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with a Historical Note by Matthias Felleisen

Abstract

The historical design of the call-by-value theory of cohtadies on the reification of evaluation con-
texts as regular functions and on the use of ordinary terrficaion for jumping to a continuation.
To the contrary, thd,., control calculus, developed by the authors, distinguisie¢seerjumpsand
terms This alternative calculus, which derives from Parigdtis-calculus, works by directructural
substitutiorof evaluation contexts. We review and revisit the legacytigs of control and argue that
A+ Provides an observationally equivalent but smoother théoran additional note contributed by
Matthias Felleisen, we review the story of the birth of cohtalculi during the mid to late eighties

at Indiana University.
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1 Introduction

TheA,-calculus (Felleiseet al,, 1987) was introduced to reason about Scheme programs.
It came with an operational semantics and a reduction thearyhis initial theory was

not pure, in the sense that one of the rules was applicabjeadihe top of a program. To
address this issue, Felleisen and Hieb introducedthrevised reduction theory (Felleisen

& Hieb, 1992) that was exclusively made of contextually daduations. Both reduction
theories, together with the operational semantics, saffewv weaknesses:

- None of the reduction theories directly expresses theatjperal semantics: reduc-

tion and operational semantics coincide only at the obsienal level.
To simulate the operational semantics, the reduction sgoshave to accommodate
the following reduction rule:

¢c: E[€M] — F(AkM(Ax .« (KEX)))

However, it turns out that both reduction semantics are antigent when extended
with this rule.

The revised theory has a complex notion of answers: An atialu may simply yield

a value, or produce an answer of the shaf@k.V) (with V possibly containingy)

or produce an answer of the shagéA k. kV) (again withV possibly containingy).

In the latter case, wheéw does not contaik, one would expect an additional reduc-
tion that eliminates the superfluodsapplication:

Gelim: € (AkkM) — M knotfreeinM

However, it turns out that the addition of this rule to theisedA, reduction seman-
tics breaks confluence. Regarding these observationsj$egiland Hieb write: “We
leave unsolved the problem of finding an extended theoryitichides¢t or %eiim
and still satisfies the classical properties of reducti@otles”.

A, IS ot as expressive as one might expect. For instance, $heal1/cc opera-
tional semantics

Elcall/cc(AkM)] — E[MAx o E[X/K]

cannot be simulated. Indeed, if we ukg. % (Ak.k(xk)) as standard encoding of
call/cc, one gets

E[call/cc(AkM)] +—» (AxZE[X)(M[Ax. o/ E[x]/K])
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which does not converge B[M[AX. <7 E[x]/K]].

- The revised theory contains an expansion rigigg) which can be applied infinitely,
thus breaking normalization even in a typed setting.

The calculusA,,, provides a solution to the above problems, and thus can beaee
a replacement oh,. The calculusA,,, is a call-by-value reformulation of Parigotsu
(Parigot, 1992), wherg@ is renamed int¢%’. It also contains a special constant calted
which denotes the top-level continuation, making expticé abortive capabilities of..
The essential design differences betwaemndA,., are the following:

- A4, has specific variables for contexts whilg does not;

A, reifies contexts as functions and moves them around usingtdéimelard substi-

tution of A-calculus whileA,,, uses a specific notion aftructural substitutiorof

contexts;

- A4 Syntax forces calls to continuations to be abortive wilijeuses a specific
reduction rule for this purpose;

A, does not have a special constant for the top-level coniiouiat

The calculus\,,, comes with a simple operational semantics expressive értolgimu-
late the semantics af11/cc, as described above. It is also expressive enough to sieulat
the operational semantics &f, while the converse is false.

The calculus\,,, comes with a confluent reduction semantics which, to theraonof
A, can simulate its own operational semantics. It remainflwent when extended with a
rule equivalent t&sg and it is strongly normalizing in the simply-typed setting.

Since A,,, reduction semantics simulatds,, operational semantics, which itself can
simulateA, operational semantics, which itself cannot be simulated byeduction se-
mantics, it follows that the reduction theoriesifandA.., do not simulate each other, as
already observed in (Ong & Stewart, 1997). However, sihceperational semantics and
reduction semantics are equivalent with respect to thergasenal behavior of a program,
the same holds for the reduction semanticd odndA.,,. In short: AA, program reduces
to an answer if and only if the correspondihg, program reduces to an answer.

The reduction theory oh,,, can be formulated either on terms or on jumps. If one
formulates it on terms, it shares with tie revised reduction theory the complexity of
the notion of answer. However, if we formulate it on jumpsdave execute jumps of the
form tpM), the evaluation produces results of the unique shape A similar approach
can be done i, too: By considering evaluation in an abortive contexttlaiée forms of
answers collapse to a single one.

The paper is organized as follows: Section 2 introdugeseviews its main properties,
and individuates its shortcomings. Section 3 introduggsand shows how it solvek,’s
defects. These two sections discuss also the relationgtipelen the different notions
of operational and reduction semantics for the two calcséiction 4 summarizes the
agreement on the observational behaviora.oéndA.., (Figure 8) and the discrepancies
regarding the operational semantics (Figure 9). We corcindection 5 together with a
historical note by Matthias Felleisen.
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x,a,V, f,c ke Vars

M,N e Terms i= X|AXM|MN | bortM| &M
V ¢ Values i= X[ AXM
E € EvCixt x= O|EM|VE

Fig. 1. Syntax ofA,

2 Thelndiana Theory of Control

We start with the syntax of, and its operational semantics. We presentitraputational
reduction semantics given in (Felleisetral., 1987) (this is referred to as the initial theory).
This theory has two weaknesses:

- it contains one rule, called@mputationafule, which is only applicable at the top
of a program;
- the rules are not complete with respect to the operatiarabstics.

Next, we give the revised reduction semantics from (Fallei& Hieb, 1992). This the-
ory characterizes the computational rule in terms of two gatible rules i(e. applicable
in any context). Thus, solving one problem with the origittedory at the expenses of
complicating the correspondence with the operational séicga We discuss how this
relationship could be simplified by reducing a program in aipalar context, which
intuitively captures the execution of a program at the ®yel prompt. This execution can
be carried out in a restricted theory; we investigate itpprtes. As discussed in (Plotkin,
1975), the relationship between the reduction theory anglvatuator should be mediated
by a standardization theorent-or the initial, the revised and the restricted theories we
define a notion of standard reduction and of weak-head reggiugte. a notion of standard
reduction that stops at values).

2.1 Syntax and Operational Semantics

Figure 1 introduces the syntax of a call-by-value calcukisrmded with the unary operators
«/bort and%. Variables and lambda-abstractions are called values.

The operational semantics of such a language can be dessanitist concisely using the
following operational rules, which rewrite complete pragns:

B: E[AXM)V] =), EMI[V/X]
a/bortr. : E[&ZbortM] +—,_ M
e E[¢M] +,, M(Ax.«/bortE[X)

The reflexive-transitive closure ef,_ is denoted by—-)_. In each of the rules, the entire
program is split into an evaluation conté&and a current redex to rewrite. The evaluation
contextE is a term with exactly one hole, written &% in it. It represents what to do after
the execution of the redex and is referred to ascimatinuation The first rule expresses
what to do when a function is applied to a value: the argumesubstituted for each
free occurrence of the bound variable in the function’s bashycording to the second
operational rule, the application a¥bort to a termM aborts the current continuation
(i.e. E) and returnsV to the top-level. For example, one has:

1+ @bortM + 3 +—,, M
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where in this case the abandoned context is [ + 3. According to the last rule, the
application of¢ to a termM abandons the current evaluation context and applige
a procedural abstraction of that context. Note the presehtige abort operation in the
abstracted context, which {@x. «Zbort E[x]) and not(Ax.E[x]). This distinguishes con-
tinuations from regular functions. A function returns te taller once completed, whereas
the invocation of a continuation causes the context of tipdieation to be discarded.

We will use theA,-term% (Ac.1+ c2+ (1 + 1))+ 3 as our running example.

Example 2.XEvaluation of¢’ (Ac.1+c2 + (1 + 1)) +3)

The term%@ (Ac.1+ c2 + (14 1)) + 3 is split into the evaluation contekt+ 3 and the
redex% (Ac.1+ c2+ (1+ 1)). The current evaluation conteXt+ 3 is abandoned and
the argument o¥’ is applied to a procedural abstraction of that context:

% (Ac.l14+c24+(1+1)+3 ), (Acl+c2+ (1+1))(Ax.a/bort(x+ 3))
Continuing with the evaluation:
(Acl+c2+ (14 1) (Ax.abort(x+ 3)) ), 1+ (Ax./bort(x+3))2+ (1+1)
The invocation of the continuation abandons the callingedrl + O + (1 + 1):
14+ (Ax./bort(x+3))2+ (1+1) —,, 1+ bort(24+3)+ (14 1)) —=,, 5

% is at least as expressive adbort; it can be used to define an operatdrequivalent
to «7bort:

gM & F(Ak-M) wherek does not occur free i (Abbrev. 1)

To capture the proviso we often usevhich refers to an anonymous variable, and write
/M as? (A_.M). If we replacez;? " by

©1e -E[€M] =), M(AX. &/ E[X]),
then/borty., wheree/bort has been replaced by, becomes derivable:
E[#M] =), (A_M)(Ax. & E[X]) =), M.
Hence, we have the following result:

Proposition 2.2
For M with no occurrences of/bort,

M -, V with rulesp,, o/ bortr_and%;7 " iff M —-, V' with rulesp, and%,
whereV’ isV where eachzbort has been replaced by

We will therefore focus of¥” in the remainder of the paper, and, unless stated otherwise,
uses/ andy, instead ofe7bort, «7borty, and%;7o",

2.2 Felleisen-Friedman-Kohlbecker-Duba Reduction Semantics

The initial reduction semantics @f, in (Felleiseret al., 1987) is characterized by a combi-
nation ofcongruentreduction rules (written—¢) applicable at any place of an expression
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Bv: (AXM)V —¢ MNV/X
G: (EM)N —¢ CAcM(Af.(c(fN))))
Er: V(€M) —¢ CAcMAxH(c(VX)))
¢r: €M b M(AX X)
Fig. 2. Reduction and computation rules of call-by-valye
(Felleisen-Friedman-Kohlbecker-Duba)

and of a so-calledomputationakule (written«.) applicable only at the top-level of a
computation. The rules are on Figure 2.

The local reduction rules are intuitively related to the rapienal rules as follows.
Instead of capturing the entire evaluation context surdignan invocation ofs” in one
step, the rule®] and%r allow one tdlift the control operation step-by-step until it reaches
the top-level. At that point, rul&T applies the abort continuation. Tiereduction—-¢
is defined as the reflexive-transitive closure-ef. TheC-computation-. is defined as the
union of —¢ and>; . Its reflexive-transitive closure is writtesj. Its reflexive-symmetric-
transitive closure is writte&=c. The C-computation>¢ is proved to satisfy the diamond
property.

Example 2.3Reduction of6 (Ac.1+c2+ (1+ 1)) + 3)

¢(Ac.l+c2+(1+1)+3 —c b
€ (Ac.(Ac.l+c2+ (1+1)(Ax(d(x+3))) —c B
C(Ac. 1+ (Ax.o(c(x+3)))2)+ (1+1)) —¢  Bu
€ (Ac. 1+ (c(243))+(1+1)) —

€ (Ac. o (c(2+3))) Do
(Ac. o (c(2+3))) (Ax. & X) —¢
&7(&75) Dy
(A_.5)(AX. o X) —c¢ By
/5 >er
(A_5) (AX. ' X) —c¢ By
5

2.2.1 Weak-Head Reduction

Apart from ther4;, rule, the other rules can be applied in any order, includinden a
lambda-abstraction and@-abstraction. However, to use the reduction theory to reaso
about evaluation, it is important to define a notion of reducivhich mimics the evaluator.
To that end, one defines the notion wéak-headreduction. TheC-computation has a
natural notion of weak-head reduction (called standardicgon function in (Felleisen
et al, 1987), following Plotkin’s terminology (Plotkin, 1975))/e say thaM weakly head
reducesto N for —¢, written M ﬂ’c N, iff M has the formE[P], whereP is a3, 4L or

‘¢r redex that reduces @, andN is E[Q] (i.e.reduction occurs in an evaluation context

position). The notationmc stands for the reflexive-transitive closureweht. We say that
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) h . .
M weakly head reduces N for >¢, writtenM ‘évc N, iff M MQC N or M N. The notation
wh h
>¢ stands for the reflexive-transitive closure%f

Example 2.4Weak-head reduction & (Ac.1+c2+ (1+ 1)) 4+ 3)
We write &% for the abort continuatiod x. o7 x. We divide the reductions in different
groups separated by a blank line. Each group will collapsearsingle step shortly.

F(Acl+c2+ (1+1)+3 wh
F (A (Ac14+c2+ (1+ 1)) (Ax.o (¢ (X + 3)))) Doy
(Ad.(Acl+c2+ (1+ 1) (Ax.o (< (X+ 3)))) .
(Ac.14c2+ (1+ 1)) (Ax. o (o (X + 3))) wh
1+ (Ao ((x+3)) 2+ (1+1) LA
1+ (H(2+3) + (1+1) LA
1+%€(Aq (A% (2+3) Az« (q(z+ (1 + 1))))) wh
CAr(Aq. (Ao (2+3)(Azd (q(z+ (14+1))))) (Aw.e/ (r(1+w)))) b
Ar.(Ag- (A o4 (2+3)) Az (q(z+ (14 1))))) (Aw.o (r (1 +w)))) o wh
(A0 (A% (2+3))(Az A (d(z+ (1 +1))))) (Aw. o (2%(1 + w))) .
(Ao (2 +3) Az o (Ao (4 (L + W) (z+ (1 + 1)) e
(Ax./X) (2 + 3) .
(AX. /' X)5 ﬂ‘c
/5 I><5T
(A_5) (Ax.7X) LA

5

The following proposition extends the unique context lemmgelleisen & Friedman,
1986) to terms with free variables:

wh
Proposition 2.5Unique context lemma for)

LetM be a term im\,. Exactly one of the following cases occurs:

- Mis avalueV (we also say tha¥l is ananswe}.
- M has a unique decomposition under the f&fR] whereP is afy, €. or g redex.
- M has the forn¥’N which is a>¢; redex.



ZU064-05-FPR

jfp-final 7 August 2007 15:38

8 Zena M. Ariola and Hugo Herbelin

- M has a unique decomposition under the f&frV] in which caseM is saidto have
its weak-head reduction stopped

Especially, a weak-head redex, if it exists, is unique.

Observe now that iM weakly head reduces td by 4| or %R, then it is necessarily
weakly head reducible further by a sequence (possibly enabtyi. or ¢k, ended by«
and by as many, as the number o&. or r. We write|><gTE* for such a combination of
rules (which generalizesy, ):

Cre E[¢ M| D, ME*
whereE* is defined as:

o AX. o X
EvVO* Ax. o/ (E* (VX))
E[ON]* = Ax.&/(E*(xN))

Example 2.6Alternative weak-head reduction@f(Ac.1+c2+ (1 + 1)) + 3)

F(Acl+c2+(1+1)+3 S,
(Ac.14c2+ (1+ 1) (Ax.o (Ax.&X) (X + 3))) wh
14+ (Ax.o (A %) (X+3)) 2+ (1+ 1) wh
1+ (Ax /X)) (2+3))+(1+1) D,
A (Ax@X) 2+ 3)) Az o (AW (Ax 2 X) (1 +W)) (z+ (1+ 1)) D¢
(AX. %) (2 + 3) wh
(AX. /' X)5 MQC
o/ 5 chTE*
(A_.5) (AX. ./ X) L
5

Comparing it with the reduction in Example 2.4, one has thafitst¢T_, step corresponds
to one lifting step, one; step and on@, step. The secorfdr.. corresponds to two lifting
steps, one; step and twgB, steps. The lastt., corresponds to ones stepl

Moreover, ifM is of the formAk. N, thenE[€ (Ak.N)] weakly head reduces further to
N[E*/K]. This leads to the following variant ongE* :

G E[COKN)] bg  NEJK

Let%| , g and%; be the restrictions ofi, $r and¢7 that apply only when the body

. : ... wh .
of ¢ is not an abstraction. Wntm‘ﬁ Gr. By for the union of><gTE* and weak-heag,, and
wh

D> oo fOr the union of.,
é{'E* KT KL KR BV é-l/—E "

and weak-head reduction &%, ¢, 65 andp,
redexes, we get the following equivalence:

Proposition 2.7 Alternative characterization of w.-h. red. in initial theg
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wh wh wh
Mz Viff M 1>*<5TE*&,V iff M D*%E*%T_%L_%R_&, V. Moreover, the Unique Context Lemma

wh
still holds by replacing items 2 and 3 in its statement by thleg composing»*(ﬁE*&, or

wh
by the rules composi oo
y P ngk%ﬂz* 1 6. tr By

2.2.2 Operational Semantics vs Weak-Head Reduction

The formulation of weak-head reduction in terms#f, andp, allows one to compare
it to the operational semanticg;, steps match butt., steps do not. Indeed, the weak-
head reduction reducds[4¢’M] to ME* while the operational semantics reduces it to
(M (Ax. &/ E[X])). Consider our example term, the operational semanticsshindtinu-
ation variablec to Ax. & (x + 3), whereas the weak-head reduction binds

(Ax. o (Ax. 2 X) (x+ 3))) .

In general, the problem is that the operational semanfissttie context at once, whereas
the reduction theory lifts the control operation step-bsps Unfortunately, each lifting
introduces a newk-abstraction to represent its partial continuation. Theliaptions of
these partial continuations, like the application

(Ax. & X) (X + 3)

above, cannot be simplified because the argument is not &.vahe relation between
Ax.o/ E[x] andE* has been investigated in (Felleisenal, 1987). This relation, written
~p in (Felleisenet al., 1987), turns out to be expressible frg@nand the following two
additional rules:

Ba: AX.AZEX)M — JE[M]

Gidem: E(AC.EM) — F(AcM(AX X))

Both rules are observationally sound (especially, the “en will be discussed in Sec-
tion 2.3). This leads to the following reformulation of Thiem 4.7 in (Felleiseret al.,
1987) (we need Proposition 2.2 as the original result isdtédr—,  with <bort, i.e.
with the operational ruleg:?*°" and.«/bortr. ):

Theorem 2.&Simulation of oper. sem. by weak-head red. for initial tlygor

wh
M =), Viff MgV’ for someV’ such thav'—-p 4. s V.
wh
Especially, itV is ¢-free,M +—,_V iff Mg V.

Example 2.9A A,.-term and its evaluation and weak-head reduclion

Weak-head reduction of our example term is able to reachahe\produced by the opera-
tional semantics. Consider instead the téfifA k. k (A x.k)) z. According to the operational
semantics, one has:

€ (Akk(AxK)zissy, Af.o7 (F2)



ZU064-05-FPR

jfp-final 7 August 2007 15:38

10 Zena M. Ariola and Hugo Herbelin

By weak-head reduction for;, one has:

€ (AKK(AX.K))zZ w4
% (Ac. Ak k(AX.K) (A f.o7 (c(2)))) Doy

(Ac.(Akk(Ax.K) (Af.o/ (c(f2))) (AX. X) ;Vz
Af.Z (Ax. 2 X)(f2))

To obtain the value of the evaluator one proceeds with thé&iaddl rules:

A . (Ax. 2 X)(f2z) —  Ba

Ao (o (12)) —  Cidem
A (AT (AX X)) — By

Af. o (f2)

Note thatﬂflC (i.e. without>¢) does not reduce the above term to a value.

2.2.3 Weak-Head Standardization

Theorem 3.10 in (Felleiseet al,, 1986) gives a general standardization result-forwWe
give below its restriction to the case of reduction to a value

Theorem 2.1QWeak-head standardization fof)
wh
MLV iff MgV, whereV/—-¢V.

Proof

From the general standardization theorem in (Fellegd@h, 1986) and the assumption that
a standard reduction leading to a value strictly extendkviresad reduction. Note that in

general, for this latter assumption to be true, some rededithe notion of standardization

is required. See the remark below. (]

Remark 2.11

There is a small flaw in the definition of standard reducticedlia (Felleiseret al.,, 1986).
This flaw actually already occurs in Plotkin’s definition déaisdard reduction (Plotkin,
1975) on which (Felleiseet al., 1986) relies. Plotkin’s notion of standard reduction is
not deterministic and it does not satisfy the property thstbadard reduction necessarily
extends weak-head reduction. Assume for instancel\itlh"é\?c M’ andN MQC N’. Then, the
two following distinct reduction paths are standard witbpect to Plotkin-style definition
of standardization:

AYM)N —¢ AYyM)N' —c (AyM)N
AYM)N —¢ (AYyM)N —¢ (AyM)N

The first derivation is standard because it reduces first &vead redex and the second
is standard by congruence of standardization with resgeapplication. Only the first
one extends weak-head reduction. A solution to the probdaimiiestrict congruence with
respect to application to congruence with respect to etialuaontexts.



ZU064-05-FPR jfp-final 7 August 2007 15:38

Journal of Functional Programming 11
Bv: (Ax-M)V — MV/X
G (¢M)N — ECAcMAf.Z(c(fN))))
éR: V(€M) — FAc.M(Ax . (c(VX)))
Gidem: T (AC.EM) — F(AcM((Ax X))
Gop:  TM — F(Ac.M(Ax. & (cX)))

Fig. 3. Reduction rules of call-by-value, (Felleisen and Hieb)

2.3 Felleisen and Hieb's Reduction Semantics

The revisedA, theory in (Felleisen & Hieb, 1992) characterizes the usegiothat are
valid in any evaluation context. These uses are captureddyéw rules calle@&igem and
%rop- This leads to the new context-compatible reduction systepresented in Figure 3.
We write—~ for its reflexive-transitive closure ardfor its reflexive-symmetric-transitive
closure.

If, after some uses of the rulé§ and %R, another control operator is reach&Gyem
applies the abort continuation. At any point it is possibleise%iop, to start applyingV to
part of the captured context and then continue lifting theeo# to accumulate more of
the context. As for the operational rules, the right-hadésiof the reduction rules contain
the abort operation. Indeed, the main use of félg is to surround each invocation of
a continuation with the abort operaticiop turns what looks like a regular function call
into a continuation’s invocation. For example, in the t&fti c. 1 4+ ¢ 2 4 3) continuation
c is invoked using the normal syntax for function applicatiblowever, afterép, the
application of the continuation is surrounded by the abpetration:

¢ (Ac.14+¢c2+43)—=C(Ak (Ac.14+¢c2+ 3) (Ax. o (kX)))—F (Ak 1+ o7 (k2) + 3)
Example 2.1ZReduction of§ (Ac.1+c2+ (1+ 1)) +3)

%()\cl+02+(1+1))+3 -~ 4
¢ (AC.(Ac.l+c2+ (1+1)Axe(C(x+3) — B
€ (AC. 1+ (Ax o (¢ (x+3))2) + (1+1)) ~ B
¢ A1+ (C(2+3) + (1+ 1) -

¢ (Ac. </ (C'(2+3))) —  Gidem
G (AL (A (24 3)) Ax. X)) -

% (AC.C'5)

Notice that there is no reduction rule that allows one to cedihe above term to 5, as
it happens according to the operational semantics and thmalrtheory. Applications of
rule top does not help:

% (Ac.d5) — € (Ac.o (c5))

Remark 2.13
The problem with rulesiop is that even in the simply-typed case, it makes the reduction
system not strongly normalizable:

€y — E(AcYy(AX. o (cX))) — € (Ac.(Ac.y(Ax.o7 (cX))) (AX.« (C'X))) —
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Theorem 2.14
TheA,-calculus is confluent.

Proof
This is proved in Theorem 3.14 of (Felleisen & Hieb, 1992) bstfhowing the confluence
of the following reduction system (called.):

Bv: (AX-M)V —
e (¢ (Ak-M))N

MV/X]
CACM[Af. (c(fN)))/K])
@
@
@

— ¢(AcM]
k. V(€ (AkM)) — F(Ac.MAx. o (c(VX)/K])
tem: € (Ac.€(AkM)) — ()\c.M[()\x o/ X)/K])
Cop: C(AKM) — F(Ac.M[(Ax. o7 (cx))/K])
Giop: €M — F(AcM(Ax . (CX)))

A, has the same reflexive-transitive closur@d gftherefore confluence af, follows. [

Remark 2.15
Even though the reduction rules can be applied in any contiesy do have a strategy
embedded in them. For example, one cannot reduce the folipieim

(/2) (/'5)

to both.«7 2 and.</ 5, thus contradicting the confluence result. The above teduaes to
</ 2 but cannot reduce ta/ 5. According to thegg rule, the argument7 5 can only be
lifted after the function part is reduced to a value. Thiser@8 a left-to-right evaluation
strategy. Reduction rules which enforce a right-to-leétleation order are as follows:

M(EN) — % (AcN(Ax . (C(Mx))))
(EM)V  — FAcM(Af.o (c(fV))))

2.3.1 Relating the Initial and Revised Theories: Felleiaad Hieb’s Approach

The removal of6T makes the operational semantics less closely connectée tevised
theory than it was to the initial one. To reconnect both tlenfelleisen and Hieb give a

notion ofevaluationthat is defined by composin"{s'fC (from the initial theory) and a notion

of weak-head reduction undei-abstraction that we writé->". We review Felleisen and
Hieb’s results and make explicit the notion of weak-headicidn underlying evaluation.

We say thaM %-weakly head reducds N, writtenM Euh N, in the following cases:
- M has the forn¥ (Ak.E[P]), whereP is afy, 6. or g redex that reduces 1, and
Nis % (Ak-E[Q));
- M has the forn% (Ak. € P) which is a%igemredex andN is € (AK. PAX. &7 x).
Note that theg’-weak-head reduction never appliégy, but it does reduce the top-level

%idem redex. Moreover, it reduces undefsaabstraction. We writ(if‘\’ﬂ—')'lh for the reflexive-

transitive closure of %" Then, we say tha#l iteratively weakly head reduce in two stages
. 2-wh

to N, writtenM —='N, when

- eitherM . N
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- or, for someP, M e 6P . & (Ak PAX. 7 (kx)) TN,

whereﬂ'lC is as in Section 2.2.1. Notice tha¢is not transitive: it only composes on the

left with ﬂﬁ,c and on the right with =" 1tis generally not reflexive either.

Example 2.1§2-wh-reduction of¢’ (Ac.1+c2+ (1+ 1)) + 3)
We write o7 and.e for the continuationd x. .7 (kx) andAx. < x, respectively. First, one
lifts the control operator to the top-level:

¢(Acl+c2+ (1+1)+3%,
@A (Ac1+c2+ (1+1) (Axo (€ (x+3))))

%op Is applied next:

EC(AC.(Acl+c2+ (14 1) (Ax.o (¢ (X+3)))) =
C Ak (AC.(Ac.l4+c2+ (1+ 1) (Ax.o (€ (x+3)))) &)

From this point origiop is disallowed. One continues with the application of eitBgréi.
or $r under &6 -abstraction:

€Ak (AC.(AC.1+C2+ (14 1)) (Ax.o (¢ (x + 3)))) k) T
CAKE (Ar.(AQ.(A_.ZK(2+3) Az (q(z+ (14 1)) Aw.oZ (r (1 +w)))))
At this point, €igem is applied to obtain:
C Ak (Ar.(AQ (A2 +3) Az (q(z+ (14 1)) Aw.o (r (1 +W)))) %)
The weak-head reduction unde¥aabstraction leads to:
€ (Ak. o7 (kb))

One lastéigem application leads to the answer:

% (Ak. o7 (k5)) ¢-wh
€ (Ak.(A_.K5) (Ax..27 X)) @-wh
% (Ak.k5)

Comparing this reduction with the one in Example 2.4, natioe the first>¢;, corre-
sponds to &iop Step, whereas the other two occurrences correspotidda stepsl

As pointed out earlier, the iterative weak-head reductidmip stages, which is made of
reduction steps of the revised theory, does not produceatue that the evaluator would
produce. The problem is that there is no way to get rid of thiermoost#’. To that end,
Felleisen and Hieb introduce the following notidvi:is said toevaluateto a valueV iff

2-wh
- M—>W—>V;0r

- M e Ak k(VAx. o (kX)/K])) andV = ViAx. 7 x/K]; o

- M Z g Ak ViAx. o7 (kx) /K]) andV = ViAx. o x/K].

Example 2.17



ZU064-05-FPR

jfp-final 7 August 2007 15:38

14 Zena M. Ariola and Hugo Herbelin

We would say that our running example evaluates to 5. We algthaité (Ak. k) evaluates
to AX. .27 X since:

G (AKK) =00 € (AK (AKK) (AX.7 (kX)) %ﬁ;vyh‘g()\ k. Ax.o7 (kX))
andAx. o (kx) = k[Ax.o (kx)/k] andAx.. o7 x = k[Ax. o7 x/K]. 1

The theorem below rephrases Theorem 3.9 in (Felleisen &,HigB2). Note that the
mapping of the reduction sequences is one-to-one: the affigystep maps to & step
and all%igem Steps map t&T steps too.

Theorem 2.18Corresp. between initial and revised weak-head redugtion

wh
M gV iff M evaluates t&/.

2.3.2 Connecting to the Operational Semantics

Combining Theorem 2.18 with Theorem 2.8, we get the follgngimulation of the oper-
ational semantics:
Corollary 2.19(Simulation of oper. sem. by w.-h. red. for the revised theory
M —-,_ V iff one of the following cases occurs:
2-wh

- M ==V’ whereV'—pg 4.V

- M EEG (M kWA (k) /K]) WhereVAX. o X/K—= g genitV

- MZ0 G (A VA o (KX)/K]) WhereVidAx. o7 x/K—p ¢ g V.

Example 2.20
- Consider the terr®” (Ak.-k(Azk)), one has:

€ (AKK(AZK)) =), (AZAXAX)

Whereas, with respect to the reduction semantics:

¢ (Akk(AzK) 202 Ak k(AzAx o (kX)) =€ (AkK((AzK)[Ax. o (kx)/K]))

and
(AZAX.AX) = (AzZK)[Ax. o7 x/K]

- Consider the terr®’ (Ak.k (Ax.k)) z of Example 2.9, one has:

€ (Akk(Ax.K))z wh.
% (Ac. (Akk(Ax.K) (A f.o (c(f2)))) —iop
% (Ac.(Ac. Ak K(AXK) (A f.o7 (c(f2))) (Ax. o (cx)) ="
E(Ac.c(Af.o (Ax.o (cX)(f2))))
Where:
M. (Ax o (cxX)(f2)=Af.o7 (c(f2)[Ax < (cx)/c]
and

Af . (c(f2)[Ax I x/c]=Af.o (AX P X)(f2)—=p 44 A T (f2)
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That answers are not only values is the return consequertbe oémoval of the com-
putational rulegr . 1

Intermezzo 2.21
To simplify the correspondence between the reduction aedhdipnal semantics, in (Felleisen
& Hieb, 1992) two additional rules were proposed:

Gelim: € (AkkM) — M k not free inM
Gk : E[¢ M| — F(AkMAx.« (KE[X])))

Rule %&iim allows one to reduce our example te#fh{Ac.1 + c2+ (1 + 1)) + 3 to the
final value 5. The addition of the rule however breaks the cemite ofA,:

% (Akk(xy)) ——— =Xy

|

E (AK. (AX. o7 (kX)) (xY))

The two diverging computations cannot be brought together.

Using %& one can naturally express thaaty part of the evaluation context outside an
application of#” can be captured and reified as a partial continuation. Homwigekestroys
the confluence ok, since one cannot complete the following diagram:

€ (Ak.k)xy € (Aq.Az.7 (q(zxy))

|

¢ (Aq. Az ((Aw.«7(q(wy))) (2X))

Notice thatét is derivable in the revised, theory extended witig.

2.3.3 Weak-Head Reduction

Weak-head reduction in two stages is not an interestingonaif reduction. It is neither
transitive nor reflexive due to the insertion ofégp step even in cases it is not needed
to reach a value (considerg.the evaluation o’ (Ak.V) which is already in “evaluated”
form). The following unique context lemma for Felleisen &tidb’s reduction shows when
exactlyiop is needed.

Proposition 2.24Unique context lemma for:) )
Let M be a term im,. Exactly one of the following cases occurs:

M has the formV or @ (Ak.kV) or € (Ak.V), in which case we say thad is an
answer

M has a unique decomposition under the f&fR] or ¢ (Ak.E[P]) whereP is afy,

%L or 6r redex.

M has the forn¥ (Ak. € P) which is a%igem redex.

- M has a unique decomposition under the faghA k. E[kV]) with E non empty in
which case only &op applies. No otheféiop Step is further needed to reach an
answer.
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- M has a unique decomposition under the fd&fRV] or ¢ (Ak.E[xV]) (with x # k)
or ¢ (E[xV]) or ¢ xin which caseM is saidto have its weak-head reduction stopped

Based on the Unigue Context Lemma, we can define a canonitehraf weak-head
reduction on terms for the revised reduction theMyv:ibM N iff M is characterized by one
of clauses 2, 3 and 4 of the lemma aXds the result of contracting the mentioned redex
of M. Then, we get an obviously reflexive and transitive notionvetik-head reduction

by defining ﬂfl,\(ﬁ as the reflexive-transitive closure 8F A, However, this last notion
of weak-head reduction, despite its canonicity, mimics edequately than 2-weak-head
reduction the weak-head reduction of the initial theory.

2.3.4 Weak-Head Reduction in an Abortive Context

We showed in the last sections that the notion of weak-heddct®n that underlies
Felleisen and Hieb’s notion of evaluation missed basic @rti¢s of reflexivity and transi-
tivity to provide a satisfactory notion of weak-head reduretor the revised theory of,.
We provided an alternative definition but this latter onates less directly to the initial
reduction semantics. Moreover, both notions come with aptexmotion of answer.

To remedy these weaknesses, we restate the previous resuéisms explicitly evalu-

ated in an abortive context, i.e. on expressions of the fefivl. Note that in this case, the

weak-head reduction is restricted té-a"" path and it does not requit&op.

Example 2.23Weak-head reduction in an abortive conjext
We will reduce our running term as follows:

o (€(Ac.l+c2+ (1+1))+3) o
(€ (A.(Acl+c2+ (1+ 1)) A (€ (x+3) " Cem
o (AC.(AC1+C2+ (1+ 1) (Ax.o (C (x+3)))) %) =

o5

We then get a tighter connection with the initial theory ofittol (Ct steps map one-to-
one t0%4em Steps) and hence, thanks to Theorem 2.8, a tighter corrdepoa with the
operational semantics.

Theorem 2.24Corresp. betw. initial and revised w.-h. red. in abortiventex)

éwh

wh
M oi N iff M =% o7/ N,

Corollary 2.25(Simulation of oper. sem. by w.-h. red. in abortive context
My, Viff /M CX /v whereV/—p5 ¢ 5 V.
Especially, itV is €-free,M -, _V iff &/ M v,

Remark 2.26
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To emphasize the role of reasoning in an abortive contexgheey that ifM—- A for A an
answer, thems M—- .27V for some valud/:

o € (AK.KV) —  Bdem
o (AKKV) (Ax. 2 X)) — By
o (AX. I X)V [AX. 27 X/K]) — By
M(Q{V[)‘de/k]) —  Gidem
A ((AVAX L X/K)(AX. LX) — Py
o (V[AX. o X/K])
o € (AK.V) —  Gidem
A ((AKV)(AX. &7 X)) — By

of (V[Ax. o/ x/K])

We restate the unique context lemma.

Proposition 2.2qUnique context lemma for:,  in abortive context
LetM be a term im\,. Exactly one of the following cases occurs:

</ M has the forme' V.

- /M has a unigue decomposition under the fosfiE [P] whereP is afy, 4. or ér
redex.

/M has the formeZ (¢'N) which is a%igem redex.

o/ M has the formzZ E[xV] in which caseéM is saidto have its weak-head reduction
in abortive context stopped

As in Section 2.2.1, one can observe thatifM %¢-weakly head reduces t&Z N by
%L or BRr, thene/ N necessarilys’-weakly head reduces further by a sequence (possibly
empty) of 61 or %R, ended by&igem and by as manys, as the number o0&, or ¢r. We
write — -, for such a combination of rules (which generalizg&g):

SCr. . AECM] g, o (MEY)

whereE* is defined as in Section 2.2.1. If moreowéiis of the formAk.N thene (ME™)
reduces further ta7 N[E*/K]. This leads to the following variant efw_chE* :

A, AEEAKN] =g S NE/K

Let 4 and%y be as in Section 2.2.1 ar,,,, be the restriction o¥igem that applies

only when the body of the innermdstis not an abstraction. Writin%{l"hﬂ.(gT p, for the

union of weak-head”-%7_. andp,, andc—"Yhd ¢ ¢, @ v p, O the union of weak-

U= |dem L
head«-¢7_., €,

dem €L » ©r andpy, we get the following equivalence:

Proposition 2. 2&Alternat|ve characterization ¢ -w.-h. red. in revised theo}y

MM v i MM—HQ{%T g, @V iff MMCJih oG G KL‘KRBW‘Z{V Moreover,

Tex “idem”

the Unique Context Lemma still holds by replacing |tems 2 and its statement by the
rules composinéj:l>"i'1@/.<gTE g, Or by the rules composin%ﬂhd_% Coonl G B
* E “idem ¥

E*'
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2.3.5 Thel,-Calculus without thé&iop Rule: TheA,--Calculus

As observed previously, if one reduces terms of the farhl then rule@iqp is not needed,
its effect is subsumed by thgqem rule. We letA,. stand for the reduction theory without
rule %top.

Theorem 2.29
TheA,--calculus is confluent.

Proof

As pointed out in the proof of confluence f&f (Theorem 2.14), Felleisen and Heib prove
confluence of an equivalent reduction system,thecalculus. In addition, they also state
the confluence ok, without the%,,, and%;, rules. However, we cannot rely on this result

to show confluence of,+, since the two reduction systems are not equivalent. Tolabeu
a%i reduction inA,, one actually needs th&,, rule. Consider thd,- reduction:

(EX)y — F (Ac.xAf.o7 (c(fy)))

The simulation im, is:

(€X)y — G
(€ (Ac.xAz o/ (c2))y — ¢
€ (AcxAz o (Ax. o (c(xy)2) — B

C (Ac.xAz o (o (c(zy)))) —  Cihem
% (Ac.XAz o (c(zy)))

We therefore give a direct proof of confluence using van @oss method oflecreasing
diagrams(See Appendix A).

As pointed out in the appendix, to deal with the duplicatiansed by th¢8, reduction
one works with the notion of parallel reduction. There is ateiference between 8,
reduction and &R redex, which as shown below is benign:

By

(Ak.KE (Ag.qx))V V% (Ag.qx)

%”Rl/ :CKR
v
(AK€ (Ac.(A0.9X) (Ax. 7 (c(kX)))))V e % (Ac.(Ag.qx) (Ax.< (c(V X))))

The lifting rules do not interfere with themselves:

%(Ak.k%(/\q.qx))y4ﬁ> € (Ac.(AkKE (A0.gx)) (A f.o7 (c(fy))))

|
%)Rl/ | R
\

CAKG(Ac.(Ada))(Ax. o (c(kX)))y— — — = — — = — = > M

where the common teri is

€ (Ac.(Ak. G (Ac.(Ag.9X) (Ax.«7 (c(kx))))) (Af. <7 (c(fy))))
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However, the lifting rules interfere with &gem reduction:

% (Ac.EM)N - € (Ac.MAx./ X)N
:%)L
Y
‘L M2
[
I B
v
€ (AqAcEM) Ao/ (@(FN) = = =My — = — - > M3
whereM; is
¢ (Aq.EM[(Af.o/ (q(fN)))/c])
My is
% (Aq.(AcMAX.X)(Af. o7 (Q(fN))))
andMs is

CAGM[Af.o7 (q(FN)))/c] (Ax. o7 X))

To solve the problem we take th& , 4r > Bv.
Gidem interferes with itself (we write for the abort continuatioAx. o7 X):

% (AK€ (A\q.EM)) % (Ak.C(AQ.M %))
|
\i
% (AK. (AQ.M %) 4)
8
\i
COKAGEM) o) — - = € AKEM[A/d]) — — = & (Ak (M [4/d]) %)

To make the above diagram decreasing we @kg, > . [

2.3.6 Weak-Head Standardization in an Abortive Context

The aim of this section is to prove a weak-head standardizaktieorem for the revised
notion of control in an abortive context. In (Felleisen & Hje1992) such a notion of
standardization is defined but it is non-deterministic aedde not directly applicable for
our purpose. However, we still rely on Felleisen and Hielk'sults to deduce thafiop
is not needed for weak-head standardization when reasamiag abortive context. A
deterministic weak-head standardization theorem comes ne

Based on (Felleisen & Hieb, 1992), we say thbEH-weakly head reduces M’ (what
we call FH-weak-head reduction is called standard redncétation in (Felleisen & Hieb,
1992)), writtenM """ M’ if there exists an evaluation contes® such thai = E9|N]
andM’ = EY[N’] for N andN’ a redex and its contractum, respectively. The evaluation
contextE? is defined as follows:

Ed:=E |4 (AKE)
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Note that the decomposition of an evaluation context andexres not unique. In fact, the
term.o/ € (Ak. € N) contains four standard redexes:

Ed=0O and a%iop  redex
Ed=0O and a%gem redex
Ed=«o0 andate, redex
Ed=«0 andabgem redex

Any reduction path can be factorized through a FH-weak-heddction:

Theorem 2.3QFH-weak-head standardizatipn
FH-wh

G M—=, Viff M ==, o/V'forsomeV’such thav’—-, V.
Proof
We rely on the standardization theorem (Theorem 3.16) itgiBen & Hieb, 1992), which
itself directly relies on the scalability of Plotkin’s owmgof of standardization for call-by-
valueA -calculus (Plotkin, 1975). Felleisen and Hieb’s standaation theorem states that
M—-, Niff M —> N, whereM -3 N is defined by the following clauses:

MM

- MY N andN -3 PimpliesM -3 P

- M= NandM' = N impliesMM’ = NM - NN/

-M-N impliesAx.M 25 AxNandéeM = €N

From Felleisen and Hieb'’s standardization theorem we nbtaM —- &7V, which by

definition of =+ amounts toZ M Fﬂll"hA% N3 7V -3 7V with N T2y None

of the FH-weak-head reductionsfin” >4 v/ happens in a context of the forfi(Ak.E),

since otherwise, one would not obtain a value at the end. , Tdaeé¥h FHwh 2/ V' is another

valid FH-weak-head reduction and the result follows.[J

Proposition 2.31
If o/ M—-, </V thene/ M—-, o/V'withV' =) V.

Proof

From the FH-weak-head standardizationiof(Theorem 2.30)& M Fi'xth V" and
V”—-,, V. Next, we prove the following diagram:
IM F(I;-Wh M’ (2)
N Otop |
~ | Agx
e ¥
ﬂMU
If E9is empty, one has:
FH-wh
AM = E Ak (A_M)(Ax.o (kX))
Gtop |
I Bv

v
o/ M
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Since the top-level term is of the form¥ M, if EY is non-empty it must be of the form
o/ E. If E is empty:

o (FM) FAwh

|
\

o (€ (AKM (Ax. o7 (kX))

o
Otop |

| Gldem

\ o (A k.M()\x.g;(kx)))()\x.g{x))
\ :Bv
N M(M(Ax.g%?(/\x.dx)x)))
N |
I By

M (Ax.vgf (X))
N :(g{demﬁv
N\
o (M (AX. X))

Otherwise, let the top-level term be of the formE[E'[¢ M]] whereE' is either(IN or
V N. If E' isTON we have:

(¢M)N FHWh & (A M (Ax o (kX))N
\\ top :%L
\ € (Ar. (Ak.M(Ax.d(vkx)))()\z.d(r (zN))))
N |
\ I By

h ‘@”(x\r.M()\x.g{((}\z.d(r (zN)))x)))
‘6:_\\ :Bv
y
SLEALM(Ax. o (o (r (xN)))))
N |

N | Gidem, By
EN \i
¢ (Ar.M(Ax.« (r (xN))))

A similar diagram can be constructedsfis vV [.
From Diagram 2 one concludegM =) , V" . The result then follows from conflu-
ence ofA,~ and the fact that values are stable with respedttaeductions. [

Note that Diagram 2 does not hold if tf&g, reduction is not standard. For example,
with respect to the following reduction:

o (QEM)) — o (Q(€ (AkMAX. o (KX))))

whereQ stands for a non-terminating computation, one cannot firmhangon terrmN such
thate/ (Q(EM))—=, . Nande (Q(€ (AKMAX.o7 (kX))))—..N.

Theorem 2.32Weak-head standardization fes-, in an abortive context
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G M—, AV iff /M %—Ylhngv’ whereV’ =, V.

Proof

From Proposition 2.31¢7 M—-, . &/V" andV" =, V. We follow the proof technique
in (Huet & Lévy, 1991). LeB be the reductiowMﬁ»de”. First one shows that the
reductionB contracts the descendant of the weak-head redexX)sayccurring ina/ M.
Then one constructs the projection of the reducBamith respect to th&J;-reductionj.e.,

one closes the diagram below

AM —— V"

|
%”-Whl |
¥

AM; — —> V]

We denote the reductioAM;— .7 V" asB/U;. Since the reductioB/U; also leads to
an answer, one can proceed by performing the projed®i;)/U,, whereU, is the
weak-head redex contracted by the reducBgb. As before, als¢B/U;) /U, leads to an
answer. To guarantee the termination of such a process @ Isdow that at each step
the weight associated to each reduction decreases.
We explain the weight associated to a reduction through amele. To the following
reduction:
o (Ax.(x2) + (x2) (Ax.2 + 2))
o (A% (x2) + (x2) (Ax.4))
o (Ax.4)z+ (Ax.4)2)
o (4+ (Ax.4)2)

o (44 4)

o/ 8
we associate the measuftel,1,1,1). The projection of the above reduction with respect
to the weak-head redekd. the outermosg, redex) is:

o (AX.24+2)2) + ((Ax.2 + 2)2))
A ((Ax.4)2) + ((Ax.4)2))

A ((Ax.4)2) + ((Ax.4)2))

o (4+(Ax.4)2)

o (4+ 4)

/8

Ll

!

—

Ll

The weight associated to the above reductioflid, 1,0,2). In other words, the tuple
represents the number of times each redex of the originaleseg has been duplicated.
Using the lexicographic order on tuples we hdtel, 1,1,1) > (1,1,1,0,2). Notice how
we count the steps from the answer up to the original terneratise, due to duplication
of redexes the weight will not decrease. Other than the whualication caused by th@,
rule, a duplication in the horizontal line can be caused lyitkerference betweefi and
Gidem and%igem and itself, as shown in the proof of confluenceAgf (Theorem 2.29).
This however can be taken care of by working V\Liﬁ}(f-ll—E*, Ggemy €L » g andp,, as

in Proposition 2.28. The projection & with respect to &, 6, or ¢z redex is easy
because none of them interfere withyem The projection oB with respect to 327'%/9
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redex is defined as follows. B does not start with a weak-head redex, this first redex is
projected and the rest &is recursively projected with respect to tlaé—%”T’E* redex. IfB
starts with a weak-head redex then ie%7_, reduction necessarily starts with the same
weak-head redex (see Proposition 2.27). This redex is rethovB and the projection
process continues with the restBfand the rest of/-%7_, i.e. &/-¢7_, with its weak-
head redex omitted. If this weak-head rede¥iisor ¢, omitting it in /-%7_,_still leaves

us with a (shorter)y -%’E* redex. If this weak-head redex®yem then the;z%-%T’E* redex
collapses into a sequence 8f redexes and each of them is recursively removed fBom

O

2.4 Thelmpact of Continuations as Regular Functions

In addition to losing strong normalization (see Remark 2.#f@ating continuations as
regular functions means that continuations follow the-bghvalue discipline: their argu-
ments must be reduced to values before the actual invocatiperformed. Consider the
following A, evaluation:

E(Ac.c(24 1)) ==y, (Ac.c(2+ 1)) (AX. A X) =), (AX.X)(2+ 1)

The next evaluation step is to apply the reified continuatibr </ x) to the argument
2 + 1. However, 2+ 1 must be simplified to a value first which is wasteful. Indead
behavior has a well-known space leak which is demonstratelebfollowing example:

loop0 = O
loopn = % (Ac.c(loop(n-1)))

When the recursive call foop(n-1) returns, the continuationis invoked, which abandons
the entire current stack. So the recursive calotmp takes place on top of a stack which
will never be used. If the recursive call increases the sizkeostack before looping, as is
the case here, the result is that the stack grows propottiorthe depth of recursion, as
shown below:

loop3
=, (AX.2/X)(loop2)
=, (AX.o/ (AX. /' X)X) (loopl)
=, (AX . (A o ((Ax.27 X)x)) X)) (loopO)

Requiring that the argument of a continuation be a valueefm@ne to evaluate the
argument in some continuation and then erase this contimyatstead of the equivalent
but more efficient choice of first erasing the continuatiod tiren evaluating the argument
(Ganzet al, 1999). One could imagine treating a continuation invaxadifferently from
a regular function call, allowing one to perform the invacateven though the argument
is not a value. This would avoid the space leak alluded to ebov

loop3 +—~ (AX. 7 X) (loop(3-1)) —— <7 (loop(3-1))

Notice how the continuation is invoked instead of reduchregdrgument. We address these
issues, together with the lack of strong normalizationhie tontext of the\,,,-calculus
introduced in the next section.
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x,a,V, f € Vars
k,c e KVars
KConsts = {tp}
ge KAtoms = Kk|tp
M,NeTerms := Xx|AXM|MN|% (Ak.J)
V eValues = X|Ax.M
JeJumps = gM
EcEVCtxt = O|EM|VE

Fig. 4. Syntax ofA,,

Intermezzo 2.33

Matthias Felleisen and his colleagues studied and desigtiext control operators. In a
historical note starting on page 41, Matthias reviews theystf their discovery. In here,
we briefly explaincall/cc and.%; their operational rules are as follows:

E[call/ccM] — EMAx .« E[X))]
E[.# M] — M(AXE[X])
The rules show thatall/cc differs from @ in that call/cc duplicates the evaluation

context. If the captured continuation is not invoked, cohtoes back to the context
surrounding theall/cc. For example, withE being the contexil + 1, one has:

call/cc(Ac.4) +1—E[(Ac.d)(Ax. «E[X])] — E[4 — 5
Whereas, ittall/cc is replaced withg one has:
3 (/\ C. 4) +1—4

Z differs from % in that the invocation of the continuation does not abort¢hking
context. In fact, the body of captured continuation corg&fx| instead ofe/ E[X] :

F(Acl+c2+(1+1)+3 —
(Acl+c2+ (1+1)AxXx+3) —=
1+5+(1+1) >
8

3 An Alternative Theory of Control: The A,,,-Calculus

TheA,,,-calculus was presented in a previous work (Ariola & Hemg2003; Ariolaet al,,
2004). It is basically a call-by-value version of Parigot'si-calculus (Parigot, 1992),
wherep is renamed int&?. It also contains a special constaptto denote the top-level
continuation. The distinguishing feature of thg, calculus is that it reserves a special
treatment for the invocation of a continuation, which wesrgb as gump.

3.1 Syntax and Operational Semantics

The syntax ofA,,, is in Figure 4. The use oF is restricted: the argument is always a
A-abstraction which binds a continuation variable. Thug oannot write a term such
as% (Ak. (Ax.€x)k). We refer to a term of the for® (Ak.J) as a%¥-abstraction. The
body of a¥-abstraction is restricted tojamp. There is a continuation constaiptwhich
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denotes the top-level continuation. For example, one wawlte the A,-term € (A_.5)
as% (A-.tp5), explicitly indicating the return to the top-level. Variab bound to contin-
uations are distinct from other variables and can only oge@pplication position, thus
one cannot write a term such &(Ak.k). Moreover, the invocation of a continuation
must be surrounded by#-abstraction. Instead of writingk2) + 1 one is forced to write
¢ (A_.k2) 4+ 1. This means that the abortive nature of continuationge#usof being
reflected in the semantics, is captured in the syntax it$@k.% -abstraction surrounding
the invocation of a continuation resembles the use of the IMaw construct (Dubat al.,
1991). To summarize, aborting a computatioe.(throwing to the top-level continuation)
is written as:

M & F(A_tpM) (Abbrev. 3)

and throwing to a user-defined continuation is written as:
JhkM 2 € (A_KM) (Abbrev. 4)

The operational semantics of programs is given below:

By : E[(AX.M)V] = At E[M|V/X]
@ E[@(AKKM)] ), E[M[tpE/K]
¢’ . E[€(AktpM)] =, MItpE/K

Unlike the operational semantics fa, these rules make use of a notion of substitution,
calledstructural substitutionwhich was first introduced in (Parigot, 1992). The general
form of structural substitution is writtel [ E/K] (resp.J[qE/k]) and reads as: “replace
every jump of the fornk N in M (resp.J) with the jump(qE[N]) (and recursively irN)".
The substitution/ [tp E /K] andJ [tp E /K] are defined similarly.

The structural substitution N§ E/K] (resp. JqE/K]) is inductively defined as follows:

x[qE/K] = X

AXM)[gE/K = Ax(MI[gE/K])
(MN)[E/K = M[QE/KIN[qE/K
€Ak J)[gE/K] = € (AkJ)

¢ (AK.J)[qE/K = ¥ (AK.J[qE/K]) K #k
(kKM)[QE/K = qEM[qE/K]
(K'M)[qE/K| = KM[qE/K] K #k
(tpM)[qE/K = tpM[QE/K

Note that this notion is not applicable fo. since continuations are not necessarily
applied to an argument (see Section 4.3 for the charactierzaf a subsyntax of., to
which structural substitution applies).

The translation ofA,-terms into the\,,,-calculus is given in Figure 5. E is a context,
its compositional application on each component of theexdris writtenE°. Notice how
in the @-abstraction case three things are happening:

- the captured continuation is given a nakpe
- the implicit jump to the top-level is made explicit;
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X
AX.M°
M®° N°
€ (Ak.tp(M° (Ax. Zh k X))

R Zx
P
1=>= =2
(o]
> > > >

x* 2 x
Ax.M)* 2 Ax.M*
(MN)* 2 M°N®
(€ (Ak.J)* & “(Ak.J*)
(tpM)* 2 M*
(KM)* 2 KkM®

Fig. 6. Translation of\,,, in A,

- the implicit aborting of the context whéaqis applied is also made explicit.

Based on Abbrev. 1 and Abbrev. 3, we have:
(T M)° —%;ano (5)

The translation from & -termM to a A.-term is denoted by*® and simply corre-
sponds to dropping each referenceg@and interpreting each jump as a regular application.
The formal definition is given in Figure 6.

There are two important differences betweknand the set of terms coming from
the translation. First, for terms in the image of the trati@fa occurrences okN are
necessarily surrounded by sonfé {Ak”. Therefore, ruleéiop is not needed to evaluate
terms coming from\,,,. Second, in the image of the translation each continuagiapplied
to an argument. This makes the use of structural substitptissible.

Example 3.1The evaluation of our example teyrm
The evaluation of tha,,-term corresponding to thle.-term% (Ac.1+c2+ (14 1)) + 3
is shown below:

(€ (Ac.1+c2+ (1+1)
C(Aktp((Ac.1+c2+ (1+
(Ac.1+c2+ (1+1))(

>

)+3)°
1+1)AxThkX)) +3 ==,
AX.Ihkx)[tp(O+3)/k =

(Acl+c2+ (1+1)(Ax.o (x+ 3)) eV
1+ (24+3)+(1+1) At
5

3.2 Relating A, and A,,, Operational Semantics

In spite of being defined on structural substitution, therapenal semantics given far,,,
faithfully implements through the operational semantics assignedtoWe consider here
A, with the primitive operatorbort and we let(.«bort M)°2.a7 M°. We have:
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Proposition 3.2 Simulation ofA, oper. sem. im,,,)
M=, Nin A, with primitive abort operator ifM® —) N in A,.

Proof

The first clausef§-reduction) of each operational semantics trivially cep@end. The sec-
ond clause foA,,, does not occur by definition &f°. Finally, the second and third clauses
for A, map to the third clause ih,,, as shown below:

E[¢M]° E°[€ (Ak.tp (M° (AX. Zh k X))]
A (M2 (Ax. Zhkx)[tpE°/K]

M° (Ax. o7 E°[X])

M (Ax..o/bort E[x])°

>

I

>

E[«/bort M]° E° [/ M°]
E°[€ (A_.tpM°)]

D—))\% MO

> >

O
By Proposition 2.2 and by iteration of the previous propositwe get:

Proposition 3.3
M=, V, using eithetzbort or o7, iff M® ) V°.

A, faithfully simulatesA, through®, but the converse is not true. Comparediothe
structural substitution of.., “optimizes” the application to the continuation as it does n
require that the argument of the continuation be evaluatstid Gonversely;— ), “delays”
the call to the continuation leading to a possible spacedsakiscussed in Section 2.4. By
reasoning on non-terminating terms, one can show the failpw

Proposition 3.4Non simulation of\,,, oper. sem. ir,)
We may haveM —_ N without havingM* - N’* for anyN’ such thaiN S A N’

Proof

ConsiderM = E[¢ (Ak.kQ)] whereQ stands for a non-terminating computation (with
no occurrence ok). ThenM —,__ E[Q] and M* =,  ((Ax.«/ (E[x])) Q). Since the
evaluation ofQ is non-terminating((Ax. <7 (E[x])) Q) will never reachE[Q]. Note that
one could even get an irreversible space leak.inwhen instead the evaluation My, is
simply looping: takeQ =Y (Ax. % (Ak.kX)), with Y some fixpoint operator of -calculus

(.9 Af.(Ay.(f(yy)Ay.(f(yy)). O
However, we have a simulation up to applicationggf

Proposition 3.5Simulation ofA,,, oper. sem. in\, up to o)
M ==, Viff M® =), V' whereV' andV satisfyV'—-p .. 3 V*

The next remark will allow to simplify the notations usedlire fproof of Proposition 3.5.

Remark 3.6
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(On the ability to express states in the syntax) One motivetr theA -calculus extended
with control is to provide a framework to abstractly studg thperational semantics of
real languages. With a language liRg, the focus is on terms. Especially, the notion of
state, though crucial in any actual implementation of a legg handling continuations,
is not representable ih,. With the explicit introduction of the top-level continiat tp,
the situation changes. Indeed,can be identified with the “bottom of the stack” of stack-
based computing devices. Especially, the operational sgesaof A,,, defined above can
be equally rewritten as follows:

Byi tpE[AXM)V] =, tpEMV/X]

G tpE[C(AKKM)] =, tpE[MItpE/K]

¢’ . tpE[€ (AktpM)] =), tpMI[tpE/K
or, more concisely, as:

Bv: tpE[(AX-M)V] A tpE[MV /X]

. tpE[C(AKI)] =y, J[tPE/K]
More generally, the evaluation semantics could be extemalegpen computations as
follows:

Boi QE[AXM)V] =, QEM[V/X]

11 qE[Z(AKJ)] =y, J[AE/K]

Proof of Proposition 3.5.The result is of the same kind as Theorem 28 Theorem 4.7
of Felleisen-Friedman-Kohlbecker-Duba (Felleigt@l, 1987)). Instead of exhibiting the
relation characterizing how the two reduction paths difeer done in (Felleisent al,
1987), we reason by nested induction. The only difficultyagrtanage the slow down
caused by the replacement of structural substitutions bgt&utions of reified contexts.

We first prove thaM —-,__V impliesM*® —-, V' —=p 4.3V ° - We reason by in-
duction on the length of the reduction path. The case of anyereduction is trivial so we
can assume thtll -, M’ -, __ V and by the induction hypothesis, we detf — ),
V' =g ggempsV - We focus on the reductiokl —, . M’. The case of g, contraction
is easy as it behaves the same in beth, = and—-,, . Let's then assume thadl is
E[¢ (Ak.J)] andM’ is P[tpE/K] (if JistpP) or M" is E[P[tpE/K]] (if J is kP). On theA,
side, the reduction is simulated M —, . (Ak.J*) (Ax. &7 E[X*) —,, J*[Ax.&/ E[X]* /K].
If moreoverd has the fornk W with W a value, the reduction can progress even further with
I AX. A E[X* /K] ), 7 EW]*Ax. A E[X°/K —-), EW]*[Ax.«ZE[X°/K. To get a
uniform notation, we led* beJ if J has not the fornk W andE [W] otherwise. We can then
restate the reduction ik, as follows:M* —-,_ J**[Ax..«7 E[x]*/K]. To use the induction
hypothesis we need to lift the reductii® —-, V', whereM’* can be equally seen as
J* [tpE/K]*, into some reduction starting frodt* [Ax..«7 E[x]* /K]. To this aim, we show
thatJ ™ [tpE/K|* -, V' impliesI™* [Ax..«7 E[X* /K] —-,, V"* [Ax.&/ E[]* /K whereV’
isV” [tpE/K]*. Since we also have the reductiéfi® [Ax. .o E[X]* /K —=p, 4.5V tPE/K* =
V’, the valuev* will eventually be reached.

The auxiliary result is by induction on the length of the retilon path fromJ* [tpE /k]*
to V’. The case of an empty reduction path is trivial. OtherwisétpE/K|* —, P +—
—, V. Necessarily)™ has the formtpE'[¢ (AK'.J')] or tpE’[(Ax.M)N] and it reduces
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Bv: (AxM)V  — M[V/X
%: FTAkIN — F(AkJIk(@AN)/K)
r: VE(AKI) — FAkIKk(VO)/K)
Gidem: 4% (AKJ)  —  J[q0I/K

Fig. 7. Reductions of call-by-valuk,.,

to someJ”. HenceP has the formJ”[tpE/k]® and the same reduction step occurs in
JT*[Ax. o7 E[X®/K] leading toJ"*[Ax.«Z E[X°/K]. If J” has not the formkW, the sub-
sidiary induction hypothesis is directly applicable. Qthise, we need first to insert a few
extra steps to release the context out of its reification:

KW® [Ax.o7 E[X* /K -, 7 EW]* [Ax. o7 E[X* /K] -y, EIW]* [Ax. 7 E[X]"/K] .

Conversely, we reason on states and show thaf fosed,J®* —-,, V' impliesJ —
— e, tPV for some valuev such thatV'—-p «,..3V*. This is by induction on the
length of the reduction path frodf to V’. SinceJ is closed, it has the forrtpM. The
difficult case is wheM is E[¢ (Ak.J)] in which case)® —,, (Ak.J*) (Ax.Z E[X]*) —,
J*[Ax.«/ E[X* /K] while we havetpM ) J'[tpE/K]. Since the induction hypothesis
only givesJ' [Ax. &7 E[X /K] =, tpV With V'—-pg o 5 V*, we use a subsidiary in-
duction to show that the reduction palhAx..«7 E[x]/k] +-,,, tpV can be moved to
J [tpE/K] =, tPW[tpE/K] for someW such thatv coincides withW [Ax. </ E[X]].
The only case which does not directly commute is wies kW in which case

JAx. A E[X/K| =, tp( EW)AX o E[X /K| =), tpEW'][Ax o E[X]/K]

while on the other side we already haljep E/k] = tpE[W'|[tp E/K]. It remains to observe
again thaW[Ax.« E[X] /K" — g, 4.3 W[t E/K]* to finally getv'—-p ¢ . s W[tpE/K]*.
[

3.3 Reduction Semantics

The reduction semantics is given in Figure 7. Like the oaggalculus, the ruleg] andsr
allow one tolift the control operation step-by-step until it reaches a pshgre it can no
longer be lifted. When the control operator reaches a juntpeadop-level (ruléigem with
g instantiated withtp), the captured continuation is the trivial continuationdaled bytp.
Otherwise, if the control operator reaches a regular caation variablek, the captured
continuation becomds

3.3.1 Confluence

Remark 3.7
The A, reduction rules are overlapping:#@. reduction can destroy &gqem redex, as
shown below:

% (AkKE (Ag.9X))y € (Ak-kxX)y
|
%(i_l L

v
% (AKK(Z (A0.9X)y)) e % (AK.KE (A0.q(xy))) G % (Ak.K(xy))

Cidem
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To complete the above diagram the newly creatgdredex has to be reduced, as also
observed by Babat al.(Babaet al, 2001) in the context of call-by-value Parigofig
calculus. This complicates the proof of confluence basechemtethod of parallel re-
ductions of Tait and Martin-Lof, since the parallel redantdoes not satisfy the diamond
property. The solution in (Babet al., 2001) is to introduce the following generalization of
‘%idemWhich turns out to be the generalization of the operatioulal#, into a (congruent)
reduction rule:

€2 qE[€(AkJ)] — J[QE/K
The new rule allows one to close the above diagram in one step.

Theorem 3.8
A« IS confluent.

Proof

Follows the same steps as the proof of confluence of callahyeh u (Babaet al, 2001).

SinceA,,, reductions rules are duplicating and interfering, one hars the alternative

reduction system\,,,. The calculush,,, allows the reduction of multiple redexes in one

step and contains the generalizatioréafm given in the above remark (see rdg). The

calculi A, andA,,, have the same transitive closure, ang has the diamond property.
O

3.3.2 Robustness

The A,,, reduction system can be also extended with #g, rule which eliminates a
superfluous jump whose target is the current continuation:

Gelim: € (Ak kM) — M k not free inM
The counterpart o€t in A, is the following rule:
%e: E[¢(AkJ)] — “(AkJIKE/K])

In contrast withA,, 4t is derivable froni6. andérin A.,.

The fact that jumps never occur on the left- or right-hardkesif an application makes
the need for a rule lik&top useless. As a consequence, no rule artificially breaksgtron
normalization (see.g.(Ariola & Herbelin, 2003; Ariolaet al., 2005) for a proof of strong
normalization in the simply-typed case).

The use of structural substitution avoids also the spa¢edisaussed in Section 2.4. We
have:

loop3+—,,,, € (Ac.c(loop(3-1))) =y, 100p(3-1) =), -+

3.4 Relating A, and A,,, Reduction Semantics

As seen in the previous section, the operational semantids.pis simulated by the
operational semantics df, only up to 3o. The same kind of discrepancy shows up in
the mutual simulation of th&, reduction rules by,,, reduction rules. We need to define
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an equivalent oBg on theA,,, side,
Bao: AXIhKXYM— FhkM .

We denote with=,,_,, the convertibility relation induced by the reduction redatA,.,
and thefo axiom. We state the results for the revised theory. To themtion of>y;
which is not a congruent reduction rule, the results alsdiepo the initial theory whose
congruent reduction rules are part of the revised theory.

Proposition 3.9
Let M andN be A,-terms. IfM =, N thenM°®
then there exist® such thaM®—-, P, 4,

> Cidem

N°. More precisely, ifM —, N

T AgrpBa

Proof
By cases:
(1)
(EM)N)° 2 € (AktpM° (Ax. Zh k x))N
-4 C(AktpM° (Ax. Th k(xN°)))
—Ggem € (AKIPM® (AX. 7 (TN K (XN°))))
—p,  C(Aktp (M°(Ax. (AzIhk 2 (xN°)))))
—p, € (Ak.tp((Ac.M° (Ax.o7 (c(xN°)))) (AzIh k 2))
By (5) —B, % (Aktp((Ac.M® (Ax.(« (c(xN)))?))(Az Th k 2))
s % (Ac.M (Ax.o7 (c(xN))))°
(4R)
(V(EM))° = V& (AktpM® (Ax. 9h kX))
-4 € (Aktp(M°(Ax. Fhk(V°X))))
—%gem € (AKIp(M® (AX. o7 (TN K(V°X)))))
—p,  C(Aktp(M°(Ax. . ((AzIhk 2 (V°X)))))
—p, € (AK.tp((Ac.M° (Ax.o7 (c(V°X))))(Az 9hk 2))
By(5)  «<p  €(Aktp((AcM°(Ax( (c(VX))")(Az Thk2))
s ¢ (Ac.M(Ax.o (c(VX)))°
(Gidem)
E(AC.EM) o € (Ak.tp(Ac. € (AK.tp(M°Ax. Zh K X))) (Ax. Fh k X))
—pg, € (A tp% (AK.tpM° [AX. Fh k x/c] (AX. Zh K X)))
—%em € (AKPM® [AX. TN K X/C] (AX. 27 X))
—p, € (AK.tp ((Ac.M° (Ax./ X)) (Ax. Th Kk X))
By (5) —g, € (Ak.tp ((AC.M® (AX. (&' X)?)) (Ax. Th k X))
a € (Ac.M(AX. &X))°
(Gtop)
(€M)° o € (Ak.tp (M°Ax. 7h k X))
Goem € (AKtp (M°AX. o7 (TN K X))
«—p, C(Aktp((Ac.(M°Ax. o7 (cX)))(Ax. ThkX))
By (5) «p € (Aktp((Ac.(M°Ax ( (X)) (Ax. Th kX))
- € (Ac.M (Ax. o/ (cX)))°
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O
To simulate &\, reduction inA,, we also neegq.

Proposition 3.10
LetM andN be closed\,,,-terms. IfM e N then we have tha¥1*—-, | 5 N°.

Proof

In the following,M [E /K] andM [« E /K] stand for structural substitution: each application
of k to an argumeni in M is replaced byE [N [E/K]] and <7 E[N [«7E /K]], respectively.
We remark thaM [« E /K] reduces taVl [E /K] by GigemandpBy.

We proceed by cases:

(41)
(€ (AkIIM)® fg()\ka)
—aq 4 (Ak ()\kJ )(Af. (K(TfM®))))
o @Ak I [A .o (K(fM®))/K))
— g % (Ak.J* [/ (k(OM))/K)
—ogemse ¢ (AKI*[K(OM)/K)
a € (AkJIk(OM)/K)*®

(4r) As the previous case.
(Gigem) We have two cases:

¢ (Aktp€ (AK.J))* 2 AK€ (AK.J*))

Ak 7 (

% (AK.J* [Ax. 7/ x/K])
% (Ak.3* [/ 0/K))
7
7

Cidem Bv
Ba

Ak.J* [O/K))
Ak J[tpI/K])*

Cidem v

€ (AKK'E (AK.J))" 2 € (AKK'E (AK.J%))
e CAKEAK.I X (K (K'X))/K])
—gemte € (AKI*[AX. A ((Ay. oY) (KX))/K])
iy CAKITAX A (o (K'X))/K])
gente € (AKI*[Ax./ (K'0)/K])
iy C(AKI [ (K'D)/K])
e n C(AK IR O/K])
: % (AKIK'O/K])*

O
Remark incidentally that the composition®oénd® is not the identity in general.

Proposition 3.11
For allM in A, Mm_’*ﬁg‘éﬁdemM- For allM in A, MO.—H(gtopM.

Due to the previous results and the usggfin the simulation, we cannot prove that in
generald,,, andA, simulate each other. For instan@@(Ak. k% (AK .k x)) is convertible
to ¢ (Ak.-kx) in A, butis notinA,. This observation has been noted in (Ong & Stewart,
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1997) and (de Groote, 1994) who have pointed out that theaelaetween thd, -calculus
and the call-by-valu@ u-calculus does not preserve convertibility, even thougthsa
correspondence of the convertibility relation holds in¢hse of call-by-name.

In order to relate\, andA,,,, we focus on the observational behavior of the evaluation
relation: a programi(e., a term without free variables) i, produces an answer if and only
if the evaluation of the related programAp,, produces an answer. As shown in Remark
2.26, the three distinct types of answers can be simplifigkdeifprogram is reduced in a
context representing the top-level. We thus formulateeminess as follows:

Given a closed-termM, &/ M—-, &7V iff tpM°—-,  tpV' .

Before considering correctness, we focus on the weak-reghdttion.

3.5 Weak-Head Reduction of Terms

Like A,, the reduction rules of,,, are not complete with respect to the operational seman-
tics when applied to terms. In particular, they cannot sateuthe following evaluations:

¢ (AkkM) — MItpO/K
CA_tpM) > M

For example, the reduction rules cannot reduce the program
E (AK.K(AX. Th Kk (Ay.y)))

toAx. <7 (Ay.y). Like theA,-calculus, thé,,,-calculus can produce three kinds of answers:
V, €(Ak. k V) or €(Ak.tpV). The reason is that a computation involving control is
dependent on its evaluation context. While the operatisaalantics implicitly works in
an empty evaluation context, the reduction semantics dagmamt this assumption. The
following unique context lemma summarizes these obsensti

Proposition 3.1ZUnique context lemma for:) , on term$
LetM be a term im,,. Exactly one of the following cases occurs:

- M has the fornV/, € (Ak.kV) or € (Ak.tpV). In this caseM is called aranswer
- M has one of the following form:
- E[P] whereP is afy, 4L or 6r redex,
- € (Ak.qE[P]) whereP is afy, 6. or 6r redex,
- € (Ak.J) whered is a%igemredex.
In this caseM is calledweakly head reduciblédf the contraction of the given redex

in M givesN we writeM "'N and we say thatl weakly head reduces 9.

- M has the formE[xV], € (Ak.qE[xV]) or € (Ak.-K'V) (K # K). In this caseM is
saidto have its weak-head reduction stoppbkdthe first two cases, it istopped by
x while in the third case it istopped by k

Especially, a weak-head redex, if it exists, is unique.

We writeM M’, for the reflexive-transitive closure 8. we also say thatl itera-
. / wh
tively weakly head reduces td’ for —.
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3.6 Weak-Head Reduction of Jumps

FortunatelyA.,, has the ability to express a fixed top-level evaluation cdnieis the

purpose of the constamp. The operational semantics can then be simulated, inby

explicitly reasoning on expressions of the forpM rather than on terms. In fact, thanks to

the notion ofumps theA,,, calculus has the ability to lift in the calculus the notiorstdte

that is often considered as a purely implementation issaéstract evaluation machines.
The following proposition characterizes the possible fowha jump.

Proposition 3.13Unique context lemma for) ., on jump$
LetJ be a jump in,,,. Exactly one of the following cases occurs:

- J has the formpV
- J has one of the following form:
- gE[P] whereP is afy, 4L or 6r redex,
- qC(Ak.J) which is a%igemredex.
In this case,) is saidweakly head reducibldf the contraction of the given redex in

J givesJ' we writeJ " 3 and we say that weakly head reduces .

- J has the formg E[xV] orkV. In this casel is saidto have its weak-head reduction
stopped In the first case, it istopped by xvhile in the second case, it &opped
by k

Especially, a weak-head redex, if it exists, is unique.

We writed 2 J, for the reflexive-transitive closure 8 We also say that iteratively

weakly head reduces tB. Note that wherM LN by executing &igem redex andyM wh
g N by also executing &igem redex, the twdéigem redexes are not the same redex. Take

for examplegC(Ak.kC(Ak.J)) it gC(Ak.J) and¥ (Ak.-kC(Ak.J)) it € (Ak.J).
Comparing Proposition 3.12 to Proposition 3.13 makes drdleat reasoning on jumps
rather than on terms allows for a uniform characterizatibarswers. For instance, rea-
soning on jumps also makes rigim derivable. Indeed, as soon as it is ensured that any
expressior’ (Ak.kM) occurs in a context of the formE[%¢ (Ak.kM)], its reduction to
gE[M], whenk does not occur free iNl, is a consequence of the other rules.
Thanks tds that we defined in Remark 3.7, a result similar to Proposityid and 2.28

can be stated iA,,,. We writeﬂlgé By for the union of weak-heﬁé andp,.

Proposition 3.14Alternative characterization of w.-h. red. hy.,,)
IM Y Vit o7 M ivfl%,éﬁv <7V . Moreover, the Unique Context Lemma still holds by

replacing the rules mentioned in item 2 of its statement byrties composinévfcgé&,.

The identity betweei€. and %7 makes the following correspondence between the
operational and weak-head reduction semantids gtrivial:

Theorem 3.1%Simulation of oper. sem. by weak-head red\,jp)
M s, Viff tpM 2 1V,

Combined with Proposition 3.3, we get:
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M %;Vll}h g\ M o MH%)\%WV (A%' reViSed

HTh 2.24 FH-like]

Th2.8 wh Th2.10

M \% M >EV MV Ay initial
A EFFKDi Pe EFFKDi Pe (Ae )
]IProp 3.3&35
Th3.15 Th3.17
Mo,V == tpM Py === tpM—y BV (Ay)
( operational ) ( Weak-head) ( reduction )
semantics reduction semantics

In each statemeny, is a priori a different value (see the exact statement of tiopdsitions and
Theorems for details). In the statements abgytM is the same\,-term while it is aA,,-term in
the statements abodt.,. The equivalences hold both whén is interpreted i, through ° and
whenA., is interpreted im, through °.

Fig. 8. Summary of observational equivalences

Corollary 3.16(Soundness of w.-h. red. i, for the oper. sem. of,)

M iy, Vin A, iff tpM° 22 tpVein A,,,.

3.7 Weak-Head Standardization
Theorem 3.1Weak-head standardization iy.,)

tpM—,, tpV iff tpM X tpV/, whereV —, V.

Proof

One direction is obvious. For the other direction we procasdn the proof of Theo-
rem 2.32, i.e. we follow the proof technique in (Huet & L&WWR91). A complication in
constructing the projection of a reduction is the intenfiees betweers] and igem AS
shown in Remark 3.7, the projection of tiemn reduction with respect to the weak-head
%L redex consists of the reduction of a newly created redexv@iahis problem, one
uses Theorem 3.14 to characterize the weak-head reduptidn-,  tpV from B, and
the generalized forn%”é of Ggem Thanks to the use of, the projection preserves the
structure of the original reduction. Also, at the time ofjprting a non trivial weak-head
%2 redex along a weak-he&tk or %1, one simply removes the leadik or i redex
and still stays with a (shorter) weak-heggd redex. [
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incre-
wh mental
A, w-h. initial red. (>¢) M[E* /K subst. of
A, w-h. revised red. in abort. conteit %" reified
pieces of
context
Bq.Bv. Cidem
Az 0p. sem(&,\%,) subst. of
Act, OP. SEM. Vi (based o, ) M [Ax. AE[X/K] ( reified )
Ase, W-h. red. on states via(based on}) context
Bq.Bv. Cidem
A OP. SEM. Vi1 (based on—+,,, ) structural
{,, ( 1 Ao wh MI[E/K] substitu-
A« W-h. red. on states vi&i * (based on—) tion

Fig. 9. HowE[% (Ak.M)] eventually reduces for the different op. sem. and w.-h.ctdns and
how the respective results relate

4 Connecting A, and A,

4.1 The Observational Equivalence of A, and A,,, Reduction Theories

Figure 8 summarizes the equivalences shown in the papeeckdly, putting together
Theorems 2.8, 2.24 and 3.15, and Propositions 3.3 and 3.§etve

Corollary 4.1(Correspondence betwedn andA,,, weak-head reductign

wh €-wh . o Wh ro !
Mg Viff o/ M =57V iff tpM° =5 tpV'° whereV—-p . s V.

wh %-wh . wh .
M® eV iff o/ M® =5/ V iff tpM —= tpV’ whereV—-p . s V'

Thanks to the standardization theorems, Theorems 2.19,ah& 3.17, we can extend
the correspondence to arbitrary reduction paths:

Corollary 4.2(Observational correspondence betweéerandA,,,)
Let M be a closed\,-term. The evaluation dfl converges iff the evaluation &f° con-
verges:

MoV iff & M—-, a7V iff tpMO—H%tpV’ .
Similarly, letM be a closed\,,-term. The evaluation d1 converges iff the evaluation of
M* converges:

M* 2V iff o7 M®—, 7V iff tpM—,, tpV' .

4.2 Digtinguishing Features of the Different Operational and Reduction Semantics

Figure 9 summarizes how the different operational semswaticd weak-head reduction
semantics ofA, andA,,, behave. Sincgy is simulated the same in all cases, we focus on
6L, ER, Gidem andp>c. To allow a full comparison, we consider terms that are inithage

of *. The figure shows how a closed term of the fdEffg’ (A k.M)] eventually captures the
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surrounding context o&. The less efficient semantics are the reduction semantias of
(rules%{E* and;zf—%{g), then comes the operational semanticapf{rule ¢ followed

by By) and its embedding iR, when¥ is interpreted as an operator of reification of the
context as a regular function. Finally, structural subgtin (rulesér. andC~E’) is the most
efficient. The results differ up tBq 8y %igem CONtractions in the substituends. Note that all
these contractions are non trivial unldsss empty in which cas&* is Ax..«7 X which is
the same ad x. & E[X].

4.3 Simulation of Structural Substitutionin A,

The mapping interpretsé” as an operator that reifies its context into a regular functio
Henceforth, it does not take advantage, as shown by PropusB.2 and 3.5, of the effi-
ciency of structural substitution. We would get a bettercedficy by directly interpreting
A, into the image ofA,,, by °. Let's first focus on closed terms.

On closed terms’, is injective and the characteristic feature of its imagd ns that
¢ is necessarily applied to an abstraction of the farkaM, and every suck bound in
the scope o occurs applied under the forkN. Moreover, such a subterkN has to be
itself the immediate subterm of som&{Ak’". Let's adopt the further convention that for
every such subterrkN surrounded by some#’ (AK'™”, this “¢ (AK'" is omitted if K does
not occur free irkN. Otherwise said, if somkN is surrounded by anr?, this <7 is left
implicit. Let's call this restrictiom .

Now focusing on open terms, we observe tha not injective. The reason is that free
variables, whether they are usual variables or continnatiwiables, are interpreted in the
same and unique class of variablegjn To remedy this non injectivity, we modif/yfO SO
to introduce a distinct class of continuations variablm's_call)\f the resulting language.
It is defined by the following grammar:

X e Vars
k e KVars
M,NeTerms = X|AXM|MN|kM|% (AkM)

If we restrictA?> to the fragment with no free continuation variable, we faltk on a
calculus which is essentialej: the distinction between usual variables and continuation
variables becomes unnecessary because it is enough to toakether the variable is
bound by some\ or by some% to know if it is an ordinary variable or a continuation
variable. Otherwise said’\fO can be equivalently seen as a restrictiompf(where no
distinction between usual and continuation variables isfland as a restriction af.

Let T be the following interpretation df,s into A,

xt 2 x
X. 4 X.
AxM)T 2 Axmt
A | not som
(MN)T MTNT if M &
kM) 2 Fhkmt
€ (AkM)" & @ (AkkN') if M has the fornkN
¢ AkM) & ¢(AktpMT)  otherwise
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This interpretation is not surjectiv&l and <7 (kN) have the same image) but this is
sufficient to be able to transfer back structural reductiam),,, to A>. The inherited
reduction system fak 3 is the following:

Bv: (AXM)V — MI[V/X

“:  CAKM)N — Z(AKMK(ON)/K)
%:  VEQAKM) — FAKMK(VO)/K)
A (kM)N — kM

IR V(kM) — kM

Ggem: K€ (AKM) — M[K/K

Gaerl© € (AK.C(AKM)) — € (AK.M[0/K)
Agem: K (KM) — kM

Higem © o (KM) — kM

Proposition 4.3 Simulation ofA,,, within A,)

For allM andN in AS, M — N in AS impliesMT—+NT in A,,,. For allM andN in A,
M — Nin A,,, impliesM® — N* in AS. MoreoverM*" =M in A,,, andM™* —=M in AS.
Since)\fO is a subset of\,, this provides with a mutual simulation from this subsefpf
with A, when the latter is restricted to the terms with no free carstion variable.

Compiling A, into )\(fo is now simple: each occurrence bfthat is bound by some
% (Ak-M) and that is not applied iM is replaced byAx. &7 (kx), while each subterm
%M whereM is not of the formAk.N is replaced by# (Ak. (M (Ax.«7 (kX)))) (these
transformations are known to be operationally sound). @fe®, those occurrencesef
that are changed in that way, behave again as operatorsatfdnal reification of contexts.

5 Conclusion

We investigated the differences between the historicabdas$ of control, and a calculus
called A,,, that is derived from the interpretation of classical proagsprograms. Both
calculi manipulate continuations but the former reifiesrees regular functions and uses
ordinary substitution to propagate continuations whikeldtter manipulates them directly
as evaluation contexts and uses a specific notion of stalcubstitution.

We showed that the reduction systems of both calculi, thahgl cannot simulate
each other, are observationally equivalent. We showeddbiatrol based on structural
substitution provides smoother results than control basecbntext reification:

- Operational semantics and weak-head reduction matcleiprissence of structural
substitution while they differ when contexts are increnadiptreified.

- Reification of contexts expands the size of context, leqttnpossible space leaks,
while structural substitution does not.

Thanks to the presence of a notation for the top-level caation, the syntax of,,, has
a finer structure than the syntax &f. In particular, the constructions af, itself can be
finely explained from the more elementary components,Qf

We showed that making explicit the top-level continuatiooMides a way to uniformly
manage the different kinds of answers that control redadtieories traditionally require.
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We also clarified the role of rules likéiop in A, Or Geiim in the calculi inspired by p-
calculus: these rules are useless to eventually reach e aalsioon as the top-level contin-
uation of the evaluation is made formal.

We incidentally proved weak-head standardization and agentle forA,, and improved
on previous results fok,. Especially, we provided a deterministic weak-head statida
ization for the revised theory of,, we repaired a “deterministic leak” in Plotkin-style
notion of standardization and we showed the confluence atthsed theory whefiop is
omitted.

Scalability

We believe our study would apply in a similar way to the calilame variant ofA, in
which 8 replaceg3, andCr is removed. The main difference will be th@ becomes an
instance of3.

We believe that our study would also directly apply to theeagion ofA, with a delim-
iter of continuation # (see the historical note) and the apenal rulesC[E[Ax.M)V]] —
CIE[M [V/X]]], C[E#V]] — C[E[V]] andC[E[%¢ M]]] — C[M Ax.<7 E[X]] with C being] or
C[E[#0]]. The correspondence would then be withAhg, calculus in (Ariolaet al.,, 2004;
Ariola et al,, 2007).

Typing

A system of simple types fox,,,, inherited from (Parigot, 1992), has been given in (Ariola
& Herbelin, 2003; Ariolaet al., 2005). A peculiarity of this typing system is that the tyfie o
tp is a parameter of the system. Based on the definitig@dfl )°, this typing system leads
to naively type¥’, seen as a stand-alone constandgfwith type (A— B) - T) — A,
whereT is the type oftp and% is polymorphic oveA andB. This is quite constraining
as this forcek to be used, in a given instance @f(Ak.-M), only in contexts of typd. A
more natural approach would be to folg¢o be the top-level typ& and hence to have
of type (A— T) — T) — A. With this new constraint, each call kowould typically be
surrounded by some/ (itself of derived typel — A for any A) in order to be used in a
context of arbitrary type. This system is strictly equivdleo Murthy’s parametric typing
systemt (Murthy, 1992), where Murthy’s rulabort; is replaced by a dumb coercion
from T to L. Indeed, Murthy’s typing system, with this modificationnche seen as a
system where the top-level tydeand L are interchangeable arfd can freely have type
(A—T)—T)—Aor((A— L) — 1) — Aorany of the two other combination involving
T and.l.

A more interesting typing system is obtained by eliminatimg identification between
1 and the top-level typ& and by seeing_ as an empty type equipped with the rule

M-—rM:L
rN-rM:B

whose computational content is the identity. Constrairirtg be L in the naive type of
¢, we get? of type ((A— 1) — T) — A. By this approach, we obtain that calls ko
in ¥ (Ak.M) get usable in contexts of any type, without needing to inaayt explicit
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coercion from_L to the type of these contexts, consistently with the abentature of
these calls. For instance,/a-term like € (Ak. if "foo" = k3 then 1 els&2) would be
typable without needing to surround the callktwith <.

In any case, we believe that assigning typ& — 1) — L) — Ato € as in (Griffin,
1990) is an overly restrictive type assignment. Yet, thengpe we obtain, whatever it is
(A—-T)—>T)—Aor((A— L) — T)— Aremain consistent with the observation that
(A— 1) — 1) — Ato ¥ is a relevant type fof” when the top-level type is itself.
Alternatively, assigning the polymorphic tygéA — L) — 1) — Ato & forces us, as in
Griffin, to type closed programs in a top-level context of thien ¢ (A k. kJ) wherek, of
typeT — L, turns to play the role of an explicit top-level constantpkeithat is devolved
in Ay, to tp.

I mplementation

One could ask which of, or A,,, simulates at best real implementations of control opera-
tors. If we consider theall/cc operator that, among others, Scheme and SML provide,
the common practice is to implement it as an operator thatdirplicates the stack and
then pushes on the stack a closure that restores this starckaHy, this corresponds to the
rule

E[call/ccl\/l] — E[M (AX%E[X])]

whereE schematizes the stack ahg. o7 E[X] schematizes the restoring operator. If one try
to modelcall/ccin A, or A, one observes that onhy,,, is able to simulate the fact that
the stack is kept in place byall/cc. If one takes the standard encodingeafil/cc M
as% (Ak-k(Mk)), the derived operational rule is

E[call/ccM] =), (AX.&/E[X)(M(Ax.o/ E[X]))

and the discussion on the inefficiency of such an implemiemtapplies (see Section 2.4).
No other encoding oéall/cc in A, can give the correct operational semantics because
structural substitution is required aig doesn’t know about structural substitution.

To the contrary),.,, supports the following encoding:

¢ (Ak k(M (Ax. Ih kX))
Ihtp M

call/ccM
M

A
A

that exactly simulates the above operational rulezafl /cc:
Elcall/ccM] =, EM(AX. Ihtp E[X])]2E[M (Ax.o7 E[X])] .

In the absence of exception handling, we can in principle doeniby implementing
the calls to the continuation as special calls instead afleggall-by-value function calls.
Consider the case of SML in which jumps are made explicit It tathe operatothrow.

If throw k M were implemented as a function that first restores the stackded in its
first argument before starting evaluating the second argtimee would directly obtain
the efficiency of structural substitution. In short, in tHesance of exceptions, we could
safely assign tohrow the following alternative semantics:

E/[throw (Ax. o7 E[X]) M] — E[M].
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Of course, if the evaluation dfl later throws to another continuation, the restoring is a
useless one, but in any case, it avoids keeping in place k ttatis definitely known to
be useless. In the presence of exceptions though, this & cariservative optimization as
exceptions jump to the dynamically-closest handler (whiattording to the semantics of
SML, would become the one & instead of the one if’).

Related Work

The purpose of this paper was to compare the reduction semaitheA, andA,,, calculi
which are both variants of usuatcalculus with control. We deliberately do not study the
connection with the\ fi-calculus (Curien & Herbelin, 2000) which is another praimigy
“well-behaved” calculus for call-by-value control.

A comparison between a simply-typed call-by-name varidnf, 0and a variant of
simply-typed Parigot'a p-calculus similar to our calculus® has been done by (de Groote,
1994). An interesting aspect of this work is th#tis removed fron¥%] as it is the case in
the lifting rule for.# (see the historical note below). Using the lifting rules%fin the
setting ofA,, can indeed be seen as an improvememt,o§ince an occurrence a¥ is
eventually anyway inserted t%iqem. However, the simulation &figem is only marginally
treated by de Groote and it strongly depends on the presdrigpes. From our point of
view, this is because this study missed the notion of toptlegntinuatiortp and that the
only way to implicitly talk about it was to talk about termstgpe L : in the simply-typed
proof-as-program setting, is the type oftp (see (Ariola & Herbelin, 2003; Ariolat al,,
2005)).

A Historical Note:
On the Indiana Control Operators
by Matthias Felleisen

The births of#’, .%#, and prompt took a long time. Indeed, prompt—the contrahciebr—
was “born” twice for radically different reasons.

The story begins with Daniel Friedman’s famous “511” couilgethe fall of 1984, a
group of enthusiastic PhD students (including Bruce Duhmdiie Kohlbecker, and my-
self) enrolled in this graduate seminar on programminguagg research. At the time, Dan
Friedman focused on “coordinate computing,” now known ascaorent and distributed
computing (Filman & Friedman, 1984). Every week he askedumplement a Scheme
simulation of some coordinate computing language. In tloegss, we began to program
with continuations because every simulation depended gueimenting some form of
threads.

After a few of those projects, | realized that capturing aalyart of the current continu-
ation would significantly simplify the programs and provaieme protection of the kernel.
In other words, whilecall/cc grabbed continuations between the current expression and
the prompt, most simulations needed only a part of this ooiation. Since | associated the
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activity of truncating the continuation with the visibletf&me prompt, | dubbed this new
construct “first-class prompt.” | used the term “first-clabecause | wanted to place the
prompt anywhere in my program, not just at the top of the mapression. My first crude
implementation used Scheme 84’s macros and engines (H&Resdman, 1984).

During the following summer (1985), | worked at the MCC in Ainsand Dan Friedman
came to visit me there in August. When he arrived, he was ex@bout a discovery he
had made on the flight to Austin. He had understood that coations andall/cc could
be characterized by two equations:

f (call/ccg) = call/cc(Ak (g(Axk(fXx))))
(call/ccg) f = call/cc(Ak (g (Axk(x f))))

He liked the symmetry but he didn’t know where to go from hekéier | returned to
Indiana later that month, Bruce, Eugene, Dan and | studiesktlequations in more depth.
We realized that theall/cc of the equations wasn’t theall/cc of Scheme and that the
equations didn’t captureall/cc’s behavior properly. So we dubbed this control operator
€ (after trying out some otheigX symbols) and continued our search of meaning in these
equations.

By the end of the fall semester, | had understood how thesatieas fit in with the rest
of Plotkin’s framework on tha,-calculus (Plotkin, 1975), and we all had figured out the
exact relationship betweesi andcall/cc:

call/cc & Af.€(Ak k(fKk))
¢ & Af.call/cc(Ak & (fK))
oge b F(Ae

The result appeared as a conference paper (Felleisah, 1986) and in a cleaned-
up journal paper (Felleiseet al, 1987). To establish the validity of the control calculus,
| had to prove a Church-Rosser lemma and a Standard Reddetiuna. After some
experimenting | discovered that a minor modification of thewae equation worked much
better:

f (€9 € (Ak. g (Ax. o (k (f x))))

(¢9g) f € (Ak. g(Ax. o (k (x 1))))
A major blemish remained, however. We could not eliminagesiecial top-level rule from
our calculus:

¢f = f(Ax. &x) when% f isthe entire program

Physicists would call this a “major asymmetry,” and | hated\iminor blemish was that
we had two different versions of these pairs of equations:fon calculating and one for
meta-theorems.

Right after we had submitted the journal paper in 1986, |isealered my nearly
forgotten prompt. More concretely, | realized that the dbod “. . . is the entire program”
in the above equation and “grabbing the current continnatfothe program” (up to the
prompt) posed the same problem. If | turned the “top” of thegoam into a separate,
algebraically free construction, the calculus would bee@m ordinary calculus of control:

B(ET) = #(f (Ax ZX)
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A quick check suggested that the revised theory would holdoupnow | had become
curious as to whether | could simplify the calculus even more

My search quickly showed that | could simplify the proofs loé tmeta-theorems even
more if | threw out abort.¢) entirely. | knew | could remove?, because it was just an
abbreviation forg anyway. Of course, just like Dan Friedman’s original equiadididn’t
specifycall/cc, these revised equations didn't specifyanymore. The next letter in the
calligraphic alphabet that we hadn’t used yet wasnd so | arrived at these equations:

e(#g = FAkgAxk(ex))
(Fge = F(Akg(Axk(xe))
#(Fe = #(e(Ax X))

and furthermore,

€ Ag. F (Ak g (Ax. o (kX))
e F (A_. e

Once | saw this set of equations, it was crystal clear that wasthe calculus: it had
simple equations, the equations described the calcutatibay posed no problem for the
meta-theorems, and the system introduced a powerful netsad@onstruct.

Naturally, we (that is, Bruce Duba and I) began to look foreottontrol constructs that
could be “derived” from calculi. Our most important insiglhas that we had a design
choice concerning the behavior.6f when it encountered a prompt:

I
A

- it could do what it does now
- it could eliminate the prompt, and
- it could absorb it.

We called these choice®, .+, and.#~ because#* could simulate# and.# could
simulate.# ~. For all three, | sketched out proofs of the major meta-teets, and they
all worked out fine. At that point, | tried to use pragmaticgdtxide which of the three
was important. | mostly used my examples from Dan Friedma8&4 course, and those
quickly showed that# was all | needed. That settled the question. When | finallyrstibd

a paper to POPL 1988, | use@#@ and prompt to introduce control delimiters into the
programming language literature (Felleisen, 1988).

Note: Around the time | left Indiana, | invented my last controboator(s)¥ . The standard
reduction equation for this family of operators has thiggha

#E[%ncf] = #f (endE})

whereencis a meta-function that maps evaluation contexts to coatstrinside the pro-
gramming language. | never developed a theory or a praétasakwork for¢, but perhaps
someone else will.

Acknowledgments

We thank Stefan Blom and Femke van Raamsdonk for answeringeraus questions
regarding rewriting. The paper also benefited from contensawith Amr Sabry.



ZU064-05-FPR

jfp-final 7 August 2007 15:38

44 Zena M. Ariola and Hugo Herbelin

References

Ariola, Z. M., & Herbelin, H. (2003). Minimal classical logiand control operatorsPages 871—
885 of: Thirtieth international colloquium on automatanguages and programming , ICALP’03,
eindhoven, the netherlands, june 30 - july 4, 20@8. 2719. Springer-Verlag, LNCS.

Ariola, Zena M., Herbelin, Hugo, & Sabry, Amr. (2004). A tyfieeoretic foundation of continuations
and promptsPages 40-53 of: Acm sigplan international conference ootfanal programming
ACM Press, New York.

Ariola, Zena M., Herbelin, Hugo, & Sabry, Amr. (2005). A pfetheoretic foundation of abortive
continuations Higher-order and symbolic computatiofio appear.

Ariola, Zena M., Herbelin, Hugo, & Sabry, Amr. (2007). A tygieeoretic foundation of delimited
continuations Higher-order and symbolic computatioto appear.

Baba, Kensuke, Hirokawa, Sachio, & etsu Fujita, Ken. (2003rallel reduction in type fregu-
calculus.Electronic notes in theoretical computer scieyd2 52—66.

Curien, Pierre-Louis, & Herbelin, Hugo. (2000). The dualif computation. Pages 233243 of:
Acm sigplan international conference on functional prograing ACM Press, New York.

de Groote, P. (1994). On the relation between the lambdaatoulas and the syntactic theory of
sequential controPages 31-43 oPfennig, F. (ed)l.ogic programming and automated reasoning,
proc. of the 5th international conference, Ipar'9Berlin, Heidelberg: Springer.

Duba, B. F., Harper, R., & MacQueen, D. (1991). Typing filgsiss continuations in MLPages 163—
173 of: Conference record of the eighteenth annual ACM sgiapoon principles of programming
languages

Felleisen, M. (1988). The theory and practice of first-clarssnpts.Pages 180—-190 of: Proceedings
of the 15th acm symposium on principles of programming lagga (popl '88) ACM Press, New
York.

Felleisen, M., & Friedman, D. (1986). Control operatorg, $bcd machine, and the lambda-calculus.
Pages 193-217 of: Formal description of programming coteép North-Holland.

Felleisen, M., & Hieb, R. (1992). The revised report on thetagtic theories of sequential control
and state Theoretical computer scienc#03(2), 235-271.

Felleisen, M., Friedman, D., Kohlbecker, E., & Duba, B. (@28 Reasoning with continuations.
Pages 131-141 of: First symposium on logic and computenseie

Felleisen, Matthias, Friedman, D. P., Kohlbecker, E., & BuB. (1987). A syntactic theory of
sequential controlTheoretical computer sciencg2(3), 205-237. Preliminary version: Reasoning
with Continuations, in Proceedings of the 1st IEEE Sympmsan Logic in Computer Science,
1986.

Filman, Robert E., & Friedman, Daniel P. (198®@oordinated computing: Tools and techniques for
distributed softwareNew York: McGraw Hill.

Ganz, Steven E., Friedman, Daniel P., & Wand, Mitchell. @99rrampolined stylePages 18-27
of: Acm sigplan international conference on functionalgramming ACM Press, New York.

Griffin, T. G. (1990). The formulae-as-types notion of cohtrPages 47-57 of: Conf. record 17th
annual ACM symp. on principles of programming languagesiPP'90, s an francisco, CA, USA,
17-19 jan 1990 ACM Press, New York.

Haynes, Christopher T., & Friedman, Daniel P. (1984). Eegihuild process abstractionBages
18-24 of: Conference record of the 1984 ACM symposium oralisbfunctional programming
ACM.

Huet, Gérard, & Lévy, Jean-Jacques. (1991). Computaiioorthogonal rewriting systems 1 and 2.
Computational logic. essays in honor of alan robinson. edl.lassez & g.d. plotkin

Murthy, C. (1992). Control operators, hierarchies, andigseclassical type systems: A-translation
at work. Pages 49-71 of: Acm workshop on continuations



ZU064-05-FPR jfp-final 7 August 2007 15:38

Journal of Functional Programming 45

Ong, C.-H. Luke, & Stewart, C. A. (1997). A Curry-Howard falation for functional computation
with control. Pages 215-227 of: Conf. record 24th ACM SIGPLAN-SIGACT sgmprinciples
of programming languages, POPL’97, paris, france, 15-17. (997 ACM Press, New York.

Parigot, M. (1992). Lambda-mu-calculus: An algorithmideipretation of classical natural
deduction. Pages 190-201 of: Logic programming and automated reagonimternational
conference Ipar '92 proceedings, st. petersburg, rusSjaringer-Verlag.

Plotkin, Gordon D. (1975). Call-by-name, call-by-valuedaheA -calculus. Theoretical computer
sciencel, 125-159.

van Oostrom, Vincent. (1994). Confluence by decreasingaiag. Theoretical computer science
126(1), 259-280.

A Decreasing diagrams

The problem with showing commutativity by means of a tilimgament is that one needs
to show that the tiling process terminates. Van Oostrom (astrom, 1994) defined the
notion ofdecreasing diagramand showed that tiling with decreasing diagrams terminates
Decreasing diagrams are defined in the setting of labelddaagbseduction systems.

Definition A.1

An abstract rewriting system (ARS) is a struct@fe— ) consisting of a seA and a binary
relation onA. A labeled ARS is a structur@, ()i<), wherelL is a set of labels and for
eachl e L, (A, ) isan ARS.

To define the notion of decreasing diagram we consider lddikgrams and a well-
founded order on the labels. The key to the notion is a meddulefined on strings of
labels. This measure is easily computed by following thésess

- Write down the string

- Erase every element in the string, such that a larger eleowmours at an earlier
position.

- Gather the remaining elements in a multiset.

For example, using the natural numbers with their natuidéQmwe have
|121232=112 232=|12 23 |={{1,2,2,3}} .

Definition A.2
Given a set of label8 and a well-founded ordet on A, let|.| be the measure from strings
of labels to multisets of labels defined by:

lai...an| = {{&] there is noj < iwithaj > &} .

Then, the diagram

"
par

is decreasingvith respect to< if {{a,b}} > |ab;...bm| and{{a,b}} > |bay...an|.
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We can use the notion of decreasing diagrams to prove continitytas follows. First,
we prove the existence of enough diagrams to start a tilioggss, then we check if all
tiles are decreasing. By the following theorem we can thertkmle commutativity.

Theorem A.3

Given a labeled ARSA, ()icL,uL,) and a well-founded order dry ULg. Define—»=
Uacly 3 and7: UpeL, - Iffor everyap, a1, a2 € Al € La, g < Lg, such thag A
andag T ay there exists a decreasing diagram

P——>

I
|al e
ai — —»V

then we have thatvf and? are commutative.

A special case arises when we take the kgtandLg to be equal to the set of all labels
L, then confluence of+_ can be concluded. A common case that decreasing diagrams
cannot handle is duplication in both the horizontal andivardirection,e.g. there is no
possible labeling that makes the following diagrams alreasing:

| | |
| | y
| | |
It is often possible to solve this problem by introducing anfoof parallel reduction or

complete development in, for example, the horizontal dioac With respect to parallel
reduction the three diagrams should then collapse intoitigesdiagram

- -

|
|
|
e >V

which can be made decreasing by ordering the parallel regtutdrger than the other
reductions.



