1), after a change of constants. I d is called the
driving current and is independent ofV . The excitatory input delivered from neighboring
neurons can be modeled by an increase ofge, so that (Vexc � Vm ) plays a greater role in the
evolution of Vm in (2); conversely the negative input is modeled by an increase ofgi .

A special case is whenVinh = Vrest , or, more generally, when there is another variable
conductancegsh , with corresponding Vsh = Vrest , so that equation (2) is rewritten as [12]:

C
dVm

dt
= ge(Vexc � Vm ) + gi (Vinh � Vm ) + gsh (Vsh � Vm ) + ( Vrest � Vm )=R (4)

= � gVm + I d; where

g = ge + gi + gsh + 1=R; Id = geVexc + gi Vinh + Vrest (gsh + 1=R)

In that case the dynamics in (4) due to the term gsh (Vsh � Vm ) are calledshunting inhibition
dynamics. A distinctive feature of shunting inhibition is that its e�ect cannot be s een in
the absence of excitatory input; however highgsh may become, we havegsh (Vsh � Vm ) =
0, so there can be no inhibition. On the contrary, hyperpolarizing inhibition acting by
gi (Vinh � Vm ) can decrease the potential of a neuron in the absence of excitation. Intuitively
shunting inhibition acts by absorbing the potential that would otherwise be developed by
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12 Kokkinos, Deriche, Papadopoulo, Faugeras and Maragos

the neuron. To clarify the following formulae, assumeV 0
m = Vm � Vrest or, equivalently,

that Vrest = 0. If excitatory input is delivered to the cell by increasing ge, the e�ect of
shunting inhibition is to decrease the steady-state voltage (found by settingdV 0

m
dt = 0) from

V 0 = ge Vexc
ge +1 =R to V 0 = ge Vexc

ge + gsh +1 =R . The e�ect of shunting inhibition is approximately the
division of a neuron's potential by gsh . This has been proposed as a mechanism for divisive
normalization that can explain many phenomena in the visual system [12, 13] andexplains
its capability to operate in a wide range of scales without saturating. Somerecent objections
[51] brought up the problem that the steady-state voltageof a neuron is what is being divided
and not it's �ring rate which is the most commonly used output of a neuron. According to
[51], the e�ect of shunting inhibition on the �ring rate is subtractive rather tha n divisive;
keeping this in mind, we will still use divisive normalization in our applicat ions, whatever
the biophysical mechanism that performs it, and use shunting inhibition as a `mathematical
trick' to achieve divisive normalization using continuous evolution equations like (2).

2.1.3 Hodgkin & Huxley Model

Up to now an important simpli�cation that has been made was that the ionic curr ents
through the neuron membrane are linearly dependent on the di�erence between the equilib-
rium potential Vrest and the membrane potentialVm . This was modelled by using time- and
voltage- independent resistancesR and conductancesge; gi , and results in a simple linear
behavior. However, true neurons exhibit more complex behavior, like the emissionof short
voltage pulses when presented with a strong enough input, known asspikes or action po-
tentials. The model of Hodgkin and Huxley explains the generation of spikes, using a set of
coupled O.D.E.s that capture much more accurately the behavior of a neuron. Explaining
in detail these equations is out of the scope of this report, but we think it would be useful
to simply explain how a spike can be generated.

The model of Hodgkin and Huxley [50] explains the generation of a spike by analyzing
the temporal variation of the permeability of the membrane's conductance to the two ions
K + and Na+ . The permeability of the neuron's membrane to these two ions is voltage
dependent, so a change in the neurons potential will in
uence the ionic currents, which in
turn in
uence the neuron's potential and so on. Speci�cally, the inward current that result s
in the depolarization of the neuron is given by

I Na (t) = �gNa m3h(Vm (t) � ENa )

the outward current that hyperpolarizes the neuron is given by

I K (t) = �gK n4(Vm (t) � EK )

while there is also a leakage current given by

I L (t) = �gL (Vm (t) � EL )

The evolution of the membrane potential Vm is then given by

C
dVm

dt
= � �gNa m3h(Vm (t) � ENa ) � �gK n4(Vm (t) � EK ) � �gL (Vm (t) � EL ) + I inj (5)
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In the above equations,m; h; n are voltage dependent quantities corresponding to them; h; n
gating particles that were introduced by Hodgkin and Huxley and �gf Na;K;L g are constants,
equal to the maximal attainable conductances of the neuron for each ion.I L is used to
make up for what the K; Na ionic currents do not model, and �gL ; EL are determined so that
the model has a prescribed behavior.I inj represents all the input that is delivered to the
neuron, whether synaptic or injected, from its environment

The gating particles are random variables, taking the values 0 and 1 (closed/opengate);
all the gating particles corresponding to an ionic current must be open (i.e. 3m-particles and
1 h-particle for Na ions and 4n-particles for K ions) if the corresponding conductance is to
be open. Interpreting the m; h; n quantities as the probabilities of the corresponding gating
particle to be open, then the above equation can be explained as saying that on average,
the ionic current I f K;Na g will be equal to �gf K;Na g(Vm � E f K;Na g) times the probability of
�nding the conductance �gf K;Na g open, i.e. n4 / m3h respectively.

The activation variables m; n are increasing functions of the depolarization (Vm � Vrest )
while the inactivation variable h is a decreasing function of it. The dynamics ofn can be
described by either of the following, equivalent, equations

dn
dt

(Vm ) = � n (Vm )(1 � n) � � n (Vm )n $

� n
dn
dt

(Vm ) = n1 � n; � n (Vm ) =
1

� n (Vm ) + � n (Vm )
; n1 (Vm ) =

� n (Vm )
� n (Vm ) + � n (Vm )

The same equations are used form; h and the di�erence in their behavior lies in the �; �
terms. The functions that were empirically derived by Hodgkin and Huxley are [61]:
� n (Vm ) = 10� Vm

100( e(10 � V m ) = 10 � 1) ; � n (Vm ) = :125e� Vm =80;

� m (Vm ) = 25� Vm
10( e(25 � V m ) = 10 � 1) ; � m (Vm ) = 4 e� Vm =18;

� h (Vm ) = :07e� Vm =20; � h (Vm ) = 1
(e(30 � V m ) = 10 +1)

The resulting graphs off n; m; hg1 and � f n;m;h g as functions ofVm are shown in �g. 4, where
we observe that:

ˆ n1 is an increasing function of Vm ; the steady state value n1 is reached with a
relatively slow speed.

ˆ h1 is a decreasing function ofVm , as we would expect for an inactivation particle,
while the steady state value is reached with a relatively slow speed, slower than the n
speed below a certain voltage and faster after that voltage.

ˆ minf ty is an increasing function ofVm , and the steady-state is reached rapidly, with a
time constant that is about 1/10 th of the time constants of n; h

Given the above, if a relatively faint and short current pulse I inj is injected into the neuron,
the behavior of the model will be:

ˆ I inj causes an increase in membrane potential and them particles open faster than
the n and h particles while for a short time n and h can be considered stationary. This
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Figure 4: (a) The steady state values and (b) the time constants as functions ofVm for the
three gating particles

results in an increase ingNa m3h and therefore an increase in the inward, depolarizing,
current I Na .

ˆ The membrane potential increases (due toI Na ) which results in an increase in the
outward current I K = �gK n4(Vm � EK ). This does not have to do with �gK n4, which is
supposed to be stationary, but with the increase ofVm � EK .

ˆ The two currents I Na ; I K , quickly balance each other, bringing the neuron back to its
resting potential

In summary, the injected current pulse results in a short-time and short-magnitude increase
in the neuron's potential, like the passive membrane model would predict (even thoughnot
in the same way). In case a stronger input current pulse is injected to the neuron, the time
course of the events is the following:

ˆ The m particles rapidly open, letting a depolarizing current I Na in.

ˆ n; h stay initially approximately stationary, so the hyperpolarizing curren t I K =
�gK (Vm � E ) will increase only due to the increase inVm .

ˆ I inj is assumed to be strong enough so that the increase inI K does not immediately
outweigh the increase inI Na induced by I inj . This further depolarizes the neuron,
which results in a further increase inm. This results in a `loop' between the previous
steps and is witnessed as a rapid increase inVm .

ˆ After a period of time h will have decreased enough to block theI Na current (due to
the m3h factor) and n will have increased enough to let theI K current increase (due
to the n4 factor) and bring the membrane back to its resting state. Actually, blocking
the I Na current results for a short time in the hyperpolarization of the membrane,
which is brought to its resting potential shortly afterwards.
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Summarizing, this succession of events results in a rapid increase in the neuron's potential,
that describes the generation of a spike, i.e. the stereotypical rapid increase of theneuron
potential to a �xed value and the subsequent decrease. This procedure is independent of the
magnitude or duration of I inj , provided it is strong enough to initiate the pulse generation
process -or, citing [56], `how fast the bullet travels has nothing to do with how hard you pull
the trigger'.

This analysis can be used to understand the transformation of an input stimulus to a
�ring rate: suppose a constant current is injected into the neuron, say I inj - up to now
we dealt with a current pulse. As long as the potential of the neuron is below a certain
threshold, called the spike initiation threshold, Vth , I inj drives Vm to a steady value, in a
way similar to that described for the passive membrane model. IfVm exceedsVth a spike will
be produced andVm will be reset to a value V0. Then this process starts again, producing
another spike, resulting in a cycle with a period equal to the time it takes to bring V0 to Vth .
Apart from all the other, neuron-speci�c parameters, this period depends on the intensity
of I inj . A strong current drives Vm quickly to Vth -i.e. it results in a high �ring rate, and
conversely, for a faint current it will take longer to reach Vth . If I inj is below a certain
threshold the neuron acts like in the passive membrane model: the steady-state potential,
which is below Vth , is reached after a transient period of time, and no spike is generated.

2.1.4 Integrate-and-Fire Models

Even though the model of Hodgkin-Huxley has helped deeply understand the behavior of a
neuron, more economical and straightforward models are desired, both for the purpose of
analysis and simulation. A widely used model, that mimics the generation of pulses, as well
as the sub-threshold behavior of the Hodgkin-Huxley model is the Integrate-and-Fire (IaF
for short henceforth) model of a neuron, that is widely used in neuronal modeling.

The simplest model is the perfect, or non-leaky Integrate-and-Fire unit, while a more
realistic model is the leaky Integrate-and-Fire unit. For simplicity, we shall no longer use
the resting potential voltage source,Vrest , assuming all the voltage sources involved in the
circuits have been appropriately modi�ed to account for this change. The equation describing
the subthreshold behavior of a perfect IaF unit is:

C
dV
dt

= I inj

A spike is generated whenV = Vth , whereupon V is reset to 0. The time instants t1; t2

when two consecutive spikes occur are related by:

Z t 2

t 1

I (t)dt = CVth

The resulting spiking frequency for a constant injected currentI inj can thus be found as:

f spike = 1=�spike =
1

CVth =I inj
=

I inj

CVth
(6)
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This model is rather unrealistic, since the �ring rate of a neuron cannot become arbitrarily
large, as equation (6) would suggest and it is also known thatI inj should surpass a certain
threshold to initiate a spike. In the more realistic setting of the leaky IaF model, the
subthreshold behavior of the model is described by:

C
dV
dt

= �
V (t)

R
+ I (t)

which has the solution:
V (t) = IR (1 � e� t=� ) + V (0)e� t=� (7)

If V (t) exceedsVth a spike is generated, andV is reset to 0; however ifI < V th =R, no spike
is generated, as would be desired for a weak enough current. As before, we have for thetime
between two consecutive spikes occurring att1; t2, that:

V (t2) = Vth ; V (t1) = 0
(7)
! Tth = t2 � t1 = � � log(1 �

Vth

IR
)

Based on the Hodgkin-Huxley model, there is a refractory period after each spike,during
which the cell ignores all input it receives; we can account for this as well, taking the
interspike interval to equal � ref + Tth which results in the following relation:

f =
1

� ref � � log(1 � Vth
IR )

This model, even though slightly more complicated than the passive membrane model
and much less complicated than the Hodgkin- Huxley model can account for the generation
of spikes, and for the transformation of an input stimulus to a sequence of spikes. Other
variants have been introduced (see e.g. [61] and references therein) to allow the modelto
account for more phenomena.

2.1.5 Mean Firing Rate Models

The most popular model for the analysis of an ensemble of neurons, is the Mean Firing
Rate (MFR) model; this model was one of the very �rst to be used by people in the neural
networks community, a long time before the model of Hodgkin and Huxley was presented.
According to this model, the neuron's output can be interpreted as an analog value, that is
coded by a `digital' sequence of spikes. As the model's name implies we ignore the speci�c
timing of the spikes that are emitted from a neuron, and replace it by a mean �ring rate;
this mean can be interpreted as the mean over a population of neurons satisfying the same
dynamics.

Given that the spike generation mechanism is ignored in the MFR model, a common
choice for describing the neuron's state is thegenerator potential which is the voltage V
that would be developed by a passive membrane, if the spike generation mechanism could
be blocked. The �ring rate U of the neuron can then be related to its generator potential
V by a function of the form U = g(V ); some common choices forg are:
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ˆ A quadratic-above-zero function, used in [12]

g(V ) = max( V;0)2

ˆ A clipping function, with low/high thresholds TL / TH , as used in [68]

g(V ) =

8
<

:

0; V < TL

V � TL ; TL < V < T H

TH � TL ; V > TH

ˆ A sigmoid function, with slope parameter � > 0, used e.g. in [53]

g(V ) =
1

1 + e� 2�V

Generally such functions are increasing, positive above a certain point, modeling the neces-
sity to surpass a threshold in order to have a positive �ring rate and equal to zero below
that point, since there cannot be a negative �ring rate.

Since the MFR model is commonly used for networks of neurons, one needs to model
also the interactions of neurons; a common assumption is that the e�ect of a presynaptic
neuron with �ring rate equal to U can be modeled as injecting a currentI inj = w�U into the
postsynaptic neuron, wherew is the synaptic strength - negativew stands for an inhibitory
synapse and positive for an excitatory. It is also assumed that there areno interactions
among the synapses and that the total current delivered to the neuron is the sum of the
individual currents. This yields the following expression for the membrane potential V of the
postsynaptic neuron, as a function of the presynaptic neuron �ring ratesUn , n = 1 ; : : : ; N
and membrane potentialsVn :

C
dV)
dt

= �
V
R

+
NX

n =1

wn Un (8)

= �
V
R

+
NX

n =1

wn g(Vn )

where U = g(V )

This is the commonly known additive model of a neuron and is widely used in the neural
networks community.

Another variant of the MFR model commonly used by S. Grossberg and his collaborators
in modeling the dynamics of an ensemble of cells uses synaptic excitation/inhibition to
determine the generator potential of a neuron instead of the simple injected-current model.
Speci�cally, the voltage V of the membrane is given by:

�
dV
dt

= � V gleak + ( Ve � V )ge + ( Vi � V )gi (9)
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where ge =
NX

n =1

we
n Un ; gi =

NX

n =1

wi
n Un Un = g(Vn ) )

�
dV
dt

= � V gleak + ( Ve � V )
NX

n =1

we
n Un + ( Vi � V )

NX

n =1

wi
n Un (10)

In the above equations,Ve, Vi are respectively the maximal/minimal attainable values for V ,
while ge, gi , model the neuron's variable permeabilities to various ions. These are assumed
to be determined by the excitatory/inhibitory input the neuron receives from its neighb ors
U1:::N as in (10) using wi ; we to model the e�ect of the activity Un of each neighboring
neuron on the neuron permeabilities. gleak is used to model the leakage current of the
neuron.

A more elaborate model is that used in [12], where a separate termgsh =
P N

i =1 wsh
n g(Vn )

for shunting inhibition is introduced, that acts in a complementary way to hyper polarizing
inhibition. In that case the evolution equations become

�
dV
dt

= � V gleak � V
NX

i =1

wsh
n g(Vn ) + ( Ve � V )

NX

n =1

we
n g(Vn ) + ( Vi � V )

NX

n =1

wi
n g(Vn ) (11)

Equations (10) and (11) have the implication that V cannot surpassVe or Vi , while in
the additive model V can become arbitrarily large, depending on the r.h.s. of (8). Using (8),
one can model divisive normalization, as was previously discussed, which allows a network
of neurons to function in a wide range of input stimuli without any of its neurons saturating.
A more extended account of the properties of equation (10) is given in [26],§ 21-24.

A note is necessary about the possible misinterpretation of the above equation as being
somehow related to the Hodgkin-Huxley equation (5) since they both somehow describe
networks, use some conductances etc. and are mathematically similar; this similarity is
super�cial, since equation (5) models the membrane current (modeled byVm =R in (9))
while the latter models the e�ect of external (synaptic) input to the neuron's potential
V . Equation (9) describes the evolution of anon-spiking neuron's generator potential in
response to the input it receives, which is transformed into a�ring rate by some function
g; no spike generation is modeled, so these are totally di�erent equations. Apart from
that, they are mathematically di�erent as well, since the coe�cients in (9) are no t voltage
independent.

Despite its common application, the potential-based model has its shortcomings, since
it performs a low-pass �ltering of its input as equation (8) shows. It has been argued that a
more realistic model can be derived using a neuron's synaptic current as the cause of spike
generation, rather than its voltage, which is a low-passed version of the former. The above
considerations lead to the use of the synaptic current model presented in [17] which o�ers
an alternative to the classical potential based MFR models.
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2.2 Network Dynamics

The next step after modeling the behavior of a single neuron is understanding the behavior
of a system of neurons, that form a neural network; in this section we will brie
y review
some common neural network models. Again, the purpose of this section is tutorial; for
the interested reader, an excellent textbook on neural dynamics is [47] while a wealth of
information about biological aspects of neural computation can be found in [17]. A useful
resource has been the web-page [85] and the references therein.

The most common single-neuron model used in the neural networks community is the
additive variety of mean �ring rate neurons, which leads to mathematically tra ctable mod-
els. Even though this model greatly facilitates analysis, it throws away any neuron timing
information [25], that has been proposed as being crucial to the solution of many vision-
related problems related to the binding problem which is at the heart of the segmentation
problem.

For the sake of clarity, we summarize the symbols that will be used in thefollowing
equations:

Ui : output of neuron i , to be interpreted as mean �ring rate of neuron
Vi : internal state of neuron i (generator potential)
I i : input from other layers that is independent of the neuron's state and outputs
wi;j : synaptic connection strength between neuronsN i and N j ; a negative value

stands for inhibition of N i by N j and a positive value for excitation of N i by N j .
g(U): the function transforming a neuron's potential into a �ring rate.

Matrix notation will be sometimes used for convenience, e.g.:

U = W � V $ Ui =
NX

n =1

wn;i Vn ; i = 1 ; : : : ; N

When expressingU as a function of V we shall write U = g(V ) meaning Ui = g(Vi ); i =
1: : : ; N .

2.2.1 Feedforward Dynamics

The simplest type of dynamics occurs when the network operates in a purely feedforward
manner, with lower layers sending their output to higher layers, and no connections in the
opposite direction, shown schematically in �g. 5(a). This structure is the one employed
by many neural networks models for pattern recognition like Multi-Layer Perceptrons and
Radial Basis Functions. In this case, the network dynamics are given by the following type
of equations:

�
dV l +1

i

dt
= � V l +1

i +
NX

j =1

wi;j g(V l
j ) !

V l +1
i; 1 =

NX

j =1

wi;j g(V l
j ); U l +1

i = g(V l +1
i )
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(a) (b) (c)

Figure 5: (a) Feedforward network (b) Single and (c) Multiple Layer recurrent networks

where V l
1:::N are the activations of layer-l neurons. The dynamics of such networks are

restricted and we can use immediately the steady-state value, due to the decoupling of
the network interactions in layers. Most of the research e�ort in the �eld of f eedforward
networks has focused on learning the weights of the connections between the networks in
order to minimize some classi�cation performance criterion, while their dynamical aspects
are ignored. These networks have reduced computational power, compared to their recurrent
counterparts.

2.2.2 Recurrent dynamics

A more interesting case arises in networks where there are connections among neurons lo-
cated at the same processing stage as shown in �g. 5(b),(c), which results inrecurrent
dynamics. There the system as a whole behaves in ways that are global compared tothe
local nature of the computations that are performed on each network node. Such connec-
tions, termed horizontal or lateral are common in the cortex, and a variety of functions has
been proposed as being implemented by such connections.

Linear dynamics

Assume that each neuron sums the input it receives from all of its neighbors, and produces
its output as a linear function of this sum. In this case there is decreased biologicalplausibil-
ity, since the outputs can be negative, or tend to in�nity, depending on the inputs a neuron
receives; however, it is important to see how a system can behave in aglobal way, by per-
forming local computations. From that perspective, we should use the term `computational
unit' instead of neuron, in order to avoid confusions.

The dynamics of such a single layer network can be described by a system of linear
O.D.E.s:

�
dVi

dt
= � Vi +

NX

j =1

wi;j Uj + I i
g:linear

= � Vi +
NX

j =1

wi;j Vj + I i ; i = 1 ; : : : N (12)

where I i is external input from another layer and is considered constant.
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In case the N � N connection matrix W = ( wij ) has N (distinct) eigenvalues � i and
eigenvectorsE i , these form a full basis on which the vectorV (t) can be expressed as

V (t) =
NX

i =1

Ci (t)E i

Substituting into equation (12), we get a set of decoupled O.D.E.s for the expansioncoe�-
cients Ci (t):

NX

i =1

dCi (t)
dt

E i +
NX

i =1

Ci (t)E i = W
NX

i =1

Ci (t)E i + I

=
NX

i =1

� i Ci (t)E i + I
E i E j = �i;j

!

dCi (t)
dt

+ Ci (t) = � i Ci (t) + ET
i I i = 1 ; : : : ; N

) Ci (t) =
ET

i I
1 � � i

�
1 � exp

�
�

t(1 � � i )
1

��
+ Ci (0) exp

�
�

t(1 � � i )
1

�
(13)

Each of these equations describes the evolution ofV along one direction (the one de�ned by
the eigenvectorE i ), Ci (t). The evolution of Ci depends on� i � 1: a negative value results

in Ci (t) converging from any initial condition Ci (0) to its steady state E T
i I

1� � i
, while a positive

value of � i � 1 results in Ci diverging, and subsequentlyV diverging in the direction E i . In
case� i < 1 8i , the steady state value ofV can be written as:

V inf =
NX

i =1

E i I
1 � � i

E i

From the above equation we can see that the directionE i with maximum � i dominates
the �nal outcome: the term that gets weighted most in the above sum is the projection
of the external input I on this direction. The network can thus be seen as a system that
favors certain features of the input, by enhancing the projections of the input on some
directions and suppresses others. The network thus functionsglobally in a way that cannot
be explained by analyzing the behavior of each single computational unit: to say it more
technically, the eigenvectors ofW determine the behavior of the system and not each of its
columns separately. This is in accordance with the common maxim in neural networksthat
`the whole is more than the parts'.

2.2.3 Nonlinear Recurrent Networks

When the �ring rate of a neuron is no longer supposed to be a linear function of its input,the
dynamics of the system become nonlinear and more complicated since we can no longer use
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eigenvalues and eigenvectors as was done in the previous section. The main technique used
for the global analysis of nonlinear systems, whenever it is applicable, is the introduction of
a Lyapunov function that facilitates their analysis.

We will con�ne ourselves to networks with symmetric connections, i.e. wi;j = wj;i , that
allow the introduction of such a function; even though networks with symmetric connec-
tions are of reduced biological plausibility [17] and 
exibility [68], this assumption greatly
illuminates recurrent network behavior. We proceed by presenting models of increasing
complexity, presenting initially discrete Hop�eld networks, subsequently continuous Hop-
�eld networks and �nally a wide class of nonlinear recurrent networks, that were studied by
Cohen and Grossberg.

Discrete Hop�eld Networks

Discrete Hop�eld networks were the �rst recurrent neural networks that were studied in
terms of Lyapunov functions; they were introduced in [52] and since then have been exten-
sively studied and extended (e.g. [47], [5]). The model of a neuron that Hop�eld used was
the McCullogh-Pitts model, i.e. a computational unit that adds its inputs (voltages ) and is
active in case the sum of its inputs exceeds a threshold� I i :

Ui (t + 1) = H

0

@
NX

j =1

wi;j Uj (t) + I i

1

A (14)

where H is the step function. In this equation, Ui is the output of the i th neuron, and
can take values only in f 0; 1g. Hop�eld networks were proposed as models of associative
memories, with memory patternsE i stored as stable points (point attractors) of the system
in (14):

E i = H (WE i + I )

A major di�erence between the dynamics of the systems (14) and (12) is that the intro-
duction of the nonlinearity in the former does not allow the system to converge toa linear
combination of its outputs, as the former does: it can be shown [47] that the network system
will converge to the steady-state that is closest in Hamming distance to the initial state of
the system. This is in sharp contrast with the linear behavior that is re
ected in equation
(12), where the steady state is a linear combination of the system's inputs.

The model of a neuron used is among the simplest and can be classi�ed as a mean �ring
rate model, using the Heavyside function to associate its generator potential

P N
j =1 wi;j Uj (t)+

I i with its �ring rate; it is not the architecture of the model that was the novelty, but the
introduction of the Lyapunov function

E = �
1
2

NX

i;j

wi;j Ui Uj +
NX

i =1

I i Ui (15)

of the system (14). E can be easily seen to be a non-increasing function of time ifwi;j is
symmetric: supposing the value of a single neuron,i is updated each time, the change �E
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in E due to the change � Ui is

� E = �

2

4
X

j

Uj wi;j + I i

3

5 � Ui

However, by (14), � Ui is positive if the term Uj wi;j + I i is positive, so � E can never be
positive. Given that E is a bounded from below function since 0� Ui � 1 8i , any sequence
of changes in the state of the network will eventually lead to a steady point.

By adding to E a constant greater than its minimum, we get a Lyapunov function of
the system (14). A Lyapunov function of a system is an energy-like i.e. positive de�nite
function of the state of a system, that does not increase as the system evolves according to
its dynamics. The existence of such a function means that the system will converge, since
it descends on a bounded from below function. A system may accept a variety of Lyapunov
functions while it may also accept none. The introduction of a Lyapunov function facilitates
analysis of a system's stability and behavior in aglobal way, contrary to the local behavior
that can be analyzed using the inherently local linearization techniques. Systems muchmore
sophisticated than (14) had been studied before, but the introduction of (15) facilitated their
analysis on a �rmer setting.

The input to a Hop�eld network can be considered either its initial state, where it
functions as an associative memory, or the vectorI where it can be seen as a minimizer of
the I dependent energy (15).

Continuous Hop�eld Networks

Continuous Hop�eld networks were presented in [53] and their behavior was analyzedin
terms of Lyapunov functions as well. They retain the collective non-linear behavior of
their discrete ancestors, while being closer to biological models of neurons. Speci�cally, the
outputs of continuous Hop�eld networks are allowed to take continuous values, by replacing
the step-function H in (14) by a continuous sigmoid function g, shown in �g. 6. � plays

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

b = 1

b = 4

b = 100

V

U

Figure 6: g(V ) = 1
1+exp( � 2�V ) for various values of�

the role of a steepness parameter, and for� ! 1 we get the original step-function H , used
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in (14). Using � 6= 0 is much closer to the way we think of a neuron in the MFR model,
since the �ring rate of a neuron is a smooth, increasing function of the input it receives,
and not the binary result of thresholding the input. The passive, smoothing behavior of
the membrane was incorporated in this model resulting in the following dynamics for the
network :

C
dVi

dt
= �

Vi (t)
R

+
NX

j =1

wi;j Uj (t) + I i (16)

Uj = g(Vj ); j = 1 ; : : : N

This system accepts the Lyapunov function

E = �
1
2

NX

i;j =1

wi;j Ui Uj +
NX

i =1

1
R

Z U i

1=2
g� 1(U)dU �

NX

i =1

I i Ui (17)

since we have

dE
dt

= �
1
2

NX

i;j =1

wi;j
dUi

dt
Uj �

1
2

NX

i;j =1

wi;j Ui
dUj

dt
+

1
R

NX

i =1

g� 1(Ui )
dUi

dt
�

NX

i =1

I i
dUi

dt

w i;j = w j;i= �
NX

i =1

dUi

dt

0

@
NX

j =1

wi;j Uj �
1
R

Vj + I i

1

A

(16)
= �

NX

i =1

g0(Vi )=C

0

@
NX

j =1

wi;j Uj �
1
R

Vj + I i

1

A

2

� 0

since g is a nondecreasing function. Usingg� 1(x) = 1
� ln(x=(1 � x)) and integrating, the

term
P N

i =1
1
R

RU i

1=2 g� 1(U)dU can be written as:

1
�R

NX

i =1

(1 � Ui ) ln(1 � Ui ) + Ui ln(Ui ) =
1

�R

NX

i =1

X

Si 2 ON;OF F

pSi ln(pSi )

This can be seen as a negative entropy function, whereUi is taken as the probability of
the random variable Si (S for state) being ON (i.e. the i th neuron �ring ) and 1 � Ui is
the probability of Si being o� (i.e. the i th neuron being silent). The addition of this term
punishes neuron outputsU close to 0 or 1, that is, binary decisions. This is the result of
using a sigmoid function for g, which requires a strong positive or negative input to get a
binary output. Using continuous Hop�eld networks for energy minimization problems was
�rst proposed in [54] and is reviewed in Appendix A.
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Cohen and Grossberg's Recurrent Networks

In [14] Cohen and Grossberg came up with a Lyapunov function to analyze a much broader
class of networks than those presented in the previous sections. Even though S. Grossberg
had proposed these models of networks during the previous two decades, the use of the
speci�c Lyapunov functions for their analysis was �rst presented in [14]. It was shown that
networks that can be written in the form:

dVi

dt
= ai (Vi )

2

4bi (Vi ) �
NX

j =1

ci;j dj (Vj )

3

5 (18)

accept the following global Lyapunov function:

E = �
NX

i =1

Z Vi

�1
bi (x i )d0

i (x i )dx i +
1
2

NX

i;j =1

ci;j di (Vi )dj (Vj ) (19)

if the coe�cient matrix C = jj ci;j jj and the functions ai ; bi and dj obey some conditions
including positivity ai (Vi ) � 0 , monotonicity d0

j (Vj ) � 0 and the matrix C = jj ci;j jj is a
symmetric matrix of non-negative constants.

A broad class of systems can be expressed in the form (18). For example in [32], the
system (16) was expressed in the form (18), by taking

ai (Vi ) = 1
C

bi (Vi ) = � 1
R Vi + I i

ci;j = � wi;j

dj (Vj ) = g(Vj )

9
>>=

>>;
) (18) $ (16)

and the Lyapunov function (19) is in that case:

E = �
1
2

NX

i;j =1

wi;j Ui Uj �
NX

i =1

I i Ui +
1
R

NX

i =1

Z Vi

0
V g0(V )dV; Ui = g(Vi ) (20)

The only apparent di�erence between (20) and (17) lies in the last term, which is actually
the same quantity, as can be seen from the relationV = g� 1(U); henceg0(V )dV = d U and
the limits of integration become

RU i

1=2. Apart from these comparisons, another model used
by S. Grossberg in [14] for a neuron is also of interest to us:

dVi

dt
= � ai Vi + ( bi � Vi )[I i + f (Vi )] � (Vi + ci )[J i +

NX

j =1

wi;j gj (Vj )] (21)

This is, apart from some di�erences, similar to the synaptic excitation/inhibi tion mean �ring
rate model (10), using the following correspondence of terms

RR n ° 6317



26 Kokkinos, Deriche, Papadopoulo, Faugeras and Maragos

(21) (10)
ai

1
R leakage conductance

bi Ve excitation potential
ci (> 0) � Vi inhibition potential
I i

P
n 6= i we

n Un excitation from other neurons
f (Vi ) we

i Ui self-excitation
J i +

P N
j =1 wi;j gj (Vj )

P N
n =1 wi

n Un inhibitory input from other neurons

The main di�erence between (10) and (21) lies in that in (10) excitatory input
P

n 6= i we
n Un

comes from neighbors that are temporally varying and may be a�ected by the value of the
current neuron Vi , while in (21) the excitatory input I i is considered as a constant, coming
from some other layer. However the model (10) is used by S. Grossberg as well,mainly in
his work concerning biological vision.

As discussed in [14], (21) can be written in the form (18) under some suitableredi�nition
of terms

ai (Vi ) = Vi

bi (Vi ) =
1
Vi

[ai ci � (ai + J i )Vi + ( bi + ci � Vi )( I i + gi (Vi � ci ))]

ci;j = wi;j

dj (Vj ) = gj (Vj � cj )

It was shown in [14] that the system (18) accepts a Lyapunov function even ifg is
not invertible, as long as g is nondecreasing; it is therefore not necessary to use a sigmoid
function, but e.g. the clipping function can be used instead.

2.3 Visual System Essentials

The human visual system is organized in separate but communicating layers that perform
increasingly sophisticated operations, starting from cells responding to intensity variations
(in the retina) and ending at highly speci�ed cells that respond to a very distinct class of
visual inputs like a hand or a face. The areas that are of primarily interest for the purpose
of image segmentation are [56]:

ˆ The retina
which is the rear of the eye, and acts like the `camera' of the visual system.

ˆ The Lateral Geniculate Nucleus (L.G.N.)
which regulates the 
ow from the retina to the cortex, with magnocellular and par-
vocellular cells sending to the visual cortex fast & coarse and slow & �ne signals
respectively.

ˆ Area V1 (a.k.a. Area 17, Striate Cortex)
where elementary feature detection takes place. It is there where cells have been de-
tected responding maximally to simple patterns like step edges and bars at prescribed
orientations.
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ˆ Area V2
where the same features as the ones in area V1 are detected, but at a higher level, e.g.
there are cells responding to illusory contours, and with a higher degree of invariance.

In the following, we shall brie
y present some important and well studied cells as well as
some mathematical models that are used to approximate their behavior. These formulae
are neither the only ones that can model the observed behavior of these cells nor perfectly
correct; most of them are based on the feedforward model of computation that has been
advocated by Hubel & Wiesel, but there is certainly place and evidence for more complex
models, using recurrent connections among cells of the same and di�erent layers. We should
therefore keep in mind that the following formulae are more of a qualitative nature, rather
than precise models; in our implementations we use recurrent connections and nonlinear
functions, that deviate from the linear �ltering-like presentation that follow s. The presen-
tation in this subsection follows mainly [56] and [17].

2.3.1 On-O�/O�-On Cells

On-O� cells respond maximally when a bright dot surrounded by a dark region is presented
to their receptive �eld 2, while O�-On cells respond maximally to a dark dot surrounded by
a bright region.

These cells are encountered in the retina as well as in the L.G.N. and can be thought of as
an economical way of presenting an image to the cortex: no other information isuseful, apart
from the location and the magnitude of the change in the input image intensity. Contrary
to what one might think when ignoring the visual system, a retinal cell will not r espond
when uniform light is 
ushed onto it, however bright the light.

A commonly used model for an On-O� cell is a Di�erence of Gaussians (DoG) �lter,
where the cells response is calculated by convolving its input with two Gaussians, one with
a large spread (corresponding to the background region) and another with a smaller spread
(corresponding to the foreground region), taking their di�erence and rectifying:

X On � Of f = [ I � G� 1 � I � G� 2 ]+

X Off � On = [ I � G� 2 � I � G� 1 ]+ ;

where G� i (x; y) =
1

2�� 2
i

exp
�

�
x2 + y2

2� 2
i

�
; � 1 < � 2 [:]+ = max( :; 0)

The receptive �elds of an On-O� and an O�-On cell modeled as a di�erence of Gaussians are
shown in �g. 7. Using suitably selected spread ratios for the two Gaussian �lters (� 2

� 1
' 1:4),

this �lter can be used as a good approximation to the Laplacian of Gaussian (LoG) �lter,
that is routinely used in image processing for edge detection. The DoG �lter approximation
does not fully account for the behavior of On-O� cells cells: these cells are known to perform
contrast normalization, i.e. they are capable of responding in the same way inenvironments

2The receptive �eld of a cell refers to the area of the retina in which appropriate light stimulation evokes
a response in the cell, as well as to the pattern of light stimu lation that evokes such a response.
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(a) (b)

Figure 7: The receptive �elds of (a) On-O� and (b) O�-On cells modeled using Di�erence
of Gaussians �lters

of low and high contrast, which could be modelled by dividing the �lter's output by a local
average of neighboring cell responses. This can be accomplished with shunting inhibition
[12, 31] using lateral connections [43], but is not feasible by the additive variety of MFR
neurons. This is a simple case where using the model (11) instead of the simpler (8) may
account better for the behavior of the visual system cells.

2.3.2 Simple Cells

Simple Cells are located in area V1 of the cortex, and they perform the most elementary
feature detection tasks: simple cells respond maximally to oriented bars orstep edges at a
speci�c orientation and location. For each location and orientation we can think that there
is a simple cell responding maximally to a step-like increase in image intensity, another
responding to decrease in intensity, and two simple cells responding to a bright baron a
dark background and a dark bar on a bright background in that orientation. Of course this
is not a strict rule, since simple cells come in many varieties, but it gives an idea about the
role and functionality of these cells.

The most common and best studied model of the receptive �elds of simple cells uses 2D
Gabor �lters, as proposed in [16]; the outputs of simple �lters are calculatedby convolving
the input image with an appropriate Gabor �lter and half-wave rectifying the out put. Even
though it is not true that simple cells come exclusively in sinus-cosinus pairs [16], it is
most common to use such even/odd symmetric pairs, e.g. for cells detecting changes in the
horizontal direction:

GEven (x; y) = cos(2�kx )
1

2�� x � y
exp

�
�

�
x2

2� 2
x

+
y2

2� 2
y

��
(22)

GOdd (x; y) = sin(2 �kx )
1

2�� x � y
exp

�
�

�
x2

2� 2
x

+
y2

2� 2
y

��
(23)
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k is the spatial frequency of the sinusoidal input that maximally activates the cell, � x

determines the spatial frequency selectivity of the �lter and � y its angular selectivity. Some
commonly used relations for these parameters are [66]:

� x

� y
=

1
2

; b 2 [0:5; 2:5]; where b = log 2

 
k� x +

p
2 ln(2)

k� x �
p

2 ln(2)

!

b is called thebandwidth of the �lter [17] and is de�ned as log2(K + =K � ) where K + > k and
K � < k are the frequencies of the sinusoidal inputs which produce one-half the response
amplitude of an input with K = k. Actually, the �lter in (23) does not have a zero DC
response, as is natural for even-symmetric Gabor �lters. This is undesirable, sincethis �lter
is used to model a cell that should not respond when it is presented with constant input. A
remedy to this problem was suggested in [45] and in [67]: the latter, which seemssimpler,
consists in subtracting from the even-symmetric �lter a Gaussian �lter aG� x ;� y , of the same
spread as the Gaussian in (23). The modi�ed �lter becomes:

G0Even (x; y) = (cos(2�kx ) � a)
1

2�� x � y
exp

�
�

�
x2

2� 2
x

+
y2

2� 2
y

��
(24)

In this way, the �lter's shape stays approximately the same, while its DC response becomes
zero if we set as in [67]a = F [Geven ](0; 0) where F is the Fourier Transform of the �lter.

Alternatively, if the outputs of the previous processing step (On-O�/O�-On cells) are
used as inputs to simple cells, the behavior of simple cells can be approximated byconvolving
the On-O� and O�-On responses with suitably chosen Di�erence-of-o�set Gaussian (DooG)
�lters. We consider the four varieties of simple cells that respond to vertically oriented
inputs, shown in �g. 8. The behavior of these cells can be modeled by convolving their

(a) (b) (c) (d)

Figure 8: (a) On-O�- (b) O�-On cells feeding into a simple cell detecting a bright vertical
bar on a dark background (c) On-O�- (d) O�-On cells feeding into a simple cell detecting
an increase of image intensity from left to right (a step edge); + denotes an excitatory
connection and� an inhibitory connection

inputs (On-O�/O�-On cells outputs) with appropriately elongated and o�set Gaussians:
the ellipsoid in the center of �g. 8(a),(b) is given by

GC (x; y) =
1

2�� c;x � c;y
exp

�
�

�
x2

2� 2
c;x

+
y2

2� 2
c;y

��
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and its two side lobes are given by

GSL =SR (x; y) =
1

2�� s;x � s;y
exp

�
�

�
(x � (� c;x + � s;x ))2

2� 2
s;x

+
y2

2� 2
s;y

��

while for the case of the step edge (�g. 8(c),(d)) we can use for the two lobes:

GL=R (x; y) =
1

2�� r;x � r;y
exp

�
�

�
(x � � r;x =2)2

2� 2
r;x

+
y2

2� 2
r;y

��

The following notation has been used:
� c;f x;y g Spread of central lobe inx / y directions (bar edge)
� s; f x;y g Spread of the side lobes inx / y directions (bar edge)
� r; f x;y g Spread of Left/Right lobe in x / y directions (step edge)

We can rewrite the above equations for an arbitrary orientation � , by making a change of
coordinates of the �lters

G(x; y) ! G(x cos(� ) + y sin(� ); y cos(� ) � x sin(� ))

The responses of the cells are:

L s1
� =

�
X On � Of f � Gc + X Off � On � (GL + GR )�

[X Off � On � Gc + X On � Of f � (GL + GR )]
� +

(25)

L s2
� =

�
X Off � On � Gc + X On � Of f � (GL + GR )�

[X On � Of f � Gc + X Off � On � (GL + GR )]
� +

(26)

L s3
� =

�
X On � Of f � GL + X Off � On � GR � (X Off � On � GL + X On � Of f � GR )

� +
(27)

L s4
� =

�
X Off � On � GL + X On � Of f � GR � (X Off � On � GL + X On � Of f � GR )

� +

whereL si
� stands for the i th variety of simple cells in the � orientation. In each equation, the

�rst two terms model the excitatory synaptic input and the last two the inhibitory input.

2.3.3 Complex Cells

Complex Cells are found in area V1 of the striate cortex, and as their name implies, they
respond in a more complicated way to their input: complex cells arephase insensitive, so
they are insensitive to the sign of intensity change in their receptive �elds. Apart from that,
complex cells may receive input from both eyes, i.e. are binocular, contrary to simple cells
that are monocular. Even though complex cells discard the phase sensitivity of simple cells,
they retain their orientational sensitivity and respond to a limited area of the visual �eld.

Such cells could be assumed to be pooling the outputs of multiple phase-sensitive simple
cells, and simply adding their inputs, or taking their maximum. However, there is evidence
(see e.g.[17], p. 74-76) that the output of a complex cell can be approximated by taking the
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sum of the squares of an even-symmetric and an odd-symmetric Gabor �lter, centered at the
same location and with the same orientational sensitivity. Even though the physiological
mechanism which could accomplish this is not evident, we can use it in our simulations by
squaring and adding the recti�ed outputs of 4 simple cells, 2 of them corresponding to the
even symmetric �lter and 2 to the odd-symmetric �lter:

C� [i; j ]) = [ L 1
� [i; j ]]2 + [ L 2

� [i; j ]]2 + [ L 3
� [i; j ]]2 + [ L 4

� [i; j ]]2

The pair of �lters used constitutes a quadrature pair and the sum of their squares is a
local estimate of the signal energy in that direction.

2.3.4 End-Stopped (Hypercomplex) Cells

End-Stopped Cells -also referred to as Hypercomplex cells- are found in the striatecortex
and have the following distinctive behavior: they respond maximally when their stimulus
is an edge of a speci�c orientation but also of speci�c length and their activity decreases
when they are presented with a longer/shorter edge. Such cells have been conjectured
to implement a neural mechanism for curvature estimation in the visual system,since we
could `build' such a cell to respond maximally when it is tangent to a circle with a speci�c
curvature, by appropriately tuning spatially its excitatory and inhibitory area s. It has also
been argued [45] that the function of these cells is the detection of border terminations, in
case we take their single-stopped variety i.e. end-stopped cells that are insensitive to edge
length on one of their receptive �elds sides and sensitive on the other. Such cells could
be used both as image feature detectors and as cues for the creation of illusory contours:
when many such cells are active along a line, this signals the existence of an occluderthat
has caused the observed edge terminations. Such cells have been modeled by derivatives of
complex cell activations in [45, 46].

2.3.5 Blob Cells

Blob cells have no orientational sensitivity, receive monocular input and carry only color-
related information. Even though they are not directly involved in the estimat ion of con-
tours, they have been proposed by S. Grossberg to be at the basis of the mechanismthat is
used to �ll-in the interior of uniform regions, that is not represented anywhere else in the
visual system. This mechanism deals with the fact that even though only di�erences in the
image excite On-O� and O�-On cells -and subsequently the rest of the aforementioned cells,
we perceive continuous surfaces and not simply their borders. The image brighntessinfor-
mation has to be available somewhere, in order to be further processed; this is where blob
cells could be helpful, as a `bu�er' of surface-related (and not form-related) information.
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3 Stephen Grossberg's Model of Low & Mid Level Vi-
sion

The model proposed by S. Grossberg and his collaborators in a series of papers(see articles
in [30],[31], as well as extensions and reviews in [28, 27, 37, 33, 39]), known as the FACADE
(Form And Colour and DEpth) theory of vision is probably one of the few models toaccount
for such a wide variety of visual functions, based solely on neural mechanisms: starting
with edge detection, it proceeds with contour grouping [36, 35], surface & depth perception
[41, 37, 40] and binocular vision [33, 27, 34, 40], while it has been used asa preprocessing
step for motion analysis [38].

In this versatile model of vision most of the ideas are relatively straightforward, assuming
one has a background in neural computation and biological vision; as a whole, however,
the system becomes complicated, in terms of both its functionality and its analysis. This
is natural, though, for any model of something as complicated as our visual system; the
model's ability to explain a plethora of psychophysical phenomena [33] in a uni�ed way
o�ers support for its plausibility and motivation for studying it in depth, t rying to relate
and compare it with computer vision techniques.

We shall focus on the parts that form the basic building blocks of this model, namely
the Boundary Contour System (B.C.S.) and the Feature Contour System (F.C.S.); these
have been used to model monocular image perception [28, 39] and by adapting them and
their interactions to fuse information from two images at multiple depths they can be used
to model binocular image perception [27, 33]. The interactions between these two systems
are shown in the block diagram in �g. 9. In the monocular case, the Boundary Contour

Figure 9: The interactions between the B.C.S./F.C.S. components

System detects the coherent contours in the image, and sends their locations to the Feature
Contour System. Then, the F.C.S. di�uses isotropically its image-derived input apart from
the areas where there is input from the B.C.S., signaling the existence of an edge. This

INRIA



Biological and Computational Segmentation 33

results in an anisotropic smoothing procedure, where the degree and direction of anisotropy
is determined by the B.C.S.. An optional component proposed in [28, 33] is an Object
Recognition system, that recognizes the objects in the image from their outlines and helps
in the formation and linking of their boundaries. In the binocular case, the left and the
right image edges are fused into a binocular edge map, that is sent as input to two separate
F.C.S.s; each of them forms a monocular image that is consistent with the other one, and
they are subsequently fused in a binocular F.C.S.. This is the case presented in [27],while
in the complete FACADE theory the binocular case is somewhat more complicated [33, 34].

Before presenting in detail the B.C.S. and F.C.S., it would be useful to have in mind a
`road map' of the monocular system's architecture, shown in �g. 10. The stagesmarked

Input 
Image

B.C.S.

Orientational 
Competition Spatial Competition(IV)

Feature detection (II)

Contrast detection (I)

Edge Fusion (III)

F.C.S.

Image

Surface formation
Diffusion,

(V)

Cooperation (VI)

Perceived
-

blob

"von der Heydt" cells
V2

V1

L.G.N.
On/Off - Off/On Cells

Retina

inter-

V1 Complex Cells

Simple Cells

Blob Cells

Hypercomplex Cells - IHypercomplex Cells - II 

Figure 10: (a) A block diagram of the B.C.S./F.C.S. architecture. (b) corresponding areas
in the visual system

with I-III act in a purely feedforward manner, each layer feeding its output to the next and
as a whole they perform an edge detection task; the more interesting part of the model is
the loop between stages IV-VI whose role is to detect and enhance the most salient edges,
and this is where illusory contours and perceptual groupings arise. The interaction of the
B.C.S. with the F.C.S. results in the formation of the perceived image.

Before proceeding with the presentation of the B.C.S./F.C.S. architecture, it should
be noted that the components of these systems have been subject to many modi�cations,
but the architecture and the main concepts have not changed signi�cantly. Therefore we
shall neither present a single proposed variety nor all of them; instead, we have usedthese
components that seemed to combine simplicity and utility and were up-to-date. Several
variations that have been proposed were tried and we present the ones that collectively
gave the best performance. Many thresholding and compression steps that have been used
by S. Grossberg and his collaborators at various stages of the network are not mentioned,
since they do not form, in our opinion, an essential part of the B.C.S./F.C.S. architecture.
Values for the used constants are given in Appendix C, while our comments are gathered
at subsection 3.4. We should also mention that this section is based on the papers cited
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previously; in a recent paper [83] changes to the B.C.S. architecture were proposedwhich
are similar to the ones we have used in our model, presented in the following section, we
keep most of the `discussion' subsection for the B.C.S. model and not for the work in [83].

3.1 The Boundary Contour System (B.C.S.)

The Boundary Contour System detects, enhances and groups the edges that exist in an
image, forming continuous borders by a recurrent among layers process. Every processing
stage involved in this computation has been proposed with a speci�c area and function of
the visual cortex in mind, starting from the retina and ending at area V2. For ill ustration
purposes, the e�ect of each stage on a simple input image, shown in �g. 11, will be shown.

3.1.1 Stage I: Contrast detection

This is the function performed by cells in the retina and the L.G.N.; the equationsused by
S. Grossberg [41, 39] are of the shunting type, which have been presented in section 2.1.2:

d
dt

UOn � Of f [i; j ] = � aU[i; j ] + ( b� U[i; j ])Ci;j � (U[i; j ] + d)E i;j

d
dt

UOff � On [i; j ] = � aU[i; j ] + ( b� U[i; j ])Ci;j � (U[i; j ] + d)E i;j

whereCi;j is the total excitatory and E i;j the total inhibitory input that a retinal cell located
at position [i; j ] receives,b is the maximal attainable output and � d is the minimal. Ci;j

and E i;j are computed by convolving the input image I with Gaussian �lters of di�erent
spreads,� 1; � 2:

Ci;j =
NX

k= � N

NX

l = � N

I [i � k; j � l ]G� 1 (k; l )

E i;j =
NX

k= � N

NX

l = � N

I [i � k; j � l ]G� 2 (k; l )

where � 1 < � 2 for an On-O� cell and � 1 > � 2 for an O�-On cell.
The fact that all the input the cell receives is from a previous layer (in this case the input

image) allows us to pass as output to the next stage the recti�ed state solution:

UOn � Of f
1 [i; j ] =

�
bCi;j � dEi;j

a + Ci;j + E i;j

� +

UOff � On
1 [i; j ] =

�
bEi;j � dCi;j

a + E i;j + Ci;j

� +

The divisor in the above equations accounts for contrast normalization that is performed by
the visual system which allows it to operate over a large scale of inputs without saturating;
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if we multiply the image I by a constant c the new responseU0 shall be related to U by
U0 = 1

1+ a=c U ' U if a << c , while for a linear model it would be U0 = cU.
In �g. 11(b),(c) we show the outputs of On-O�/O�-On cells when presented with the test

image; in this and the following images the outputs of the neurons are shown normalized in
the range [0; 1].

(a) (b) (c)

Figure 11: (a): input image,(b) On-O� cell responses,(c) O�-On cell responses

3.1.2 Stage II: Elementary Feature detection

This is the process accomplished by simple cells in area V1 of the visual cortex; using the
feedforward connections from the previous layer as in section 2.3.2 we can model simple cells
detecting step edges at orientations� = k�=N; k = 1 : : : N :

d
dt

V �; + [i; j ] = � V �; + [i; j ] + C �
i;j � E �

i;j

d
dt

V �; � [i; j ] = � V �; � [i; j ] + E �
i;j � C �

i;j

As in section 2.3.2,� denotes the orientation at which a simple cell detects changes and
+ =� denote whether it is sensitive to an increase or a decrease in On-O� cell activations in
its preferred orientation. C �

i;j ; E �
i;j are the total excitation/inhibition (inhibition/excitation)

cell V �; + (V �; � ) at location [ i; j ] receives:

C �
i;j =

NX

l;m = � N

F �
1 (l; m)UOn � Of f [i � l; j � m] + F �

2 [l; m]UOff � On [i � l; j � m]

E �
i;j =

NX

l;m = � N

F �
1 [l; m]UOff � On [i � l; j � m] + F �

2 [l; m]UOn � Of f [i � l; j � m]
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F �
1 [l; m] =

e
�

8
<

:
(( l � c) cos(� ) + m sin(� ))2

2� 2
x

+
(( l � c) sin(� ) � m cos(� ))2

2� 2
y

9
=

;

2�� x � y
(28)

F �
2 [l; m] =

e
�

8
<

:
(( l + c) cos(� ) + m sin(� ))2

2� 2
x

+
(( l + c) sin(� ) � m cos(� ))2

2� 2
y

9
=

;

2�� x � y
(29)

The expressionF �
1 [l; m] is the value of a 2-D Gaussian with variances along the principal

axes � x ; � y , � y > � x o�set by c to the right and rotated by � . These �lters correspond to
the ones presented in section 2.3.2: e.g. forV �; + , C � is the total excitation received from
On-O�/O�-On cells `appropriately' active within its receptive �eld (that is, with the signs
shown in �g. 12), and E � is the inhibition from `inappropriately' active cells (with opposite
signs). The only di�erence betweenV + and V � lies in that what excites the one inhibits
the other.

In most of the B.C.S. papers only odd-symmetric �lters are used, that can detect step
edges; however in a recent publication [34], the use of even-symmetric �lters was proposed.

The outputs to the next stage are given by rectifying the steady state voltages:

V �; +
1 [i; j ] =

�
C �

i;j � E �
i;j

� +

V �; �
1 [i; j ] =

�
E �

i;j � C �
i;j

� +

3.1.3 Stage III: Edge Fusion, Cue Integration

This is the process that is accomplished by complex cells in layer V1 of the visual cortex;
it is known that complex cells receive binocular input and are phase and color insensitive,
which suggests that they pool information from multiple simple cells. In the monocular case,
the B.C.S. model accounts for this by adding the outputs of simple cells detecting edges at
the same orientation and di�erent directions (increase/decrease):

W �
1 [i; j ] = V �; + [i; j ] + V �; � [i; j ]

If color images are being processed, the related equation is

W �
1 [i; j ] = V �; +

w [i; j ] + V �; �
w [i; j ] + V �; +

b [i; j ] + V �; �
b [i; j ] + V �; +

r [i; j ] + V �; �
r [i; j ]

where Vw , Vb, Vr are the responses of the simple cells that receive input from Black/White,
Blue/Yellow and Red/Green On-O� cells respectively. For the binocular case a more compli-
cated equation is used [34], which includes a recurrent term, that accounts for cross-disparity
competition.
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