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Information diffusion on realistic networks
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Les modèles de diffusion d’information mettent traditionnellement en jeu un réseau sous-jacent dont la topologie re-

produit certaines propriétés observées dans les réseaux réels. Toutefois, la comparaison des phénomènes de diffusion

observés sur des réseaux générés par des modèles classiques avec ceux se produisant au sein de réseaux réels reste peu

étudiée. Dans une démarche empiriste, nous proposons dans cette étude d’évaluer l’écart de comportement induit par

l’utilisation de divers modèles stylisés, dont notamment certains réseaux dits “sans-échelle”.

Keywords: diffusion d’information, modèles de réseaux, validation empirique, simulation, structure de communautés.

Context and rationale

Although the issue of information diffusion has usually been appraised from a theoretical viewpoint, it

stands, above all, for an empirical challenge: real-world networks, yet, are often represented by stylized

hypotheses and it remains unclear how much diffusion dynamics may be affected by such assumptions. In

particular, while information diffusion had been principally addressed by social scientists with a qualitative,

ethnographic approach [Rog95, Val95], it progressively became crucial to correctly understand the effect

of underlying network structures. This happened initially on stylized network structures using common

network morphogenesis models such as Erdős-Rényi random graphs or simpler settings such as complete

graphs or grid-based networks [ER59, Mor00, ZCB96].

These models seemed rather less realistic after a more empirical insight has recently been encouraged

by findings from computer science and statistical physics concerning several kinds of real-world networks

and highlighting a series of topological features, such as power-law (“scale-free”) degree distributions,

high clustering, short network diameter [WS98, FFF99, BA99, BT02, inter alia, in both Internet and so-

cial networks]. In particular, in the wake of a key result by [PSV01] suggesting that such networks have

epidemiologic properties which are radically distinct from those of ER networks, in more recent diffusion

models, scale-free networks are often used [GMT05, CAB06].

However, even if some authors insisted on the need for realistic topologies [ZCB96, BT02], it is unclear

how accurately present models and corresponding analytic solutions or simulations render real-world phe-

nomena. If indeed topology has a key impact on these phenomena, to which extent does the use of more

or less stylized assumptions affect modeling results? On the other hand, to our knowledge, information

diffusion models have scarcely been effectively simulated on real communication networks, while such

approach obviously guarantees that all structural features of a real-world network are present.

In line with recent efforts at appraising the role of various topologies [GMT05, CAB06] the aim of this

paper is thus to push the comparison to more realistic benchmarks. We focus on a particular communication

network, an empirical social network, as a preliminary case study. We introduce a simulation framework to

evaluate the accuracy of classical topologies in rendering phenomena occuring on this real-world network,

using notably various stylized scale-free networks as (best) approximations of the real-world network.
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Figure 1: Left: cumulated degree distributions for the various network structures (x-axis: degree k, y-axis: N (k) =

∑∞
k′=k N(k′)). Right: Simulation results for complete, Erdös-Rényi, Scale-Free, Event-Based and real networks, using

λ = 0.02 (outset) and λ = 0.002 (inset), along with associated 99% confidence intervals.

Simulation framework

We consider a set of N agents and a single piece of information: system state is described at any time t by

a vector c(t) ∈ {0,1}N , such that ci(t) = 1 if the i-th agent knows the piece of information at t, otherwise

ci(t) = 0. We assume knowledge acquisition to be strictly growing: agents cannot forget. The initial

setting is such that a given proportion λ of agents are initially “informed” (i.e. λN agents), while others are

“ignorant” (i.e. (1−λ)N). Our discrete time simulation features knowledge exchange during interactions.

At each time step an interaction occurs (between a target agent i, randomly chosen among the population,

and one of its neighbors j, randomly selected), leading to transmission of information if the chosen neighbor

j is informed (c j(t) = 1 ⇒ ci(t) = 1).

We measure the ratio of informed agents ρ among the whole population over time, ρ(t) = 1
N ∑N

i=1 ci(t),
while using a totally random initial spread of informed agents (only ρ(0) = λ). This part of the protocol

remains extremely simple so that effects are both easily comparable across other conditions as well as

already yielding significantly contrasted results.

Topologies

We consider a real network from the Medline database describing collaborations between embryologists

working on the model-animal zebrafish: nodes are authors and links represent coauthorship. We consider

only the largest connected component: 6453 agents, 67392 undirected links, from 2476 publications. Its

degree distribution (Fig. 1) exhibits a power-law tail with a flatter head, typical of such social networks

[BA99]. Starting from this real network (RN), we then investigate several network topologies created by

progressively degenerating the original structure, i.e. by keeping less and less topogical features:

• “Scale-Free” (SF) network built from RN by reshuffling links while preserving the original degree

distribution [MR95]. Total numbers of agents N and links M are also identical to RN, the original

density d = M/N(N −1) is thus preserved.

• Erdös-Rényi (ER) random graph [ER59] that only preserves the original RN density (same numbers

of nodes N and links M), while the degree distribution is roughly Poisson.

• Complete Network (CN), which only shares the number of agents N with RN — each agent is con-

nected to all other agents, the total number of links is thus N(N −1)/2.

Clustering structure. Apart from degree distributions, the clustering structure is of particular interest;

some authors suggest it might significantly alter information diffusion [BG98, Mor00]. The usual definition

of “clustering” relies on the proportion of transitive triples, or average proportion of neighbors of node i who
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are also connected together: c3(i) = [number of pairs of connected neighbors of i]
ki·(ki−1)/2

with ki degree of node i. Empirical

networks are known to exhibit an abnormally high average clustering coefficient 〈c3〉, compared to those

found in SF and ER random networks [BT02, NP03]; models traditionally endeavor to rebuild this statistical

parameter as well. Here, RN also exhibits a high 〈c3〉 of .827 while SF has only a 〈c3〉 of .00539.

In an attempt to reconstruct a network topology that preserves both degree distribution and high 〈c3〉, we

consider a last network model mimicking the original collaboration structure, i.e. its event-based structure:

• Event-Based (EB): we introduce a bipartite graph featuring agents on one side, events on the other

side, and first assign to each agent and respectively to each event a “degree” drawn from empirical

“agent-event” degree distributions. In other words, we thus maintain the original number of events

featuring a certain number of agents, and reciprocally. Then, we link agents to events randomly,

respecting their respective degrees. Finally, we compute the projection of this graph onto agents to

build the collaboration network: two agents are linked when they participate in the same event.

EB network is closer to RN than SF in the sense that it keeps more topological features: it conserves the

degree distribution, like in the SF case, it also preserves the 〈c3〉 clustering structure, unlike in the SF case

(the clustering coefficient is high because of the clique-addition process precisely due to the projection)

[GL04]. This is fairly well confirmed empirically, as shown on Fig. 1 and Tab. 1.

If we consider a recently-introduced, simple but finer clustering parameter, “〈c4〉”, which relies on the

proportion of transitive diamonds or average proportion of common neighbors among the neighbors of

a node i [LGH05] — c4(i) =
∑

ki
i1=1 ∑

ki
i2=i1+1 κi1,i2

∑
ki
i1=1 ∑

ki
i2=i1+1[(ki1

−κi1,i2
)(ki2

−κi1,i2
)+κi1,i2 ]

where κ j1, j2 is the number of nodes

which the j1-th & j2-th neighbors of i have in common (leaving out i) — we see that EB falls short of one

order of magnitude for 〈c4〉, suggesting that even EB still misses part of the community structure.

To summarize, we considered five distinct topologies: (i) real network RN, (ii) event-based network EB,

(iii) scale-free network SF, (iv) Erdős-Rényi random graph ER, (v) complete network CN.

RN SF ER CN EB

N 6453

M 6.74 ·104 2.08 ·107 7.62 ·104

d .00162 .5 .00183

degree dist. power-law tail Poisson — power-law tail

〈c3〉 .827 .00539 .00199 1 .753

〈c4〉 .284 .000444 .000261 1 .0443

Table 1: Main characteristics of the various network structures: number of nodes N, number of links M, density d,

degree distribution shape, clustering coefficients 〈c3〉 & 〈c4〉 (averages over 1000 networks for SF, ER & EB).

Simulation results

A set of 1,000 random instances of each kind of network is created (excepted for real and complete net-

works, naturally unique). For each instance, we only work with the largest connected component, which is

never made of less than 99.9% of the nodes (i.e. in the worst case, a negligible number of nodes is discon-

nected and left out). The simulation is initialized with a fraction λ of informed nodes. The asymptotic state

of the system is obviously ρ(∞) = 1.

On Fig. 1 is plotted the temporal evolution of the average ρ for each network topology. The closer we

are from the real network, the slower the dynamics — CN performs the fastest, RN the slowest. More

precisely and most surprisingly, ER and SF networks seem to behave identically with extremely similar

convergence shapes. On the contrary, the behavior of EB is slower than other topologies, even being the

best approximation of RN, yet still very unsatisfactorily rebuilding the original diffusion phenomenon.

Hierarchy in convergence speed is independent of λ (see Fig. 1): CN always performs fastest, followed

by ER and SF, then EB, and finally RN, which is slower than on any other topology studied here.

It may thus well be far from sufficient to focus on the SF structure only: not all SF networks are equal

[EK02, BT02] and, here, the most random SF network actually displays a behavior more similar to ER
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than to RN. In contrast and in particular, EB results suggest a special influence of community structure in

general, consistently with common claim in innovation studies that when agents are likely to interact more

with agents they know and less with “remote” agents, it is less beneficial to knowledge propagation [Gra73,

BG98] — denser clusters arguably provide more redundancies in the distribution of information among

neighbors: as [Gra73] puts it, “if one tells a rumor to all his close friends, and they do likewise, many will

hear the rumor a second and third time, since those linked by strong ties tend to share friends.” A previous

study by [BG98] argued that overlapping neighborhoods tend to make the diffusion of innovation slower,

[EK02] later noted that epidemic threshold in highly clustered scale-free networks exhibited differences

with the result for randomly-wired scale-free networks. This might explain why we get slower diffusion

with EB than with SF, and even slower diffusion with RN, whose allegedly complex community structure

could not be wholly reproduced, as illustrated by very different 〈c4〉 values.

Concluding remarks

Even with a very simple diffusion protocol, none of the topologies presented here rebuilds anything close to

what the real network yields; here, SF behaves like ER but very differently from RN, opposite to common

claim that SF topology is a crucial improvement over ER — local community structure seems to affect

results even more than degree distributions, as partially suggests EB. The jury may thus still be out as to

which topological features should absolutely be present in an artificial network for it to behave realistically

for some given diffusion phenomena. Meanwhile, when possible, it could be safer to use real network

topologies when developing diffusion models, through simulations which should first demonstrate that

diffusion behaviors match.
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