U. Alon, N. Barkai, and D. A. Notterman, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences, vol.96, issue.12, pp.6745-50, 1999.
DOI : 10.1073/pnas.96.12.6745

A. Ben-dor, L. Bruhn, and N. Friedman, Tissue Classification with Gene Expression Profiles, Journal of Computational Biology, vol.7, issue.3-4, pp.559-584, 2000.
DOI : 10.1089/106652700750050943

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Liu, Q. Cui, and T. Jiang, A combinational feature selection and ensemble neural network method for classification of gene expression data, BMC Bioinformatics, vol.5, issue.136, 2004.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

L. Breiman, Arcing classifiers. The Annals of Statistics, pp.801-849, 1998.

M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet et al., Knowledge-based analysis of microarray gene expression data by using support vector machines, Proc. Natl. Acad. Sci, pp.262-267, 2000.
DOI : 10.1073/pnas.97.1.262

S. Cho and H. Won, Machine learning in DNA microarray analysis for cancer classification, Proceedings of the First Asia-Pacific bioinformatics conference on Bioinformatics 2003, pp.189-198, 2003.

N. Cristianini and J. Shawe-taylor, Support Vector machines, 2000.

M. Dettling and P. Buhlmann, Boosting for tumor classification with gene expression data, Bioinformatics, vol.19, issue.9, pp.1061-1069, 2003.
DOI : 10.1093/bioinformatics/btf867

S. Dudoit, J. Fridlyand, and T. P. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data, Journal of the American Statistical Association, vol.97, issue.457, p.97, 2002.
DOI : 10.1198/016214502753479248

M. B. Eisen and P. O. Brown, [12] DNA arrays for analysis of gene expression, Methods Enzymbol, issue.303, pp.179-205, 1999.
DOI : 10.1016/S0076-6879(99)03014-1

T. Evgeniou, M. Pontil, and A. Elisseeff, Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers, Machine Learning, vol.55, issue.1, pp.71-97, 2004.
DOI : 10.1023/B:MACH.0000019805.88351.60

T. S. Furey, N. Christianini, N. Duffy, D. W. Bednarski, M. Schummer et al., Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, vol.16, issue.10, pp.16906-914, 2000.
DOI : 10.1093/bioinformatics/16.10.906

T. R. Golub, D. K. Slonim, and P. Tamayo, Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-538, 1999.
DOI : 10.1126/science.286.5439.531

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, vol.46, issue.1/3, pp.389-422, 2002.
DOI : 10.1023/A:1012487302797

K. Jong, J. Mary, A. Cornuejols, E. Marchiori, and M. Sebag, Ensemble Feature Ranking, Proceedings Eur. Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2004.
DOI : 10.1007/978-3-540-30116-5_26

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Khan, J. S. Wei, and M. Ringner, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, vol.7, issue.6, pp.673-679, 2001.
DOI : 10.1038/89044

. Li, . Darden, . Weinberg, and P. Levine, Gene Assessment and Sample Classification for Gene Expression Data Using a Genetic Algorithm / k-nearest Neighbor Method, Combinatorial Chemistry & High Throughput Screening, vol.4, issue.8, pp.727-739, 2001.
DOI : 10.2174/1386207013330733

I. Lossos, A. Alizadeh, and M. Eisen, Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas, Proceedings of the National Academy of Sciences, vol.97, issue.18, pp.10209-10213, 2000.
DOI : 10.1073/pnas.180316097

W. S. Noble, Support vector machine applications in computational biology, Kernel Methods in Computational Biology, pp.71-92, 2004.

M. Schummer, W. V. Ng, and R. E. Bumgarnerd, Comparative hybridization of an array of 21 500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas, Gene, vol.238, issue.2, pp.375-85, 1999.
DOI : 10.1016/S0378-1119(99)00342-X

A. C. Tan and D. Gilbert, Ensemble machine learning on gene expression data for cancer classification, Applied Bioinformatics, issue.23, pp.75-83, 2003.

V. N. Vapnik, Statistical Learning Theory, 1998.

Y. Xu, F. M. Selaru, and J. Yin, Artificial neural networks and gene filtering distinguish between global gene expression profiles of barrett's esophagus and esophageal cancer, Cancer Research, vol.62, issue.12, pp.3493-3497, 2002.