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Control Reduction Theories:
the Benefit of Structural Substitution

ZENA M. ARIOLA∗ HUGO HERBELIN
University of Oregon INRIA-Futurs

with a Historical Note by Matthias Felleisen

Abstract

The historical design of the call-by-value theory of control relies on the reification of evaluation con-
texts as regular functions and on the use of ordinary term application for jumping to a continuation.
To the contrary, theλC tp control calculus, developed by the authors, distinguishesbetweenjumpsand
terms. This alternative calculus, which derives from Parigot’sλ µ-calculus, works by directstructural
substitutionof evaluation contexts. We review and revisit the legacy theories of control and argue that
λC tp provides an observationally equivalent but smoother theory. In an additional note contributed by
Matthias Felleisen, we review the story of the birth of control calculi during the mid to late eighties
at Indiana University.
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1 Introduction

TheλC -calculus (Felleisenet al., 1987) was introduced to reason about Scheme programs.
It came with an operational semantics and a reduction theorybut this initial theory was
not pure, in the sense that one of the rules was applicable only at the top of a program. To
address this issue, Felleisen and Hieb introduced theλC revised reduction theory (Felleisen
& Hieb, 1992) that was exclusively made of contextually valid equations. Both reduction
theories, together with the operational semantics, suffera few weaknesses:

- None of the reduction theories directly expresses the operational semantics: reduc-
tion and operational semantics coincide only at the observational level.

- To simulate the operational semantics, the reduction semantics have to accommodate
the following reduction rule:

CE : E[C M] → C (λk.M (λx.A (kE[x])))

However, it turns out that both reduction semantics are not confluent when extended
with this rule.

- The revised theory has a complex notion of answers: An evaluation may simply yield
a value, or produce an answer of the shapeC (λk.V) (with V possibly containingk)
or produce an answer of the shapeC (λk.kV) (again withV possibly containingk).
In the latter case, whenV does not containk, one would expect an additional reduc-
tion that eliminates the superfluousC application:

Celim : C (λk.kM) → M k not free inM

However, it turns out that the addition of this rule to the revisedλC reduction seman-
tics breaks confluence. Regarding these observations, Felleisen and Hieb write: “We
leave unsolved the problem of finding an extended theory thatincludesCE or Celim

and still satisfies the classical properties of reduction theories”.
- λC is not as expressive as one might expect. For instance, Scheme’scall/cc opera-

tional semantics

E[call/cc(λk.M)] 7→ E[M[λx.A E[x]/k]]

cannot be simulated. Indeed, if we useλx.C (λk.k(xk)) as standard encoding of
call/cc, one gets

E[call/cc(λk.M)] 7→→ (λx.A E[x])(M[λx.A E[x]/k])
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which does not converge toE[M[λx.A E[x]/k]].

- The revised theory contains an expansion rule (Ctop) which can be applied infinitely,
thus breaking normalization even in a typed setting.

The calculusλC tp provides a solution to the above problems, and thus can be seen as
a replacement ofλC . The calculusλC tp is a call-by-value reformulation of Parigot’sλ µ
(Parigot, 1992), whereµ is renamed intoC . It also contains a special constant calledtp

which denotes the top-level continuation, making explicitthe abortive capabilities ofλC .
The essential design differences betweenλC andλC tp are the following:

- λC tp has specific variables for contexts whileλC does not;

- λC reifies contexts as functions and moves them around using thestandard substi-
tution of λ -calculus whileλC tp uses a specific notion ofstructural substitutionof
contexts;

- λC tp syntax forces calls to continuations to be abortive whileλC uses a specific
reduction rule for this purpose;

- λC does not have a special constant for the top-level continuation.

The calculusλC tp comes with a simple operational semantics expressive enough to simu-
late the semantics ofcall/cc, as described above. It is also expressive enough to simulate
the operational semantics ofλC , while the converse is false.

The calculusλC tp comes with a confluent reduction semantics which, to the contrary of
λC , can simulate its own operational semantics. It remains confluent when extended with a
rule equivalent toCE and it is strongly normalizing in the simply-typed setting.

SinceλC tp reduction semantics simulatesλC tp operational semantics, which itself can
simulateλC operational semantics, which itself cannot be simulated byλC reduction se-
mantics, it follows that the reduction theories ofλC andλC tp do not simulate each other, as
already observed in (Ong & Stewart, 1997). However, sinceλC operational semantics and
reduction semantics are equivalent with respect to the observational behavior of a program,
the same holds for the reduction semantics ofλC andλC tp. In short: AλC program reduces
to an answer if and only if the correspondingλC tp program reduces to an answer.

The reduction theory ofλC tp can be formulated either on terms or on jumps. If one
formulates it on terms, it shares with theλC revised reduction theory the complexity of
the notion of answer. However, if we formulate it on jumps (and we execute jumps of the
form tpM), the evaluation produces results of the unique shapetpV. A similar approach
can be done inλC , too: By considering evaluation in an abortive context, allthree forms of
answers collapse to a single one.

The paper is organized as follows: Section 2 introducesλC , reviews its main properties,
and individuates its shortcomings. Section 3 introducesλC tp and shows how it solvesλC ’s
defects. These two sections discuss also the relationship between the different notions
of operational and reduction semantics for the two calculi.Section 4 summarizes the
agreement on the observational behaviors ofλC andλC tp (Figure 8) and the discrepancies
regarding the operational semantics (Figure 9). We conclude in Section 5 together with a
historical note by Matthias Felleisen.
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x,a,v, f ,c,k ∈ Vars
M,N ∈ Terms ::= x | λx.M |M N |A bort M | C M
V ∈ Values ::= x | λx.M
E ∈ EvCtxt ::= � | E M |V E

Fig. 1. Syntax ofλC

2 The Indiana Theory of Control

We start with the syntax ofλC and its operational semantics. We present thecomputational
reduction semantics given in (Felleisenet al., 1987) (this is referred to as the initial theory).
This theory has two weaknesses:

- it contains one rule, called acomputationalrule, which is only applicable at the top
of a program;

- the rules are not complete with respect to the operational semantics.

Next, we give the revised reduction semantics from (Felleisen & Hieb, 1992). This the-
ory characterizes the computational rule in terms of two compatible rules (i.e. applicable
in any context). Thus, solving one problem with the originaltheory at the expenses of
complicating the correspondence with the operational semantics. We discuss how this
relationship could be simplified by reducing a program in a particular context, which
intuitively captures the execution of a program at the top-level prompt. This execution can
be carried out in a restricted theory; we investigate its properties. As discussed in (Plotkin,
1975), the relationship between the reduction theory and anevaluator should be mediated
by a standardization theorem. For the initial, the revised and the restricted theories we
define a notion of standard reduction and of weak-head reduction (i.e.a notion of standard
reduction that stops at values).

2.1 Syntax and Operational Semantics

Figure 1 introduces the syntax of a call-by-value calculus extended with the unary operators
A bort andC . Variables and lambda-abstractions are called values.

The operational semantics of such a language can be described most concisely using the
following operational rules, which rewrite complete programs:

βv : E[(λx.M)V] 7→λC
E[M [V/x]]

A bortTE : E[A bort M] 7→λC
M

C A bort
TE

: E[C M] 7→λC
M (λx.A bort E[x])

The reflexive-transitive closure of7→λC
is denoted by7→→λC

. In each of the rules, the entire
program is split into an evaluation contextE and a current redex to rewrite. The evaluation
contextE is a term with exactly one hole, written as�, in it. It represents what to do after
the execution of the redex and is referred to as thecontinuation. The first rule expresses
what to do when a function is applied to a value: the argument is substituted for each
free occurrence of the bound variable in the function’s body. According to the second
operational rule, the application ofA bort to a termM aborts the current continuation
(i.e. E) and returnsM to the top-level. For example, one has:

1 + A bort M + 3 7→λC
M
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where in this case the abandoned context is 1+ � + 3. According to the last rule, the
application ofC to a termM abandons the current evaluation context and appliesM to
a procedural abstraction of that context. Note the presenceof the abort operation in the
abstracted context, which is(λx.A bort E[x]) and not(λx.E[x]). This distinguishes con-
tinuations from regular functions. A function returns to the caller once completed, whereas
the invocation of a continuation causes the context of the application to be discarded.

We will use theλC -termC (λc.1 + c 2 + (1 + 1))+3 as our running example.

Example 2.1(Evaluation ofC (λc.1 + c2 + (1 + 1))+3)
The termC (λc.1 + c 2 + (1 + 1))+ 3 is split into the evaluation context�+ 3 and the
redexC (λc.1 + c 2 + (1 + 1)). The current evaluation context�+ 3 is abandoned and
the argument ofC is applied to a procedural abstraction of that context:

C (λc.1 + c2 + (1 + 1)) + 3 7→λC
(λc.1 + c2 + (1 + 1))(λx.A bort(x + 3))

Continuing with the evaluation:

(λc.1 + c2 + (1 + 1))(λx.A bort(x + 3)) 7→λC
1 + (λx.A bort(x+3))2 + (1 + 1)

The invocation of the continuation abandons the calling context 1+ � + (1 + 1):

1 + (λx.A bort(x+3))2 + (1 + 1) 7→λC
1 + A bort(2 + 3) + (1 + 1)) 7→→λC

5

C is at least as expressive asA bort; it can be used to define an operatorA equivalent
to A bort:

A M ∆
= C (λk.M) wherek does not occur free inM (Abbrev. 1)

To capture the proviso we often usewhich refers to an anonymous variable, and write
A M asC (λ .M). If we replaceC A bort

TE
by

CTE : E[C M] 7→λC
M (λx.A E[x]) ,

thenA bortTE , whereA bort has been replaced byA , becomes derivable:

E[A M] 7→λC
(λ .M)(λx.A E[x]) 7→λC

M .

Hence, we have the following result:

Proposition 2.2
ForM with no occurrences ofA bort,

M 7→→λC
V with rulesβv, A bortTEandC A bort

TE
iff M 7→→λC

V ′ with rulesβv andCTE

whereV ′ is V where eachA bort has been replaced byA .

We will therefore focus onC in the remainder of the paper, and, unless stated otherwise,
useA andCTE instead ofA bort, A bortTE andC A bort

TE
.

2.2 Felleisen-Friedman-Kohlbecker-Duba Reduction Semantics

The initial reduction semantics ofλC in (Felleisenet al., 1987) is characterized by a combi-
nation ofcongruentreduction rules (written→c) applicable at any place of an expression
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βv : (λx.M)V →c M [V/x]
CL : (C M)N →c C (λc.M (λ f .A (c ( f N))))
CR : V (C M) →c C (λc.M (λx.A (c (V x))))
CT : C M ⊲CT

M (λx.A x)

Fig. 2. Reduction and computation rules of call-by-valueλC

(Felleisen-Friedman-Kohlbecker-Duba)

and of a so-calledcomputationalrule (written⊲CT ) applicable only at the top-level of a
computation. The rules are on Figure 2.

The local reduction rules are intuitively related to the operational rules as follows.
Instead of capturing the entire evaluation context surrounding an invocation ofC in one
step, the rulesCL andCR allow one tolift the control operation step-by-step until it reaches
the top-level. At that point, ruleCT applies the abort continuation. TheC-reduction→→c

is defined as the reflexive-transitive closure of→c. TheC-computation⊲c is defined as the
union of→→c and⊲CT . Its reflexive-transitive closure is written⊲∗c. Its reflexive-symmetric-

transitive closure is written
⊲
=c. TheC-computation⊲c is proved to satisfy the diamond

property.

Example 2.3(Reduction ofC (λc.1 + c 2 + (1 + 1)) + 3)

C (λc.1 + c 2 + (1 + 1)) + 3 →c CL

C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3)))) →c βv

C (λc′.1 + ((λx.A (c′ (x + 3))) 2) + (1 + 1)) →c βv

C (λc′.1 + A (c′(2 + 3)) + (1 + 1)) →→

C (λc′.A (c′ (2 + 3))) ⊲CT

(λc′.A (c′ (2 + 3)))(λx.A x) →→c

A (A 5) ⊲CT

(λ .A 5)(λx.A x) →c βv

A 5 ⊲CT

(λ .5)(λx.A x) →c βv

5

2.2.1 Weak-Head Reduction

Apart from the⊲CT rule, the other rules can be applied in any order, including under a
lambda-abstraction and aC -abstraction. However, to use the reduction theory to reason
about evaluation, it is important to define a notion of reduction which mimics the evaluator.
To that end, one defines the notion ofweak-headreduction. TheC-computation has a
natural notion of weak-head reduction (called standard reduction function in (Felleisen
et al., 1987), following Plotkin’s terminology (Plotkin, 1975)). We say thatM weakly head

reducesto N for →c, written M
wh
→c N, iff M has the formE[P], whereP is a βv, CL or

CR redex that reduces toQ, andN is E[Q] (i.e.reduction occurs in an evaluation context

position). The notation
wh
→→c stands for the reflexive-transitive closure of

wh
→c. We say that
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M weakly head reducesto N for ⊲c, writtenM
wh
⊲c N, iff M

wh
→c N or M ⊲CT N. The notation

wh
⊲∗c stands for the reflexive-transitive closure of

wh
⊲c.

Example 2.4(Weak-head reduction ofC (λc.1 + c 2 + (1 + 1)) + 3)
We write Ax for the abort continuationλx.A x. We divide the reductions in different
groups separated by a blank line. Each group will collapse into a single step shortly.

C (λc.1 + c 2 + (1 + 1)) + 3
wh
→c

C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3)))) ⊲CT

(λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))Ax
wh
→c

(λc.1 +c 2 + (1 + 1))(λx.A (Ax (x + 3)))
wh
→c

1 +(λx.A (Ax (x + 3))) 2 + (1 + 1)
wh
→c

1 +A (Ax (2 + 3)) + (1 + 1)
wh
→c

1 +C (λq.(λ .Ax (2 + 3))(λz.A (q(z+ (1 + 1)))))
wh
→c

C (λ r.(λq.(λ .Ax (2 + 3))(λz.A (q(z+ (1 + 1)))))(λw.A (r (1 + w)))) ⊲CT

(λ r.(λq.(λ .Ax(2 + 3))(λz.A (q(z+ (1 + 1)))))(λw.A (r (1 + w))))Ax
wh
→c

(λq.(λ .Ax (2 + 3))(λz.A (q(z+ (1 + 1)))))(λw.A (Ax(1 + w)))
wh
→c

(λ .Ax(2 + 3))(λz.A ((λw.A (Ax (1 + w)))(z + (1 + 1))))
wh
→c

(λx.A x)(2 + 3)
wh
→c

(λx.A x)5
wh
→c

A 5 ⊲CT

(λ .5)(λx.A x)
wh
→c

5

The following proposition extends the unique context lemmain (Felleisen & Friedman,
1986) to terms with free variables:

Proposition 2.5(Unique context lemma for
wh
⊲∗c)

Let M be a term inλC . Exactly one of the following cases occurs:

- M is a valueV (we also say thatM is ananswer).
- M has a unique decomposition under the formE[P] whereP is aβv, CL or CR redex.
- M has the formC N which is a⊲CT redex.
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- M has a unique decomposition under the formE[xV] in which caseM is saidto have
its weak-head reduction stopped.

Especially, a weak-head redex, if it exists, is unique.

Observe now that ifM weakly head reduces toN by CL or CR, then it is necessarily
weakly head reducible further by a sequence (possibly empty) of CL or CR, ended by⊲CT

and by as manyβv as the number ofCL or CR. We write⊲CTE∗
for such a combination of

rules (which generalizes⊲CT ):

CTE∗
: E[C M] ⊲CTE∗

M E∗

whereE∗ is defined as:

�
∗ = λx.A x

E[V �]∗ = λx.A (E∗ (V x))
E[�N]∗ = λx.A (E∗ (xN))

Example 2.6(Alternative weak-head reduction ofC (λc.1 + c 2 + (1 + 1)) + 3)

C (λc.1 + c 2 + (1 + 1)) + 3 ⊲CTE∗

(λc.1 + c 2 + (1 + 1))(λx.A ((λx.A x)(x + 3)))
wh
→c

1 +(λx.A ((λx.A x)(x + 3))) 2 + (1 + 1)
wh
→c

1 + A ((λx.A x)(2 + 3)) + (1 + 1) ⊲CTE∗

(λ .(λx.A x)(2 + 3))(λz.A ((λw.A ((λx.A x)(1 + w)))(z + (1 + 1))))
wh
→c

(λx.A x)(2 + 3)
wh
→c

(λx.A x)5
wh
→c

A 5 ⊲CTE∗

(λ .5)(λx.A x)
wh
→c

5

Comparing it with the reduction in Example 2.4, one has that the firstCTE∗
step corresponds

to one lifting step, one⊲CT step and oneβv step. The secondCTE∗
corresponds to two lifting

steps, one⊲CT step and twoβv steps. The lastCTE∗
corresponds to one⊲CT step.

Moreover, ifM is of the formλk.N, thenE[C (λk.N)] weakly head reduces further to
N[E∗/k]. This leads to the following variant of⊲CTE∗

:

C ′TE∗
: E[C (λk.N)] ⊲C ′TE∗

N[E∗/k]

Let C−L , C−R andC
−
T be the restrictions ofCL, CR andCT that apply only when the body

of C is not an abstraction. Writing
wh
⊲ CTE∗

βv for the union of⊲CTE∗
and weak-headβv, and

wh
⊲

C ′TE∗
C
−
T C

−
L C

−
R βv

for the union of⊲C ′TE∗
and weak-head reduction ofC

−
T , C

−
L , C

−
R andβv

redexes, we get the following equivalence:

Proposition 2.7(Alternative characterization of w.-h. red. in initial theory)
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M
wh
⊲∗c V iff M

wh
⊲∗CTE∗

βv V iff M
wh
⊲∗

C ′TE∗
C
−
T C

−
L C

−
R βv

V. Moreover, the Unique Context Lemma

still holds by replacing items 2 and 3 in its statement by the rules composing
wh
⊲∗CTE∗

βv or

by the rules composing
wh
⊲∗

C ′TE∗
C
−
T C

−
L C

−
R βv

.

2.2.2 Operational Semantics vs Weak-Head Reduction

The formulation of weak-head reduction in terms ofCTE∗
andβv allows one to compare

it to the operational semantics:βv steps match butCTE∗
steps do not. Indeed, the weak-

head reduction reducesE[C M] to M E∗ while the operational semantics reduces it to
(M (λx.A E[x])). Consider our example term, the operational semantics binds continu-
ation variablec to λx.A (x + 3), whereas the weak-head reduction bindsc to

(λx.A ((λx.A x)(x + 3))) .

In general, the problem is that the operational semantics lifts the context at once, whereas
the reduction theory lifts the control operation step-by-step. Unfortunately, each lifting
introduces a newλ -abstraction to represent its partial continuation. The applications of
these partial continuations, like the application

(λx.A x)(x + 3)

above, cannot be simplified because the argument is not a value. The relation between
λx.A E[x] andE∗ has been investigated in (Felleisenet al., 1987). This relation, written
≈p in (Felleisenet al., 1987), turns out to be expressible fromβv and the following two
additional rules:

βΩ : (λx.A E[x])M → A E[M]

Cidem : C (λc.C M) → C (λc.M (λx.A x))

Both rules are observationally sound (especially, the ruleCidem will be discussed in Sec-
tion 2.3). This leads to the following reformulation of Theorem 4.7 in (Felleisenet al.,
1987) (we need Proposition 2.2 as the original result is stated for 7→λC

with A bort, i.e.
with the operational rulesC A bort

TE
andA bortTE ):

Theorem 2.8(Simulation of oper. sem. by weak-head red. for initial theory)

M 7→→λC
V iff M

wh
⊲∗c V ′ for someV ′ such thatV ′→→βΩCidemβvV.

Especially, ifV is C -free,M 7→→λC
V iff M

wh
⊲∗c V.

Example 2.9(A λC -term and its evaluation and weak-head reduction)

Weak-head reduction of our example term is able to reach the value produced by the opera-
tional semantics. Consider instead the termC (λk.k(λx.k))z. According to the operational
semantics, one has:

C (λk.k(λx.k))z 7→→λC
λ f .A ( f z)
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By weak-head reduction for⊲c, one has:

C (λk.k(λx.k))z
wh
→c CL

C (λc.(λk.k(λx.k))(λ f .A (c( f z)))) ⊲CT

(λc.(λk.k(λx.k))(λ f .A (c( f z))))(λx.A x)
wh
⊲∗c

λ f .A ((λx.A x)( f z))

To obtain the value of the evaluator one proceeds with the additional rules:

λ f .A ((λx.A x)( f z)) → βΩ
λ f .A (A ( f z)) → Cidem

λ f .A ((λ . f z)(λx.A x)) → βv

λ f .A ( f z)

Note that
wh
→→c (i.e. without⊲c) does not reduce the above term to a value.

2.2.3 Weak-Head Standardization

Theorem 3.10 in (Felleisenet al., 1986) gives a general standardization result for⊲∗c. We
give below its restriction to the case of reduction to a value.

Theorem 2.10(Weak-head standardization for⊲∗c)

M ⊲∗c V iff M
wh
⊲∗c V ′, whereV ′→→cV.

Proof

From the general standardization theorem in (Felleisenet al., 1986) and the assumption that
a standard reduction leading to a value strictly extends weak-head reduction. Note that in
general, for this latter assumption to be true, some redesign of the notion of standardization
is required. See the remark below.

Remark 2.11

There is a small flaw in the definition of standard reduction used in (Felleisenet al., 1986).
This flaw actually already occurs in Plotkin’s definition of standard reduction (Plotkin,
1975) on which (Felleisenet al., 1986) relies. Plotkin’s notion of standard reduction is
not deterministic and it does not satisfy the property that astandard reduction necessarily

extends weak-head reduction. Assume for instance thatM
wh
→c M′ andN

wh
→c N′. Then, the

two following distinct reduction paths are standard with respect to Plotkin-style definition
of standardization:

(λy.M)N →c (λy.M)N′ →c (λy.M′)N′

(λy.M)N →c (λy.M′)N →c (λy.M′)N′

The first derivation is standard because it reduces first a weak-head redex and the second
is standard by congruence of standardization with respect to application. Only the first
one extends weak-head reduction. A solution to the problem is to restrict congruence with
respect to application to congruence with respect to evaluation contexts.
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βv : (λx.M)V → M [V/x]
CL : (C M)N → C (λc.M (λ f .A (c ( f N))))
CR : V (C M) → C (λc.M (λx.A (c(V x))))
Cidem : C (λc.C M) → C (λc.M (λx.A x))
Ctop : C M → C (λc.M (λx.A (cx)))

Fig. 3. Reduction rules of call-by-valueλC (Felleisen and Hieb)

2.3 Felleisen and Hieb’s Reduction Semantics

The revisedλC theory in (Felleisen & Hieb, 1992) characterizes the uses ofCT that are
valid in any evaluation context. These uses are captured by two new rules calledCidem and
Ctop. This leads to the new context-compatible reduction system→ presented in Figure 3.
We write→→ for its reflexive-transitive closure and= for its reflexive-symmetric-transitive
closure.

If, after some uses of the rulesCL andCR, another control operator is reached,Cidem

applies the abort continuation. At any point it is possible to useCtop to start applyingM to
part of the captured context and then continue lifting the outer C to accumulate more of
the context. As for the operational rules, the right-hand sides of the reduction rules contain
the abort operation. Indeed, the main use of ruleCtop is to surround each invocation of
a continuation with the abort operation.Ctop turns what looks like a regular function call
into a continuation’s invocation. For example, in the termC (λc.1 + c 2 + 3) continuation
c is invoked using the normal syntax for function application. However, afterCtop, the
application of the continuation is surrounded by the abort operation:

C (λc.1 + c 2 + 3)→ C (λk.(λc.1 + c 2 + 3)(λx.A (kx)))→→C (λk.1 + A (k2) + 3)

Example 2.12(Reduction ofC (λc.1 + c 2 + (1 + 1)) + 3 )

C (λc.1 + c 2 + (1 + 1)) + 3 → CL

C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3)))) → βv

C (λc′.1 + ((λx.A (c′ (x + 3))) 2) + (1 + 1)) → βv

C (λc′.1 + A (c′(2 + 3)) + (1 + 1)) →→

C (λc′.A (c′ (2 + 3))) → Cidem

C (λc′.(λ .c′ (2 + 3))(λx.A x)) →→

C (λc′.c′ 5)

Notice that there is no reduction rule that allows one to reduce the above term to 5, as
it happens according to the operational semantics and the original theory. Applications of
ruleCtop does not help:

C (λc′.c′5) →→ C (λc.A (c5))

Remark 2.13
The problem with ruleCtop is that even in the simply-typed case, it makes the reduction
system not strongly normalizable:

C y→ C (λc.y(λx.A (cx)))→ C (λc′.(λc.y(λx.A (cx)))(λx.A (c′ x)))→ ···
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Theorem 2.14
TheλC -calculus is confluent.

Proof
This is proved in Theorem 3.14 of (Felleisen & Hieb, 1992) by first showing the confluence
of the following reduction system (calledλC ′ ):

βv : (λx.M)V → M [V/x]
C ′L : (C (λk.M))N → C (λc.M [(λ f .A (c ( f N)))/k])
C ′R : V (C (λk.M)) → C (λc.M [λx.A (c (V x))/k])
C ′idem : C (λc.C (λk.M)) → C (λc.M [(λx.A x)/k])
C ′top : C (λk.M) → C (λc.M [(λx.A (cx))/k])
Ctop : C M → C (λc.M (λx.A (cx)))

λC ′ has the same reflexive-transitive closure ofλC , therefore confluence ofλC follows.

Remark 2.15
Even though the reduction rules can be applied in any context, they do have a strategy
embedded in them. For example, one cannot reduce the following term

(A 2) (A 5)

to bothA 2 andA 5, thus contradicting the confluence result. The above term reduces to
A 2 but cannot reduce toA 5. According to theCR rule, the argumentA 5 can only be
lifted after the function part is reduced to a value. This reflects a left-to-right evaluation
strategy. Reduction rules which enforce a right-to-left evaluation order are as follows:

M (C N) → C (λc.N(λx.A (c(M x))))
(C M)V → C (λc.M (λ f .A (c( f V))))

2.3.1 Relating the Initial and Revised Theories: Felleisenand Hieb’s Approach

The removal ofCT makes the operational semantics less closely connected to the revised
theory than it was to the initial one. To reconnect both theories, Felleisen and Hieb give a

notion ofevaluationthat is defined by composing
wh
→c (from the initial theory) and a notion

of weak-head reduction underC -abstraction that we write
C -wh
→ . We review Felleisen and

Hieb’s results and make explicit the notion of weak-head reduction underlying evaluation.

We say thatM C -weakly head reducesto N, writtenM
C -wh
→ N, in the following cases:

- M has the formC (λk.E[P]), whereP is aβv, CL or CR redex that reduces toQ, and
N is C (λk.E[Q]);

- M has the formC (λk.C P) which is aCidem redex andN is C (λk.Pλx.A x).

Note that theC -weak-head reduction never appliesCtop, but it does reduce the top-level

Cidem redex. Moreover, it reduces under aC -abstraction. We write
C -wh
→→ for the reflexive-

transitive closure of
C -wh
→ . Then, we say thatM iteratively weakly head reduce in two stages

to N, writtenM
2-wh
→→ N, when

- eitherM
wh
→→c N



ZU064-05-FPR jfp-final 7 August 2007 15:38

Journal of Functional Programming 13

- or, for someP, M
wh
→→c C P→Ctop C (λk.Pλx.A (kx))

C -wh
→→ N,

where
wh
→→c is as in Section 2.2.1. Notice that

2-wh
→→ is not transitive: it only composes on the

left with
wh
→→c and on the right with

C -wh
→→ . It is generally not reflexive either.

Example 2.16(2-wh-reduction ofC (λc.1 + c 2 + (1 + 1)) + 3)
We writeA k

x andAx for the continuationsλx.A (kx) andλx.A x, respectively. First, one
lifts the control operator to the top-level:

C (λc.1 + c 2 + (1 + 1)) + 3
wh
→c

C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))

Ctop is applied next:

C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))→Ctop

C (λk.(λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))A k
x )

From this point onCtop is disallowed. One continues with the application of eitherβv, CL

or CR under aC -abstraction:

C (λk.(λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))A k
x )

C -wh
→→

C (λk.C (λ r.(λq.(λ .A k
x (2 + 3))(λz.A (q(z+ (1 + 1)))))(λw.A (r (1 + w)))))

At this point,Cidem is applied to obtain:

C (λk.(λ r.(λq.(λ .A k
x (2 + 3))(λz.A (q(z+ (1 + 1)))))(λw.A (r (1 + w))))Ax)

The weak-head reduction under aC -abstraction leads to:

C (λk.A (k5))

One lastCidem application leads to the answer:

C (λk.A (k5))
C -wh
→

C (λk.(λ .k5)(λx.A x))
C -wh
→

C (λk.k5)

Comparing this reduction with the one in Example 2.4, noticehow the first⊲CT corre-
sponds to aCtop step, whereas the other two occurrences correspond toCidem steps.

As pointed out earlier, the iterative weak-head reduction in two stages, which is made of
reduction steps of the revised theory, does not produce the value that the evaluator would
produce. The problem is that there is no way to get rid of the outermostC . To that end,
Felleisen and Hieb introduce the following notion:M is said toevaluateto a valueV iff

- M
2-wh
→→ V; or

- M
2-wh
→→ C (λk.k(Vk[λx.A (kx)/k])) andV ≡Vk[λx.A x/k]; or

- M
2-wh
→→ C (λk.Vk[λx.A (kx)/k]) andV ≡Vk[λx.A x/k].

Example 2.17
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We would say that our running example evaluates to 5. We also say thatC (λk.k) evaluates
to λx.A x since:

C (λk.k)→Ctop C (λk.(λk.k)(λx.A (kx)))
C -wh
→ C (λk.λx.A (kx))

andλx.A (kx)≡ k[λx.A (kx)/k] andλx.A x≡ k[λx.A x/k].

The theorem below rephrases Theorem 3.9 in (Felleisen & Hieb, 1992). Note that the
mapping of the reduction sequences is one-to-one: the uniqueCtop step maps to aCT step
and allCidem steps map toCT steps too.

Theorem 2.18(Corresp. between initial and revised weak-head reduction)

M
wh
⊲∗c V iff M evaluates toV.

2.3.2 Connecting to the Operational Semantics

Combining Theorem 2.18 with Theorem 2.8, we get the following simulation of the oper-
ational semantics:

Corollary 2.19(Simulation of oper. sem. by w.-h. red. for the revised theory)
M 7→→λC

V iff one of the following cases occurs:

- M
2-wh
→→ V ′ whereV ′→→βΩCidemβvV

- M
2-wh
→→ C (λk.kVk[λx.A (kx)/k]) whereVk[λx.A x/k]→→βΩCidemβvV

- M
2-wh
→→ C (λk.Vk[λx.A (kx)/k]) whereVk[λx.A x/k]→→βΩCidemβvV.

Example 2.20
- Consider the termC (λk.k(λz.k)), one has:

C (λk.k(λz.k)) 7→→λC
(λz.λx.Ax)

Whereas, with respect to the reduction semantics:

C (λk.k(λz.k))
2-wh
→→ C (λk.k(λz.λx.A (kx)))≡ C (λk.k((λz.k)[λx.A (kx)/k]))

and

(λz.λx.Ax)≡ (λz.k)[λx.A x/k]

- Consider the termC (λk.k(λx.k))z of Example 2.9, one has:

C (λk.k(λx.k))z
wh
→c

C (λc.(λk.k(λx.k))(λ f .A (c( f z)))) →Ctop

C (λc.(λc.(λk.k(λx.k))(λ f .A (c( f z))))(λx.A (cx)))
C -wh
→→

C (λc.c(λ f .A ((λx.A (cx))( f z))))

Where:

λ f .A ((λx.A (cx))( f z))≡ λ f .A (c( f z))[λx.A (cx)/c]

and

λ f .A (c( f z))[λx.A x/c]≡ λ f .A ((λx.A x)( f z))→→βΩCidemβvλ f .A ( f z)
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That answers are not only values is the return consequence ofthe removal of the com-
putational ruleCT .

Intermezzo 2.21
To simplify the correspondencebetween the reduction and operational semantics, in (Felleisen
& Hieb, 1992) two additional rules were proposed:

Celim : C (λk.kM) → M k not free inM
CE : E[C M] → C (λk.M (λx.A (kE[x])))

Rule Celim allows one to reduce our example termC (λc.1 + c 2 + (1 + 1)) + 3 to the
final value 5. The addition of the rule however breaks the confluence ofλC :

C (λk.k(xy)) //

����

xy

C (λk.(λx.A (kx))(xy))

The two diverging computations cannot be brought together.
Using CE one can naturally express thatany part of the evaluation context outside an

application ofC can be captured and reified as a partial continuation. However, it destroys
the confluence ofλC since one cannot complete the following diagram:

C (λk.k)xy // //

����

C (λq.λz.A (q(zxy)))

C (λq.(λz.A ((λw.A (q(wy)))(zx))))

Notice thatCE is derivable in the revisedλC theory extended withβΩ.

2.3.3 Weak-Head Reduction

Weak-head reduction in two stages is not an interesting notion of reduction. It is neither
transitive nor reflexive due to the insertion of aCtop step even in cases it is not needed
to reach a value (considere.g.the evaluation ofC (λk.V) which is already in “evaluated”
form). The following unique context lemma for Felleisen andHieb’s reduction shows when
exactlyCtop is needed.

Proposition 2.22(Unique context lemma for→λC
)

Let M be a term inλC . Exactly one of the following cases occurs:

- M has the formV or C (λk.kV) or C (λk.V), in which case we say thatM is an
answer.

- M has a unique decomposition under the formE[P] or C (λk.E[P]) whereP is aβv,
CL or CR redex.

- M has the formC (λk.C P) which is aCidem redex.
- M has a unique decomposition under the formC (λk.E[kV]) with E non empty in

which case only aCtop applies. No otherCtop step is further needed to reach an
answer.
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- M has a unique decomposition under the formE[xV] or C (λk.E[xV]) (with x 6= k)
orC (E[xV]) orC x in which caseM is saidto have its weak-head reduction stopped.

Based on the Unique Context Lemma, we can define a canonical notion of weak-head

reduction on terms for the revised reduction theory:M
wh
→λC

N iff M is characterized by one
of clauses 2, 3 and 4 of the lemma andN is the result of contracting the mentioned redex
of M. Then, we get an obviously reflexive and transitive notion ofweak-head reduction

by defining
wh
→→λC

as the reflexive-transitive closure of
wh
→λC

. However, this last notion
of weak-head reduction, despite its canonicity, mimics less adequately than 2-weak-head
reduction the weak-head reduction of the initial theory.

2.3.4 Weak-Head Reduction in an Abortive Context

We showed in the last sections that the notion of weak-head reduction that underlies
Felleisen and Hieb’s notion of evaluation missed basic properties of reflexivity and transi-
tivity to provide a satisfactory notion of weak-head reduction for the revised theory ofλC .
We provided an alternative definition but this latter one relates less directly to the initial
reduction semantics. Moreover, both notions come with a complex notion of answer.

To remedy these weaknesses, we restate the previous resultson terms explicitly evalu-
ated in an abortive context, i.e. on expressions of the formA M. Note that in this case, the

weak-head reduction is restricted to a
C -wh
→→ path and it does not requireCtop.

Example 2.23(Weak-head reduction in an abortive context)

We will reduce our running term as follows:

A (C (λc.1 + c 2 + (1 + 1)) + 3)
C -wh
→

A (C (λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3)))))
C -wh
→ Cidem

A ((λc′.(λc.1 +c 2 + (1 + 1))(λx.A (c′ (x + 3))))Ax)
C -wh
→→

A 5

We then get a tighter connection with the initial theory of control (CT steps map one-to-
one toCidem steps) and hence, thanks to Theorem 2.8, a tighter correspondence with the
operational semantics.

Theorem 2.24(Corresp. betw. initial and revised w.-h. red. in abortive context)

M
wh
⊲∗c N iff A M

C -wh
→→ A N.

Corollary 2.25(Simulation of oper. sem. by w.-h. red. in abortive context)

M 7→→λC
V iff A M

C -wh
→→ A V ′ whereV ′→→βΩCidemβvV.

Especially, ifV is C -free,M 7→→λC
V iff A M

C -wh
→→ A V.

Remark 2.26
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To emphasize the role of reasoning in an abortive context, weshow that ifM→→A for A an
answer, thenA M→→A V for some valueV:

A C (λk.kV) → Cidem

A ((λk.kV)(λx.A x)) → βv

A ((λx.A x)V [λx.A x/k]) → βv

A (A V[λx.A x/k]) → Cidem

A ((λ .V [λx.A x/k])(λx.A x)) → βv

A (V[λx.A x/k])

A C (λk.V) → Cidem

A ((λk.V)(λx.A x)) → βv

A (V[λx.A x/k])

We restate the unique context lemma.

Proposition 2.27(Unique context lemma for→λC
in abortive context)

Let M be a term inλC . Exactly one of the following cases occurs:

- A M has the formA V.
- A M has a unique decomposition under the formA E[P] whereP is aβv, CL or CR

redex.
- A M has the formA (C N) which is aCidem redex.
- A M has the formA E[xV] in which caseM is saidto have its weak-head reduction

in abortive context stopped.

As in Section 2.2.1, one can observe that ifA M C -weakly head reduces toA N by
CL or CR, thenA N necessarilyC -weakly head reduces further by a sequence (possibly
empty) ofCL or CR, ended byCidem and by as manyβv as the number ofCL or CR. We
write→A -CTE∗

for such a combination of rules (which generalizesCidem):

A -CTE∗
: A E[C M] →A -CTE∗

A (M E∗)

whereE∗ is defined as in Section 2.2.1. If moreoverM is of the formλk.N thenA (M E∗)
reduces further toA N[E∗/k]. This leads to the following variant of→A -CTE∗

:

A -C ′TE∗
: A E[C (λk.N)] →A -C ′TE∗

A N[E∗/k]

Let C
−
L andC

−
R be as in Section 2.2.1 andC−idem be the restriction ofCidem that applies

only when the body of the innermostC is not an abstraction. Writing
C-wh
→ A -CTE∗

βv for the

union of weak-headA -CTE∗
andβv, and

C-wh
→

A -C ′TE∗
C
−
idemC

−
L C

−
R βv

for the union of weak-

headA -C ′TE∗
, C
−
idem, C

−
L , C

−
R andβv, we get the following equivalence:

Proposition 2.28(Alternative characterization ofC -w.-h. red. in revised theory)

A M
C -wh
→→ A V iff A M

C-wh
→→A -CTE∗

βv A V iff A M
C-wh
→→

A -C ′TE∗
C
−
idemC

−
L C

−
R βv

A V. Moreover,

the Unique Context Lemma still holds by replacing items 2 and3 in its statement by the

rules composing
C-wh
→→A -CTE∗

βv or by the rules composing
C-wh
→→

A -C ′TE∗
C
−
idemC

−
L C

−
R βv

.
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2.3.5 TheλC -Calculus without theCtop Rule: TheλC
⋆-Calculus

As observed previously, if one reduces terms of the formA M then ruleCtop is not needed,
its effect is subsumed by theCidem rule. We letλC

⋆ stand for the reduction theory without
ruleCtop.

Theorem 2.29

TheλC
⋆-calculus is confluent.

Proof

As pointed out in the proof of confluence forλC (Theorem 2.14), Felleisen and Heib prove
confluence of an equivalent reduction system, theλC ′ calculus. In addition, they also state
the confluence ofλC ′ without theCtop andC ′top rules. However, we cannot rely on this result
to show confluence ofλC

⋆ , since the two reduction systems are not equivalent. To simulate
aCL reduction inλC ′ one actually needs theCtop rule. Consider theλC

⋆ reduction:

(C x)y→ C (λc.xλ f .A (c( f y)))

The simulation inλC ′ is:

(C x)y → Ctop

(C (λc.xλz.A (cz)))y → C ′L

C (λc.xλz.A ((λx.A (c(xy)))z)) → βv

C (λc.xλz.A (A (c(zy)))) → C ′idem
C (λc.xλz.A (c(zy)))

We therefore give a direct proof of confluence using van Oostrom’s method ofdecreasing
diagrams(See Appendix A).

As pointed out in the appendix, to deal with the duplication caused by theβv reduction
one works with the notion of parallel reduction. There is an interference between aβv

reduction and aCR redex, which as shown below is benign:

(λk.kC (λq.qx))V

CR

��

βv // V C (λq.qx)

CR

��
�

�

�

(λk.C (λc.(λq.qx)(λx.A (c(kx)))))V
βv

//___ C (λc.(λq.qx)(λx.A (c(V x))))

The lifting rules do not interfere with themselves:

C (λk.kC (λq.qx))y

CR

��

CL // C (λc.(λk.kC (λq.qx))(λ f .A (c( f y))))

CR

��
�

�

�

C (λk.C (λc.(λq.qx)(λx.A (c(kx)))))y
CL

//__________ M

where the common termM is

C (λc.(λk.C (λc.(λq.qx)(λx.A (c(kx)))))(λ f .A (c( f y))))
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However, the lifting rules interfere with aCidem reduction:

C (λc.C M)N
Cidem

//

CL

��

C (λc.M λx.A x)N

CL

��
�

�

�

M2

βv

��
�

�

�

C (λq.(λc.C M)(λ f .A (q( f N))))
βv

//___ M1 //______ M3

whereM1 is

C (λq.C M [(λ f .A (q( f N)))/c])

M2 is

C (λq.(λc.M λx.A x)(λ f .A (q( f N))))

andM3 is

C (λq.M [(λ f .A (q( f N)))/c] (λx.A x))

To solve the problem we take theCL,CR > βv.

Cidem interferes with itself (we writeAx for the abort continuationλx.A x):

C (λk.C (λq.C M)) //

��

C (λk.C(λq.M Ax))

��
�

�

�

C (λk.(λq.M Ax)Ax)

βv

��
�

�

�

C (λk.(λq.C M)Ax) βv

//___ C (λk.C M [Ax/q]) //___ C (λk.(M [Ax/q])Ax)

To make the above diagram decreasing we takeCidem> βv.

2.3.6 Weak-Head Standardization in an Abortive Context

The aim of this section is to prove a weak-head standardization theorem for the revised
notion of control in an abortive context. In (Felleisen & Hieb, 1992) such a notion of
standardization is defined but it is non-deterministic and hence not directly applicable for
our purpose. However, we still rely on Felleisen and Hieb’s results to deduce thatCtop

is not needed for weak-head standardization when reasoningin an abortive context. A
deterministic weak-head standardization theorem comes next.

Based on (Felleisen & Hieb, 1992), we say thatM FH-weakly head reduces toM′ (what
we call FH-weak-head reduction is called standard reduction relation in (Felleisen & Hieb,

1992)), writtenM
FH-wh
→ M′, if there exists an evaluation contextEd such thatM ≡ Ed[N]

andM′ ≡ Ed[N′] for N andN′ a redex and its contractum, respectively. The evaluation
contextEd is defined as follows:

Ed ::= E | C (λk.E)
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Note that the decomposition of an evaluation context and a redex is not unique. In fact, the
termA C (λk.C N) contains four standard redexes:

Ed ≡� and aCtop redex
Ed ≡� and aCidem redex
Ed ≡A � and aCtop redex
Ed ≡A � and aCidem redex

Any reduction path can be factorized through a FH-weak-headreduction:

Theorem 2.30(FH-weak-head standardization)

A M→→λC
A V iff A M

FH-wh
→→ λC

A V ′ for someV ′ such thatV ′→→λC
V.

Proof
We rely on the standardization theorem (Theorem 3.16) in (Felleisen & Hieb, 1992), which
itself directly relies on the scalability of Plotkin’s own proof of standardization for call-by-
valueλ -calculus (Plotkin, 1975). Felleisen and Hieb’s standardization theorem states that
M→→λC

N iff M
s
→→N, whereM

s
→→N is defined by the following clauses:

- M
s
→→M

- M
FH-wh
→→ N andN

s
→→ P impliesM

s
→→ P

- M
s
→→ N andM′

s
→→ N′ impliesM M′

s
→→N M′

s
→→N N′

- M
s
→→ N impliesλx.M

s
→→ λx.N andC M

s
→→ C N

From Felleisen and Hieb’s standardization theorem we obtain A M
s
→→A V, which by

definition of
s
→→ amounts toA M

FH-wh
→→ λC

A N
s
→→A V ′

s
→→A V with N

FH-wh
→→ V ′. None

of the FH-weak-head reductions inN
FH-wh
→→ V ′ happens in a context of the formC (λk.E),

since otherwise, one would not obtain a value at the end. Then, A N
FH-wh
→→ A V ′ is another

valid FH-weak-head reduction and the result follows.

Proposition 2.31
If A M→→λC

A V thenA M→→λ
C ⋆ A V ′ with V ′ =λC

V.

Proof

From the FH-weak-head standardization ofλC (Theorem 2.30),A M
FH-wh
→→ λC

A V ′′ and
V ′′→→λC

V. Next, we prove the following diagram:

A M

λC ⋆ $$ $$H

H

H

H

H Ctop

FH-wh // M′

λC ⋆

����
�

�

�

A M′′

(2)

If Ed is empty, one has:

A M
Ctop

FH-wh// C (λk.(λ .M)(λx.A (kx)))

βv

��
�

�

�

A M
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Since the top-level term is of the formA M, if Ed is non-empty it must be of the form
A E. If E is empty:

A (C M)

Cidem

##

#

)

-

0

3

4

5

6

7

8

9

<

@

E

Ctop

FH-wh // A (C (λk.M (λx.A (kx))))

Cidem

��
�

�

�

A ((λk.M (λx.A (kx)))(λx.A x))

βv

��
�

�

�

A (M (λx.A ((λx.A x)x)))

βv

��
�

�

�

A (M (λx.A (A x)))

Cidem,βv
����
�

�

�

A (M (λx.A x))

Otherwise, let the top-level term be of the formA E[E′[C M]] whereE′ is either�N or
V N. If E′ is �N we have:

(C M)N

CL

$$

&

,

0

4

5

6

7

8

:

;

<

=

?

@

D

H

Ctop

FH-wh // C (λk.M (λx.A (kx)))N

CL

��
�

�

�

C (λ r.(λk.M (λx.A (kx)))(λz.A (r (zN))))

βv

��
�

�

�

C (λ r.M (λx.A ((λz.A (r (zN)))x)))

βv

��
�

�

�

C (λ r.M (λx.A (A (r (xN)))))

Cidem,βv

��
�

�

�

C (λ r.M (λx.A (r (xN))))

A similar diagram can be constructed ifE′ is V �.
From Diagram 2 one concludesA M =λC ⋆ A V ′′. The result then follows from conflu-

ence ofλC
⋆ and the fact that values are stable with respect toλC

⋆ reductions.

Note that Diagram 2 does not hold if theCtop reduction is not standard. For example,
with respect to the following reduction:

A (Ω(C M))→A (Ω(C (λk.M λx.A (kx))))

whereΩ stands for a non-terminating computation, one cannot find a common termN such
thatA (Ω(C M))→→λ

C ⋆ N andA (Ω(C (λk.M λx.A (kx))))→→λ
C ⋆ N.

Theorem 2.32(Weak-head standardization for→→λC
in an abortive context)
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A M→→λC
A V iff A M

C -wh
→→ A V ′, whereV ′ =λC

V.

Proof
From Proposition 2.31,A M→→λ

C ⋆ A V ′′ andV ′′ =λC
V. We follow the proof technique

in (Huet & Lévy, 1991). LetB be the reductionA M→→λ
C ⋆ A V ′′. First one shows that the

reductionB contracts the descendant of the weak-head redex, sayU1, occurring inA M.
Then one constructs the projection of the reductionB with respect to theU1-reduction,i.e.,
one closes the diagram below

AM // //

C -wh
��

A V ′′

����
�

�

�

AM1 // //___ A V ′′1

We denote the reductionAM1→→A V ′′1 asB/U1. Since the reductionB/U1 also leads to
an answer, one can proceed by performing the projection(B/U1)/U2, whereU2 is the
weak-head redex contracted by the reductionB/U1. As before, also(B/U1)/U2 leads to an
answer. To guarantee the termination of such a process one has to show that at each step
the weight associated to each reduction decreases.

We explain the weight associated to a reduction through an example. To the following
reduction:

A ((λx.(xz) + (xz))(λx.2 + 2)) →

A ((λx.(xz) + (xz))(λx.4)) →

A ((λx.4)z+ (λx.4)z) →

A (4+(λx.4)z) →

A (4+4) →

A 8

we associate the measure〈1,1,1,1,1〉. The projection of the above reduction with respect
to the weak-head redex (i.e. the outermostβv redex) is:

A (((λx.2+2)z) + ((λx.2 + 2)z)) →→

A (((λx.4)z) + ((λx.4)z)) ≡

A (((λx.4)z) + ((λx.4)z)) →

A (4 +(λx.4)z) →

A (4 + 4) →

A 8

The weight associated to the above reduction is〈1,1,1,0,2〉. In other words, the tuple
represents the number of times each redex of the original sequence has been duplicated.
Using the lexicographic order on tuples we have〈1,1,1,1,1〉 > 〈1,1,1,0,2〉. Notice how
we count the steps from the answer up to the original term, otherwise, due to duplication
of redexes the weight will not decrease. Other than the usualduplication caused by theβv

rule, a duplication in the horizontal line can be caused by the interference betweenCL and
Cidem, andCidem and itself, as shown in the proof of confluence ofλC

⋆ (Theorem 2.29).
This however can be taken care of by working withA -C ′TE∗

, C
−
idem, C

−
L , C

−
R andβv, as

in Proposition 2.28. The projection ofB with respect to aC −idem, C
−
L or C

−
R redex is easy

because none of them interfere withCidem. The projection ofB with respect to aA -C ′TE∗
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redex is defined as follows. IfB does not start with a weak-head redex, this first redex is
projected and the rest ofB is recursively projected with respect to theA -C ′TE∗

redex. IfB
starts with a weak-head redex then theA -C ′TE∗

reduction necessarily starts with the same
weak-head redex (see Proposition 2.27). This redex is removed in B and the projection
process continues with the rest ofB and the rest ofA -C ′TE∗

, i.e. A -C ′TE∗
with its weak-

head redex omitted. If this weak-head redex isCL or CR, omitting it in A -C ′TE∗
still leaves

us with a (shorter)A -C ′TE∗
redex. If this weak-head redex isCidem then theA -C ′TE∗

redex
collapses into a sequence ofβv redexes and each of them is recursively removed fromB.

2.4 The Impact of Continuations as Regular Functions

In addition to losing strong normalization (see Remark 2.13), treating continuations as
regular functions means that continuations follow the call-by-value discipline: their argu-
ments must be reduced to values before the actual invocationis performed. Consider the
following λC evaluation:

C (λc.c(2 + 1)) 7→→λC
(λc.c(2 + 1))(λx.A x) 7→→λC

(λx.A x)(2 + 1)

The next evaluation step is to apply the reified continuation(λx.A x) to the argument
2 + 1. However, 2+ 1 must be simplified to a value first which is wasteful. Indeed,this
behavior has a well-known space leak which is demonstrated by the following example:

loop0 = 0
loop n = C (λc.c(loop(n-1)))

When the recursive call toloop(n-1) returns, the continuationc is invoked, which abandons
the entire current stack. So the recursive call toloop takes place on top of a stack which
will never be used. If the recursive call increases the size of the stack before looping, as is
the case here, the result is that the stack grows proportional to the depth of recursion, as
shown below:

loop3
7→→λC

(λx.A x)(loop2)

7→→λC
(λx.A (λx.A x)x)(loop1)

7→→λC
(λx.A ((λx.A ((λx.A x)x))x))(loop0)

Requiring that the argument of a continuation be a value forces one to evaluate the
argument in some continuation and then erase this continuation, instead of the equivalent
but more efficient choice of first erasing the continuation and then evaluating the argument
(Ganzet al., 1999). One could imagine treating a continuation invocation differently from
a regular function call, allowing one to perform the invocation even though the argument
is not a value. This would avoid the space leak alluded to above:

loop3 7→→ (λx.A x)(loop(3-1)) 7→→A (loop(3-1))

Notice how the continuation is invoked instead of reducing the argument. We address these
issues, together with the lack of strong normalization, in the context of theλC tp-calculus
introduced in the next section.
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x,a,v, f ∈ Vars
k,c ∈ KVars

KConsts = { tp }
q ∈ KAtoms ::= k | tp

M,N ∈ Terms ::= x | λx.M |M N | C (λk.J)
V ∈ Values ::= x | λx.M
J ∈ Jumps ::= qM

E ∈ EvCtxt ::= � | E M |V E

Fig. 4. Syntax ofλC tp

Intermezzo 2.33
Matthias Felleisen and his colleagues studied and designedother control operators. In a
historical note starting on page 41, Matthias reviews the story of their discovery. In here,
we briefly explaincall/cc andF ; their operational rules are as follows:

E[call/ccM] 7→ E[M (λx.A E[x])]
E[F M] 7→ M (λx.E[x])

The rules show thatcall/cc differs from C in that call/cc duplicates the evaluation
context. If the captured continuation is not invoked, control goes back to the context
surrounding thecall/cc. For example, withE being the context� + 1, one has:

call/cc(λc.4) + 1 7→ E[(λc.4)(λx.A E[x])] 7→ E[4] 7→ 5

Whereas, ifcall/cc is replaced withC one has:

C (λc.4) + 1 7→→ 4

F differs from C in that the invocation of the continuation does not abort thecalling
context. In fact, the body of captured continuation containsE[x] instead ofA E[x] :

F (λc.1 + c 2 + (1 + 1)) + 3 7→

(λc.1 + c2 + (1 + 1))(λx.x + 3) 7→→

1 + 5 + (1 + 1) 7→→

8

3 An Alternative Theory of Control: The λC tp-Calculus

TheλC tp-calculus was presented in a previous work (Ariola & Herbelin, 2003; Ariolaet al.,
2004). It is basically a call-by-value version of Parigot’sλ µ-calculus (Parigot, 1992),
whereµ is renamed intoC . It also contains a special constanttp to denote the top-level
continuation. The distinguishing feature of theλC tp calculus is that it reserves a special
treatment for the invocation of a continuation, which we refer to as ajump.

3.1 Syntax and Operational Semantics

The syntax ofλC tp is in Figure 4. The use ofC is restricted: the argument is always a
λ -abstraction which binds a continuation variable. Thus, one cannot write a term such
asC (λk.(λx.C x)k). We refer to a term of the formC (λk.J) as aC -abstraction. The
body of aC -abstraction is restricted to ajump. There is a continuation constanttp which
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denotes the top-level continuation. For example, one wouldwrite theλC -term C (λ .5)

asC (λ .tp5), explicitly indicating the return to the top-level. Variables bound to contin-
uations are distinct from other variables and can only occurin application position, thus
one cannot write a term such asC (λk.k). Moreover, the invocation of a continuation
must be surrounded by aC -abstraction. Instead of writing(k2) + 1 one is forced to write
C (λ .k2) + 1. This means that the abortive nature of continuations, instead of being
reflected in the semantics, is captured in the syntax itself.TheC -abstraction surrounding
the invocation of a continuation resembles the use of the ML throw construct (Dubaet al.,
1991). To summarize, aborting a computation (i.e., throwing to the top-level continuation)
is written as:

A M ∆
= C (λ .tpM) (Abbrev. 3)

and throwing to a user-defined continuation is written as:

Th k M ∆
= C (λ .kM) (Abbrev. 4)

The operational semantics of programs is given below:

βv : E[(λx.M)V] 7→λC tp
E[M [V/x]]

CTE : E[C (λk.kM)] 7→λC tp
E[M [tpE/k]]

CTE
′ : E[C (λk.tpM)] 7→λC tp

M [tpE/k]

Unlike the operational semantics forλC , these rules make use of a notion of substitution,
calledstructural substitution, which was first introduced in (Parigot, 1992). The general
form of structural substitution is writtenM [qE/k] (resp.J [qE/k]) and reads as: “replace
every jump of the formkN in M (resp.J) with the jump(qE[N]) (and recursively inN)”.
The substitutionsM [tpE/k] andJ [tpE/k] are defined similarly.

The structural substitution M[qE/k] (resp. J[qE/k]) is inductively defined as follows:

x[qE/k] ≡ x
(λx.M) [qE/k] ≡ λx.(M [qE/k])
(M N) [qE/k] ≡ M [qE/k]N [qE/k]
C (λk.J) [qE/k] ≡ C (λk.J)

C (λk′.J) [qE/k] ≡ C (λk′.J [qE/k]) k′ 6= k
(kM) [qE/k] ≡ qE[M [qE/k]]
(k′M) [qE/k] ≡ k′M [qE/k] k′ 6= k
(tpM) [qE/k] ≡ tpM [qE/k]

Note that this notion is not applicable toλC since continuations are not necessarily
applied to an argument (see Section 4.3 for the characterization of a subsyntax ofλC to
which structural substitution applies).

The translation ofλC -terms into theλC tp-calculus is given in Figure 5. IfE is a context,
its compositional application on each component of the context is writtenE◦. Notice how
in theC -abstraction case three things are happening:

- the captured continuation is given a namek;
- the implicit jump to the top-level is made explicit;
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(x)◦ ∆
= x

(λx.M)◦ ∆
= λx.M◦

(M N)◦ ∆
= M◦N◦

(C M)◦ ∆
= C (λk.tp(M◦ (λx.Th k x)))

Fig. 5. Translation ofλC in λC tp

(x)• ∆
= x

(λx.M)• ∆
= λx.M•

(M N)• ∆
= M•N•

(C (λk.J))• ∆
= C (λk.J•)

(tpM)• ∆
= M•

(kM)• ∆
= kM•

Fig. 6. Translation ofλC tp in λC

- the implicit aborting of the context whenk is applied is also made explicit.

Based on Abbrev. 1 and Abbrev. 3, we have:

(A M)◦→βv A M◦ (5)

The translation from aλC tp-term M to a λC -term is denoted byM• and simply corre-
sponds to dropping each reference totp and interpreting each jump as a regular application.
The formal definition is given in Figure 6.

There are two important differences betweenλC and the set of terms coming from
the translation. First, for terms in the image of the translation, occurrences ofkN are
necessarily surrounded by some “C (λk”. Therefore, ruleCtop is not needed to evaluate
terms coming fromλC tp. Second, in the image of the translation each continuation is applied
to an argument. This makes the use of structural substitution possible.

Example 3.1(The evaluation of our example term)
The evaluation of theλC tp-term corresponding to theλC -termC (λc.1 + c2 + (1+ 1)) + 3
is shown below:

(C (λc.1 + c2 + (1 + 1)) + 3)◦ ∆
=

C(λk.tp ((λc.1 + c2 + (1 + 1))(λx.Th k x))) + 3 7→→λC tp

((λc.1 + c2 + (1 + 1))(λx.Th k x)) [tp (� + 3)/k] ≡
(λc.1 + c2 + (1 + 1))(λx.A (x + 3)) 7→→λC tp

1 + A (2 + 3) + (1 + 1) 7→→λC tp

5

3.2 Relating λC and λC tp Operational Semantics

In spite of being defined on structural substitution, the operational semantics given forλC tp

faithfully implements through◦ the operational semantics assigned toλC . We consider here
λC with the primitive operatorA bort and we let(A bort M)◦ ∆

=A M◦. We have:
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Proposition 3.2(Simulation ofλC oper. sem. inλC tp)
M 7→λC

N in λC with primitive abort operator iffM◦ 7→λC tp
N◦ in λC tp.

Proof
The first clause (β -reduction) of each operational semantics trivially correspond. The sec-
ond clause forλC tp does not occur by definition ofM◦. Finally, the second and third clauses
for λC map to the third clause inλC tp as shown below:

E[C M]◦ ∆
= E◦[C (λk.tp(M◦ (λx.Th k x)))]
7→λC

(M◦ (λx.Th k x))[tpE◦/k]
≡ M◦ (λx.A E◦[x])
∆
= M (λx.A bort E[x])◦

E[A bort M]◦ ∆
= E◦[A M◦]
∆
= E◦[C (λ .tpM◦)]
7→λC

M◦

By Proposition 2.2 and by iteration of the previous proposition, we get:

Proposition 3.3
M 7→→λC

V, using eitherA bort or A , iff M◦ 7→→λC tp
V◦.

λC tp faithfully simulatesλC through◦, but the converse is not true. Compared toλC , the
structural substitution ofλC tp “optimizes” the application to the continuation as it does not
require that the argument of the continuation be evaluated first. Conversely,7→→λC

“delays”
the call to the continuation leading to a possible space leakas discussed in Section 2.4. By
reasoning on non-terminating terms, one can show the following:

Proposition 3.4(Non simulation ofλC tp oper. sem. inλC )
We may haveM 7→λC tp

N without havingM• 7→→λC
N′• for anyN′ such thatN 7→λC tp

N′.

Proof
ConsiderM ≡ E[C (λk.kΩ)] whereΩ stands for a non-terminating computation (with
no occurrence ofk). Then M 7→λC tp

E[Ω] and M• 7→→λC
((λx.A (E[x]))Ω). Since the

evaluation ofΩ is non-terminating,((λx.A (E[x]))Ω) will never reachE[Ω]. Note that
one could even get an irreversible space leak inλC when instead the evaluation inλC tp is
simply looping: takeΩ≡Y(λx.C (λk.kx)), with Y some fixpoint operator ofλ -calculus
(e.g. λ f .(λy.( f (yy))λy.( f (yy)))).

However, we have a simulation up to applications ofβΩ.

Proposition 3.5(Simulation ofλC tp oper. sem. inλC up toβΩ)
M 7→→λC tp

V iff M• 7→→λC
V ′ whereV ′ andV satisfyV ′→→βΩCidemβvV

•

The next remark will allow to simplify the notations used in the proof of Proposition 3.5.

Remark 3.6
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(On the ability to express states in the syntax) One motivation for theλ -calculus extended
with control is to provide a framework to abstractly study the operational semantics of
real languages. With a language likeλC , the focus is on terms. Especially, the notion of
state, though crucial in any actual implementation of a language handling continuations,
is not representable inλC . With the explicit introduction of the top-level continuation tp,
the situation changes. Indeed,tp can be identified with the “bottom of the stack” of stack-
based computing devices. Especially, the operational semantics ofλC tp defined above can
be equally rewritten as follows:

βv : tpE[(λx.M)V] 7→λC tp
tpE[M [V/x]]

CTE : tpE[C (λk.kM)] 7→λC tp
tpE [M [tpE/k]]

CTE
′ : tpE[C (λk.tpM)] 7→λC tp

tpM [tpE/k]

or, more concisely, as:

βv : tpE[(λx.M)V] 7→λC tp
tpE[MV/x]]

CTE : tpE[C (λk.J)] 7→λC tp
J [tpE/k]]

More generally, the evaluation semantics could be extendedto open computations as
follows:

βv : qE[(λx.M)V] 7→λC tp
qE[M [V/x]]

CTE : qE[C (λk.J)] 7→λC tp
J [qE/k]]

Proof of Proposition 3.5.The result is of the same kind as Theorem 2.8 (i.e. Theorem 4.7
of Felleisen-Friedman-Kohlbecker-Duba (Felleisenet al., 1987)). Instead of exhibiting the
relation characterizing how the two reduction paths differ, as done in (Felleisenet al.,
1987), we reason by nested induction. The only difficulty is to manage the slow down
caused by the replacement of structural substitutions by substitutions of reified contexts.

We first prove thatM 7→→λC tp
V impliesM• 7→→λC

V ′→→βΩCidemβvV
•. We reason by in-

duction on the length of the reduction path. The case of an empty reduction is trivial so we
can assume thatM 7→λC tp

M′ 7→→λC tp
V and by the induction hypothesis, we getM′• 7→→λC

V ′→→βΩCidemβvV
•. We focus on the reductionM 7→λC tp

M′. The case of aβv contraction
is easy as it behaves the same in both7→→λC tp

and 7→→λC
. Let’s then assume thatM is

E[C (λk.J)] andM′ is P[tpE/k] (if J is tpP) or M′ is E[P[tpE/k]] (if J is kP). On theλC

side, the reduction is simulated byM• 7→λC
(λk.J•)(λx.A E[x]•) 7→λC

J• [λx.A E[x]•/k].
If moreoverJ has the formkW with W a value, the reduction can progress even further with
J• [λx.A E[x]•/k] 7→λC

A E[W]• [λx.A E[x]•/k] 7→→λC
E[W]• [λx.A E[x]•/k]. To get a

uniform notation, we letJ+ beJ if J has not the formkW andE[W] otherwise. We can then
restate the reduction inλC as follows:M• 7→→λC

J+• [λx.A E[x]•/k]. To use the induction
hypothesis we need to lift the reductionM′• 7→→λC

V ′, whereM′• can be equally seen as
J+ [tpE/k]•, into some reduction starting fromJ+• [λx.A E[x]•/k]. To this aim, we show
thatJ+ [tpE/k]• 7→→λC

V ′ impliesJ+• [λx.A E[x]•/k] 7→→λC
V ′′• [λx.A E[x]•/k] whereV ′

isV ′′ [tpE/k]•. Since we also have the reductionV ′′• [λx.A E[x]•/k]→→βΩCidemβvV
′′ [tpE/k]•≡

V ′, the valueV• will eventually be reached.
The auxiliary result is by induction on the length of the reduction path fromJ+ [tpE/k]•

to V ′. The case of an empty reduction path is trivial. OtherwiseJ+ [tpE/k]• 7→λC
P 7→

→λC
V ′. Necessarily,J+ has the formtpE′[C (λk′.J′)] or tpE′[(λx.M)N] and it reduces
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βv : (λx.M)V → M [V/x]
CL : C (λk.J)N → C (λk.J [k (�N)/k])
CR : V C (λk.J) → C (λk.J [k (V �)/k])
Cidem : qC (λk.J) → J [q�/k]

Fig. 7. Reductions of call-by-valueλC tp

to someJ′′. HenceP has the formJ′′ [tpE/k]• and the same reduction step occurs in
J+•[λx.A E[x]•/k] leading toJ′′•[λx.A E[x]•/k]. If J′′ has not the formkW, the sub-
sidiary induction hypothesis is directly applicable. Otherwise, we need first to insert a few
extra steps to release the context out of its reification:

kW• [λx.A E[x]•/k] 7→λC
A E[W]• [λx.A E[x]•/k] 7→→λC

E[W]• [λx.A E[x]•/k] .

Conversely, we reason on states and show that forJ closed,J• 7→→λC
V ′ implies J 7→

→λC tp
tpV for some valueV such thatV ′→→βΩCidemβvV

•. This is by induction on the
length of the reduction path fromJ• to V ′. SinceJ is closed, it has the formtpM. The
difficult case is whenM is E[C (λk.J)] in which caseJ• 7→λC

(λk.J′•)(λx.A E[x]•) 7→λC

J′•[λx.A E[x]•/k] while we havetpM 7→λC tp
J′ [tpE/k]. Since the induction hypothesis

only givesJ′[λx.A E[x]/k] 7→→λC tp
tpV with V ′→→βΩCidemβvV

•, we use a subsidiary in-
duction to show that the reduction pathJ′ [λx.A E[x]/k] 7→→λC tp

tpV can be moved to
J′ [tpE/k] 7→→λC tp

tpW [tpE/k] for someW such thatV coincides withW [λx.A E[x]].
The only case which does not directly commute is whenJ′ is kW′ in which case

J′ [λx.A E[x]/k] 7→λC tp
tp(A E[W′])[λx.A E[x]/k] 7→λC tp

tpE[W′] [λx.A E[x]/k]

while on the other side we already haveJ [tpE/k]≡ tpE[W′][tpE/k]. It remains to observe
again thatW[λx.A E[x]/k]•→→βΩCidemβvW[tpE/k]• to finally getV ′→→βΩCidemβvW[tpE/k]•.

3.3 Reduction Semantics

The reduction semantics is given in Figure 7. Like the original calculus, the rulesCL andCR

allow one tolift the control operation step-by-step until it reaches a pointwhere it can no
longer be lifted. When the control operator reaches a jump tothe top-level (ruleCidem with
q instantiated withtp), the captured continuation is the trivial continuation modeled bytp.
Otherwise, if the control operator reaches a regular continuation variablek, the captured
continuation becomesk.

3.3.1 Confluence

Remark 3.7
The λC tp reduction rules are overlapping: aCL reduction can destroy aCidem redex, as
shown below:

C (λk.kC (λq.qx))y

CL

��

Cidem

// C (λk.kx)y

CL

��
�

�

�

C (λk.k(C (λq.qx)y))
CL

//___ C (λk.kC (λq.q(xy)))
Cidem

//___ C (λk.k(xy))
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To complete the above diagram the newly createdCL redex has to be reduced, as also
observed by Babaet al.(Babaet al., 2001) in the context of call-by-value Parigot’sλ µ
calculus. This complicates the proof of confluence based on the method of parallel re-
ductions of Tait and Martin-Löf, since the parallel reduction does not satisfy the diamond
property. The solution in (Babaet al., 2001) is to introduce the following generalization of
Cidemwhich turns out to be the generalization of the operational ruleCTE into a (congruent)
reduction rule:

C J
E : qE[C (λk.J)] → J [qE/k]

The new rule allows one to close the above diagram in one step.

Theorem 3.8
λC tp is confluent.

Proof
Follows the same steps as the proof of confluence of call-by-valueλ µ (Babaet al., 2001).
SinceλC tp reductions rules are duplicating and interfering, one considers the alternative
reduction systemλC tp. The calculusλC tp allows the reduction of multiple redexes in one
step and contains the generalization ofCidem given in the above remark (see ruleC J

E). The
calculi λC tp andλC tp have the same transitive closure, andλC tp has the diamond property.

3.3.2 Robustness

The λC tp reduction system can be also extended with theCelim rule which eliminates a
superfluous jump whose target is the current continuation:

Celim : C (λk.kM)→M k not free inM

The counterpart ofCE in λC tp is the following rule:

CE : E[C (λk.J)] → C (λk.J [kE/k])

In contrast withλC , CE is derivable fromCL andCR in λC tp.
The fact that jumps never occur on the left- or right-hand-side of an application makes

the need for a rule likeCtop useless. As a consequence, no rule artificially breaks strong
normalization (seee.g.(Ariola & Herbelin, 2003; Ariolaet al., 2005) for a proof of strong
normalization in the simply-typed case).

The use of structural substitution avoids also the space leak discussed in Section 2.4. We
have:

loop3 7→λC tp
C (λc.c(loop(3-1))) 7→λC tp

loop(3-1) 7→λC tp
· · ·

3.4 Relating λC and λC tp Reduction Semantics

As seen in the previous section, the operational semantics of λC tp is simulated by the
operational semantics ofλC only up to βΩ. The same kind of discrepancy shows up in
the mutual simulation of theλC reduction rules byλC tp reduction rules. We need to define
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an equivalent ofβΩ on theλC tp side,

βΩ : (λx.Th k x)M→ Th k M .

We denote with=λC tp ,βΩ the convertibility relation induced by the reduction relation λC tp

and theβΩ axiom. We state the results for the revised theory. To the exception of⊲CT

which is not a congruent reduction rule, the results also applies to the initial theory whose
congruent reduction rules are part of the revised theory.

Proposition 3.9
Let M andN be λC -terms. IfM =λC

N thenM◦ =λC tp ,βΩ N◦. More precisely, ifM →λC
N

then there existsP such thatM◦→→λC tp
P←←βΩ,βv,Cidem

N◦.

Proof
By cases:

(CL)

((C M)N)◦ ∆
= C (λk.tpM◦ (λx.Th k x)))N◦

→CL C (λk.tpM◦ (λx.Th k (xN◦)))
←Cidem C (λk.tpM◦ (λx.A (Th k (xN◦))))
←βΩ C (λk.tp (M◦ (λx.A ((λz.Th k z)(xN◦)))))
←βv C (λk.tp((λc.M◦ (λx.A (c(xN◦))))(λz.Th k z)))

By (5) ←βv C (λk.tp((λc.M◦ (λx.(A (c(xN)))◦))(λz.Th k z)))
∆
= C (λc.M (λx.A (c(xN))))◦

(CR)

(V (C M))◦ ∆
= V◦C (λk.tpM◦ (λx.Th k x))
→CR C (λk.tp (M◦ (λx.Th k (V◦ x))))
←Cidem C (λk.tp(M◦ (λx. A (Th k (V◦ x)))))
←βΩ C (λk.tp(M◦ (λx. A ((λz.Th k z)(V◦ x)))))
←βv C (λk.tp ((λc.M◦ (λx.A (c(V◦ x))))(λz.Th k z)))

By (5) ←βv C (λk.tp ((λc.M◦ (λx.(A (c(V x)))◦))(λz.Th k z)))
∆
= C (λc.M (λx.A (c(V x))))◦

(Cidem)

C (λc.C M)◦ ∆
= C (λk.tp (λc.C (λk′.tp(M◦ λx.Th k′ x)))(λx.Th k x))
→βv C (λk.tpC (λk′.tpM◦ [λx.Th k x/c] (λx.Th k′ x)))
→Cidem C (λk.tpM◦ [λx.Th k x/c] (λx.A x))
←βv C (λk.tp ((λc.M◦ (λx.A x))(λx.Th k x)))

By (5) ←βv C (λk.tp ((λc.M◦ (λx.(A x)◦))(λx.Th k x)))
∆
= C (λc.M (λx.A x))◦

(Ctop)

(C M)◦ ∆
= C (λk.tp (M◦ λx.Th k x))
←Cidem C (λk.tp (M◦ λx.A (Th k x)))
←←βv C (λk.tp ((λc.(M◦ λx.A (cx)))(λx.Th k x)))

By (5) ←βv C (λk.tp ((λc.(M◦ λx.(A (cx))◦))(λx.Th k x)))
∆
= C (λc.M (λx.A (cx)))◦
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To simulate aλC tp reduction inλC , we also needβΩ.

Proposition 3.10
Let M andN be closedλC tp-terms. IfM→λC tp

N then we have thatM•→→λ
C ⋆ ,βΩN•.

Proof
In the following,M [E/k] andM [A E/k] stand for structural substitution: each application
of k to an argumentN in M is replaced byE [N [E/k]] andA E[N [A E/k]], respectively.
We remark thatM [A E/k] reduces toM [E/k] by Cidem andβv.

We proceed by cases:

(CL)

(C (λk.J)M)• ∆
= C (λk.J•)M•

→CL
C (λk.(λk.J•)(λ f .A (k( f M•))))

→βv C (λk.J• [λ f .A (k( f M•))/k])
→→βΩ C (λk.J• [A (k(�M))/k])
→→Cidem,βv C (λk.J• [k(�M)/k])
∆
= C (λk.J[k(�M)/k])•

(CR) As the previous case.
(Cidem) We have two cases:

C (λk.tpC (λk′.J))• ∆
= C (λk.C (λk′.J•))
→→Cidem,βv C (λk.J• [λx.A x/k′])
→→βΩ C (λk.J• [A �/k′])
→→Cidem,βv C (λk.J• [�/k′])
∆
= C (λk.J[tp�/k′])•

C (λk.k′′C (λk′.J))• ∆
= C (λk.k′′C (λk′.J•))
→→CR

C (λk.C (λk′.J• [λx.A (k′ (k′′ x))/k′]))
→→Cidem,βv C (λk.J• [λx.A ((λy.A y)(k′′ x))/k′])
→→βΩ C (λk.J• [λx.A (A (k′′ x))/k′])
→→Cidem,βv C (λk.J• [λx.A (k′′�)/k′])
→→βΩ C (λk.J• [A (k′′�)/k′])
→→Cidem,βv C (λk.J• [k′′�/k′])
∆
= C (λk.J [k′′�/k′])•

Remark incidentally that the composition of• and◦ is not the identity in general.

Proposition 3.11
For allM in λC tp, M•◦→→βΩCidem

M. For allM in λC , M◦•→→CtopM.

Due to the previous results and the use ofβΩ in the simulation, we cannot prove that in
generalλC tp andλC simulate each other. For instance,C (λk.kC (λk′.k′ x)) is convertible
to C (λk.kx) in λC tp but is not inλC . This observation has been noted in (Ong & Stewart,
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1997) and (de Groote, 1994) who have pointed out that the relation between theλC -calculus
and the call-by-valueλ µ-calculus does not preserve convertibility, even though such a
correspondence of the convertibility relation holds in thecase of call-by-name.

In order to relateλC andλC tp, we focus on the observational behavior of the evaluation
relation: a program (i.e., a term without free variables) inλC produces an answer if and only
if the evaluation of the related program inλC tp produces an answer. As shown in Remark
2.26, the three distinct types of answers can be simplified ifthe program is reduced in a
context representing the top-level. We thus formulate correctness as follows:

Given a closedλC -termM, A M→→λC
A V iff tpM◦→→λC tp

tpV ′ .

Before considering correctness, we focus on the weak-head reduction.

3.5 Weak-Head Reduction of Terms

Like λC , the reduction rules ofλC tp are not complete with respect to the operational seman-
tics when applied to terms. In particular, they cannot simulate the following evaluations:

C (λk.kM) 7→ M [tp�/k]
C (λ .tpM) 7→ M

For example, the reduction rules cannot reduce the program

C (λk.k(λx.Th k (λy.y)))

to λx.A (λy.y). Like theλC -calculus, theλC tp-calculus can produce three kinds of answers:
V, C (λk. k V) or C (λk.tpV). The reason is that a computation involving control is
dependent on its evaluation context. While the operationalsemantics implicitly works in
an empty evaluation context, the reduction semantics cannot grant this assumption. The
following unique context lemma summarizes these observations.

Proposition 3.12(Unique context lemma for→λC tp
on terms)

Let M be a term inλC tp. Exactly one of the following cases occurs:

- M has the formV, C (λk.kV) or C (λk.tpV). In this caseM is called ananswer.
- M has one of the following form:

- E[P] whereP is aβv, CL or CR redex,
- C (λk.qE[P]) whereP is aβv, CL or CR redex,
- C (λk.J) whereJ is aCidem redex.

In this case,M is calledweakly head reducible. If the contraction of the given redex

in M givesN we writeM
wh
→ N and we say thatM weakly head reduces toN.

- M has the formE[xV], C (λk.qE[xV]) or C (λk.k′V) (k′ 6= k). In this caseM is
saidto have its weak-head reduction stopped. In the first two cases, it isstopped by
x while in the third case it isstopped by k′.

Especially, a weak-head redex, if it exists, is unique.

We writeM
wh
→→M′, for the reflexive-transitive closure of

wh
→. We also say thatM itera-

tively weakly head reduces toM′ for
wh
→.
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3.6 Weak-Head Reduction of Jumps

Fortunately,λC tp has the ability to express a fixed top-level evaluation context: it is the
purpose of the constanttp. The operational semantics can then be simulated inλC tp by
explicitly reasoning on expressions of the formtpM rather than on terms. In fact, thanks to
the notion ofjumps, theλC tp calculus has the ability to lift in the calculus the notion ofstate
that is often considered as a purely implementation issue inabstract evaluation machines.

The following proposition characterizes the possible forms of a jump.

Proposition 3.13(Unique context lemma for→λC tp
on jumps)

Let J be a jump inλC tp. Exactly one of the following cases occurs:

- J has the formtpV
- J has one of the following form:

- qE[P] whereP is aβv, CL or CR redex,
- qC(λk.J) which is aCidem redex.

In this case,J is saidweakly head reducible. If the contraction of the given redex in

J givesJ′ we writeJ
wh
→ J′ and we say thatJ weakly head reduces toJ′.

- J has the formqE[xV] or kV. In this caseJ is saidto have its weak-head reduction
stopped. In the first case, it isstopped by xwhile in the second case, it isstopped
by k.

Especially, a weak-head redex, if it exists, is unique.

We writeJ
wh
→→ J′, for the reflexive-transitive closure of

wh
→. We also say thatJ iteratively

weakly head reduces toJ′. Note that whenM
wh
→ N by executing aCidem redex andqM

wh
→

q′N by also executing aCidem redex, the twoCidem redexes are not the same redex. Take

for example,qC(λk.kC(λk.J))
wh
→ qC(λk.J) andC (λk.kC(λk.J))

wh
→ C (λk.J).

Comparing Proposition 3.12 to Proposition 3.13 makes it clear that reasoning on jumps
rather than on terms allows for a uniform characterization of answers. For instance, rea-
soning on jumps also makes ruleCelim derivable. Indeed, as soon as it is ensured that any
expressionC (λk.kM) occurs in a context of the formqE[C (λk.kM)], its reduction to
qE[M], whenk does not occur free inM, is a consequence of the other rules.

Thanks toC J
E that we defined in Remark 3.7, a result similar to Propositions 2.7 and 2.28

can be stated inλC tp. We write
wh
→

C J
Eβv

for the union of weak-headC J
E andβv.

Proposition 3.14(Alternative characterization of w.-h. red. inλC tp)

A M
wh
→→A V iff A M

wh
→→

C J
Eβv

A V. Moreover, the Unique Context Lemma still holds by

replacing the rules mentioned in item 2 of its statement by the rules composing
wh
→

C J
Eβv

.

The identity betweenCJ
E and CTE makes the following correspondence between the

operational and weak-head reduction semantics ofλC tp trivial:

Theorem 3.15(Simulation of oper. sem. by weak-head red. inλC tp)

M 7→→λC tp
V iff tpM

wh
→→ tpV.

Combined with Proposition 3.3, we get:
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A M
C -wh
→→ A V

KS

Th 2.24 [FH-like]
��

ks Th 2.32+3 A M→→λC
A V (λC revised)

M 7→→λC
V

KS

Prop 3.3 & 3.5
��

ks Th 2.8
[FFKD]

+3 M
wh
⊲∗c V ks Th 2.10

[FFKD]
+3 M ⊲∗c V (λC initial )

M 7→→λC tp
V ks Th 3.15+3 tpM

wh
→→ tpV ks Th 3.17+3 tpM→→λC tp

tpV (λC tp)

(

operational
semantics

) (

weak-head
reduction

) (

reduction
semantics

)

In each statement,V is a priori a different value (see the exact statement of the Propositions and
Theorems for details). In the statements aboutλC , M is the sameλC -term while it is aλC tp-term in
the statements aboutλC tp. The equivalences hold both whenλC is interpreted inλC tp through ◦ and
whenλC tp is interpreted inλC through •.

Fig. 8. Summary of observational equivalences

Corollary 3.16(Soundness of w.-h. red. inλC tp for the oper. sem. ofλC )

M 7→→λC
V in λC iff tpM◦

wh
→→ tpV◦ in λC tp.

3.7 Weak-Head Standardization

Theorem 3.17(Weak-head standardization inλC tp)

tpM→→λC tp
tpV iff tpM

wh
→→ tpV ′, whereV→→λC tp

V ′.

Proof

One direction is obvious. For the other direction we proceedas in the proof of Theo-
rem 2.32, i.e. we follow the proof technique in (Huet & Lévy,1991). A complication in
constructing the projection of a reduction is the interference betweenCL andCidem. As
shown in Remark 3.7, the projection of theCidem reduction with respect to the weak-head
CL redex consists of the reduction of a newly created redex. To avoid this problem, one
uses Theorem 3.14 to characterize the weak-head reductiontpM→→λC tp

tpV from βv and
the generalized formC J

E of Cidem. Thanks to the use ofC J
E , the projection preserves the

structure of the original reduction. Also, at the time of projecting a non trivial weak-head
C J

E redex along a weak-headCR or CL, one simply removes the leadingCR or CL redex
and still stays with a (shorter) weak-headC J

E redex.



ZU064-05-FPR jfp-final 7 August 2007 15:38

36 Zena M. Ariola and Hugo Herbelin

λC w-h. initial red.(
wh
⊲c)

λC w-h. revised red. in abort. context(
C -wh
→→ )

}

M[E∗/k]

βΩ,βv,Cidem

����















incre-
mental

subst. of
reified

pieces of
context















λC op. sem.(7→→λC
)

λC tp op. sem. via◦ (based on7→→λC tp
)

λC tp w-h. red. on states via◦ (based on
wh
→→)











M [λx.AE[x]/k]

βΩ,βv,Cidem

����

(

subst. of
reified
context

)

λC tp op. sem. via•−1 (based on7→→λC tp
)

λC tp w-h. red. on states via•−1 (based on
wh
→→)

}

M [E/k]

(

structural
substitu-

tion

)

Fig. 9. HowE[C (λk.M)] eventually reduces for the different op. sem. and w.-h. reductions and
how the respective results relate

4 Connecting λC and λC tp

4.1 The Observational Equivalence of λC and λC tp Reduction Theories

Figure 8 summarizes the equivalences shown in the paper. Especially, putting together
Theorems 2.8, 2.24 and 3.15, and Propositions 3.3 and 3.5, weget:

Corollary 4.1(Correspondence betweenλC andλC tp weak-head reduction)

M
wh
⊲∗c V iff A M

C -wh
→→ A V iff tpM◦

wh
→→ tpV ′◦ whereV→→βΩCidemβvV

′.

M•
wh
⊲∗c V iff A M•

C -wh
→→ A V iff tpM

wh
→→ tpV ′ whereV→→βΩCidemβvV

′•.

Thanks to the standardization theorems, Theorems 2.10, 2.32 and 3.17, we can extend
the correspondence to arbitrary reduction paths:

Corollary 4.2(Observational correspondence betweenλC andλC tp)
Let M be a closedλC -term. The evaluation ofM converges iff the evaluation ofM◦ con-
verges:

M ⊲∗c V iff A M→→λC
A V iff tpM◦→→λC tp

tpV ′ .

Similarly, letM be a closedλC tp-term. The evaluation ofM converges iff the evaluation of
M• converges:

M• ⊲∗c V iff A M•→→λC
A V iff tpM→→λC tp

tpV ′ .

4.2 Distinguishing Features of the Different Operational and Reduction Semantics

Figure 9 summarizes how the different operational semantics and weak-head reduction
semantics ofλC andλC tp behave. Sinceβv is simulated the same in all cases, we focus on
CL, CR, Cidem and⊲c. To allow a full comparison, we consider terms that are in theimage
of •. The figure shows how a closed term of the formE[C (λk.M)] eventually captures the
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surrounding context ofC . The less efficient semantics are the reduction semantics ofλC

(rulesC ′TE∗
andA -C ′TE∗

), then comes the operational semantics ofλC (rule CTE followed
by βv) and its embedding inλC tp whenC is interpreted as an operator of reification of the
context as a regular function. Finally, structural substitution (rulesCTE andCJ

E) is the most
efficient. The results differ up toβΩβvCidem contractions in the substituends. Note that all
these contractions are non trivial unlessE is empty in which caseE∗ is λx.A x which is
the same asλx.A E[x].

4.3 Simulation of Structural Substitution in λC

The mapping◦ interpretsC as an operator that reifies its context into a regular function.
Henceforth, it does not take advantage, as shown by Propositions 3.2 and 3.5, of the effi-
ciency of structural substitution. We would get a better efficiency by directly interpreting
λC into the image ofλC tp by •. Let’s first focus on closed terms.

On closed terms,• is injective and the characteristic feature of its image inλC is that
C is necessarily applied to an abstraction of the formλk.M, and every suchk bound in
the scope ofC occurs applied under the formkN. Moreover, such a subtermkN has to be
itself the immediate subterm of some “C (λk′”. Let’s adopt the further convention that for
every such subtermkN surrounded by some “C (λk′”, this “C (λk′” is omitted if k′ does
not occur free inkN. Otherwise said, if somekN is surrounded by anA , this A is left
implicit. Let’s call this restrictionλ S0

C .
Now focusing on open terms, we observe that• is not injective. The reason is that free

variables, whether they are usual variables or continuation variables, are interpreted in the
same and unique class of variables inλC . To remedy this non injectivity, we modifyλ S0

C so
to introduce a distinct class of continuations variables. Let’s callλ S

C
the resulting language.

It is defined by the following grammar:

x ∈ Vars
k ∈ KVars
M,N ∈ Terms ::= x | λx.M |M N | kM | C (λk.M)

If we restrictλ S
C

to the fragment with no free continuation variable, we fall back on a
calculus which is essentiallyλ S0

C : the distinction between usual variables and continuation
variables becomes unnecessary because it is enough to look at whether the variable is
bound by someλ or by someC to know if it is an ordinary variable or a continuation
variable. Otherwise said,λ S0

C can be equivalently seen as a restriction ofλC (where no
distinction between usual and continuation variables is done) and as a restriction ofλ S

C
.

Let † be the following interpretation ofλ S
C

into λC tp:

x† ∆
= x

(λx.M)† ∆
= λx.M†

(M N)† ∆
= M†N† if M not somek

(kM)† ∆
= Th k M†

C (λk.M)† ∆
= C (λk.kN†) if M has the formkN

C (λk.M)† ∆
= C (λk.tpM†) otherwise
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This interpretation is not surjective (kN andA (kN) have the same image) but this is
sufficient to be able to transfer back structural reduction from λC tp to λ S

C
. The inherited

reduction system forλ S
C

is the following:

βv : (λx.M)V → M [V/x]
CL : C (λk.M)N → C (λk.M [k(�N)/k])
CR : V C (λk.M) → C (λk.M [k(V �)/k])
AL : (kM)N → kM
AR : V (kM) → kM
Cidem : k′C (λk.M) → M [k′/k]
Cidem

′ : C (λk′.C (λk.M)) → C (λk′.M [A �/k])
Aidem : k′ (kM) → kM
Aidem

′ : A (kM) → kM

Proposition 4.3(Simulation ofλC tp within λC )
For all M andN in λ S

C
, M→ N in λ S

C
impliesM†→→N† in λC tp. For all M andN in λC tp,

M→ N in λC tp impliesM•→ N• in λ S
C
. Moreover,M•† ≡M in λC tp andM†•→→M in λ S

C
.

Sinceλ S0
C is a subset ofλC , this provides with a mutual simulation from this subset ofλC

with λC tp when the latter is restricted to the terms with no free continuation variable.

Compiling λC into λ S0
C is now simple: each occurrence ofk that is bound by some

C (λk.M) and that is not applied inM is replaced byλx.A (kx), while each subterm
C M whereM is not of the formλk.N is replaced byC (λk.(M (λx.A (kx)))) (these
transformations are known to be operationally sound). Of course, those occurrences ofC

that are changed in that way, behave again as operators of functional reification of contexts.

5 Conclusion

We investigated the differences between the historical calculus of controlλC and a calculus
called λC tp that is derived from the interpretation of classical proofsas programs. Both
calculi manipulate continuations but the former reifies them as regular functions and uses
ordinary substitution to propagate continuations while the latter manipulates them directly
as evaluation contexts and uses a specific notion of structural substitution.

We showed that the reduction systems of both calculi, thoughthey cannot simulate
each other, are observationally equivalent. We showed thatcontrol based on structural
substitution provides smoother results than control basedon context reification:

- Operational semantics and weak-head reduction match in the presence of structural
substitution while they differ when contexts are incrementally reified.

- Reification of contexts expands the size of context, leading to possible space leaks,
while structural substitution does not.

Thanks to the presence of a notation for the top-level continuation, the syntax ofλC tp has
a finer structure than the syntax ofλC . In particular, the constructions ofλC itself can be
finely explained from the more elementary components ofλC tp.

We showed that making explicit the top-level continuation provides a way to uniformly
manage the different kinds of answers that control reduction theories traditionally require.
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We also clarified the role of rules likeCtop in λC or Celim in the calculi inspired byλ µ-
calculus: these rules are useless to eventually reach a value as soon as the top-level contin-
uation of the evaluation is made formal.

We incidentally proved weak-head standardization and confluence forλC tp and improved
on previous results forλC . Especially, we provided a deterministic weak-head standard-
ization for the revised theory ofλC , we repaired a “deterministic leak” in Plotkin-style
notion of standardization and we showed the confluence of therevised theory whenCtop is
omitted.

Scalability

We believe our study would apply in a similar way to the call-by-name variant ofλC in
which β replacesβv andCR is removed. The main difference will be thatβΩ becomes an
instance ofβ .

We believe that our study would also directly apply to the extension ofλC with a delim-
iter of continuation # (see the historical note) and the operational rulesC[E[λx.M)V]]→

C[E[M [V/x]]], C[E[#V]]→C[E[V]] andC[E[C M]]]→C[M λx.A E[x]] with C being� or
C[E[#�]]. The correspondence would then be with theλC #tp calculus in (Ariolaet al., 2004;
Ariola et al., 2007).

Typing

A system of simple types forλC tp, inherited from (Parigot, 1992), has been given in (Ariola
& Herbelin, 2003; Ariolaet al., 2005). A peculiarity of this typing system is that the type of
tp is a parameter of the system. Based on the definition of(C M)◦, this typing system leads
to naively typeC , seen as a stand-alone constant ofλC , with type((A→ B)→ T)→ A,
whereT is the type oftp andC is polymorphic overA andB. This is quite constraining
as this forcesk to be used, in a given instance ofC (λk.M), only in contexts of typeB. A
more natural approach would be to forceB to be the top-level typeT and hence to haveC
of type ((A→ T)→ T)→ A. With this new constraint, each call tok would typically be
surrounded by someA (itself of derived typeT → A for anyA) in order to be used in a
context of arbitrary type. This system is strictly equivalent to Murthy’s parametric typing
system⊢T (Murthy, 1992), where Murthy’s ruleabort1 is replaced by a dumb coercion
from T to ⊥. Indeed, Murthy’s typing system, with this modification, can be seen as a
system where the top-level typeT and⊥ are interchangeable andC can freely have type
((A→T)→T)→A or ((A→⊥)→⊥)→A or any of the two other combination involving
T and⊥.

A more interesting typing system is obtained by eliminatingthe identification between
⊥ and the top-level typeT and by seeing⊥ as an empty type equipped with the rule

Γ ⊢T M :⊥

Γ ⊢T M : B

whose computational content is the identity. ConstrainingB to be⊥ in the naive type of
C , we getC of type ((A→ ⊥)→ T)→ A. By this approach, we obtain that calls tok
in C (λk.M) get usable in contexts of any type, without needing to insertany explicit
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coercion from⊥ to the type of these contexts, consistently with the abortive nature of
these calls. For instance, aλC -term like C (λk. if "foo" = k3 then 1 elsek2) would be
typable without needing to surround the calls tok with A .

In any case, we believe that assigning type((A→ ⊥)→⊥)→ A to C as in (Griffin,
1990) is an overly restrictive type assignment. Yet, the typings we obtain, whatever it is
((A→ T)→ T)→ A or ((A→⊥)→ T)→ A remain consistent with the observation that
((A→ ⊥)→ ⊥)→ A to C is a relevant type forC when the top-level type is itself⊥.
Alternatively, assigning the polymorphic type((A→⊥)→⊥)→ A to C forces us, as in
Griffin, to type closed programs in a top-level context of theform C (λk.k�) wherek, of
typeT→⊥, turns to play the role of an explicit top-level constant, a role that is devolved
in λC tp to tp.

Implementation

One could ask which ofλC or λC tp simulates at best real implementations of control opera-
tors. If we consider thecall/cc operator that, among others, Scheme and SML provide,
the common practice is to implement it as an operator that first duplicates the stack and
then pushes on the stack a closure that restores this stack. Formally, this corresponds to the
rule

E[call/ccM] 7→ E[M (λx.A E[x])]

whereE schematizes the stack andλx.A E[x] schematizes the restoring operator. If one try
to modelcall/cc in λC or λC tp one observes that onlyλC tp is able to simulate the fact that
the stack is kept in place bycall/cc. If one takes the standard encoding ofcall/cc M
asC (λk.k(M k)), the derived operational rule is

E[call/ccM] 7→→λC
(λx.A E[x])(M (λx.A E[x]))

and the discussion on the inefficiency of such an implementation applies (see Section 2.4).
No other encoding ofcall/cc in λC can give the correct operational semantics because
structural substitution is required andλC doesn’t know about structural substitution.

To the contrary,λC tp supports the following encoding:

call/ccM ∆
= C (λk.k(M (λx.Th k x)))

A M ∆
= Th tp M

that exactly simulates the above operational rule ofcall/cc:

E[call/ccM] 7→→λC tp
E[M (λx.Th tp E[x])]∆

=E[M (λx.A E[x])] .

In the absence of exception handling, we can in principle do more by implementing
the calls to the continuation as special calls instead of regular call-by-value function calls.
Consider the case of SML in which jumps are made explicit by calls to the operatorthrow.
If throw k M were implemented as a function that first restores the stack encoded in its
first argument before starting evaluating the second argument, one would directly obtain
the efficiency of structural substitution. In short, in the absence of exceptions, we could
safely assign tothrow the following alternative semantics:

E′[throw (λx.A E[x]) M] 7→ E[M] .
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Of course, if the evaluation ofM later throws to another continuation, the restoring is a
useless one, but in any case, it avoids keeping in place a stack that is definitely known to
be useless. In the presence of exceptions though, this is nota conservative optimization as
exceptions jump to the dynamically-closest handler (which, according to the semantics of
SML, would become the one inE instead of the one inE′).

Related Work

The purpose of this paper was to compare the reduction semantics of theλC andλC tp calculi
which are both variants of usualλ -calculus with control. We deliberately do not study the
connection with theλ µ̃-calculus (Curien & Herbelin, 2000) which is another promisingly
“well-behaved” calculus for call-by-value control.

A comparison between a simply-typed call-by-name variant of λC and a variant of
simply-typed Parigot’sλ µ-calculus similar to our calculusλ S

C
has been done by (de Groote,

1994). An interesting aspect of this work is thatA is removed fromCL as it is the case in
the lifting rule forF (see the historical note below). Using the lifting rules ofF in the
setting ofλC , can indeed be seen as an improvement ofλC since an occurrence ofA is
eventually anyway inserted byCidem. However, the simulation ofCidem is only marginally
treated by de Groote and it strongly depends on the presence of types. From our point of
view, this is because this study missed the notion of top-level continuationtp and that the
only way to implicitly talk about it was to talk about terms oftype⊥: in the simply-typed
proof-as-program setting,⊥ is the type oftp (see (Ariola & Herbelin, 2003; Ariolaet al.,
2005)).

A Historical Note:

On the Indiana Control Operators

by Matthias Felleisen

The births ofC , F , and prompt took a long time. Indeed, prompt—the control delimiter—
was “born” twice for radically different reasons.

The story begins with Daniel Friedman’s famous “511” course. In the fall of 1984, a
group of enthusiastic PhD students (including Bruce Duba, Eugene Kohlbecker, and my-
self) enrolled in this graduate seminar on programming language research. At the time, Dan
Friedman focused on “coordinate computing,” now known as concurrent and distributed
computing (Filman & Friedman, 1984). Every week he asked us to implement a Scheme
simulation of some coordinate computing language. In the process, we began to program
with continuations because every simulation depended on implementing some form of
threads.

After a few of those projects, I realized that capturing onlya part of the current continu-
ation would significantly simplify the programs and providesome protection of the kernel.
In other words, whilecall/cc grabbed continuations between the current expression and
the prompt, most simulations needed only a part of this continuation. Since I associated the
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activity of truncating the continuation with the visible Scheme prompt, I dubbed this new
construct “first-class prompt.” I used the term “first-class” because I wanted to place the
prompt anywhere in my program, not just at the top of the main expression. My first crude
implementation used Scheme 84’s macros and engines (Haynes& Friedman, 1984).

During the following summer (1985), I worked at the MCC in Austin, and Dan Friedman
came to visit me there in August. When he arrived, he was excited about a discovery he
had made on the flight to Austin. He had understood that continuations andcall/cc could
be characterized by two equations:

f (call/cc g) = call/cc (λk. (g (λx.k ( f x))))
(call/cc g) f = call/cc (λk. (g (λx.k (x f))))

He liked the symmetry but he didn’t know where to go from here.After I returned to
Indiana later that month, Bruce, Eugene, Dan and I studied these equations in more depth.
We realized that thecall/cc of the equations wasn’t thecall/cc of Scheme and that the
equations didn’t capturecall/cc’s behavior properly. So we dubbed this control operator
C (after trying out some other TEX symbols) and continued our search of meaning in these
equations.

By the end of the fall semester, I had understood how these equations fit in with the rest
of Plotkin’s framework on theλv-calculus (Plotkin, 1975), and we all had figured out the
exact relationship betweenC andcall/cc:

call/cc ∆
= λ f . C (λk. k ( f k))

C ∆
= λ f . call/cc (λk. A ( f k))

A e ∆
= C (λ . e)

The result appeared as a conference paper (Felleisenet al., 1986) and in a cleaned-
up journal paper (Felleisenet al., 1987). To establish the validity of the control calculus,
I had to prove a Church-Rosser lemma and a Standard Reductionlemma. After some
experimenting I discovered that a minor modification of the above equation worked much
better:

f (C g) = C (λk. g (λx. A (k ( f x))))
(C g) f = C (λk. g (λx. A (k (x f))))

A major blemish remained, however. We could not eliminate the special top-level rule from
our calculus:

C f = f (λx. A x) whenC f is the entire program

Physicists would call this a “major asymmetry,” and I hated it. A minor blemish was that
we had two different versions of these pairs of equations: one for calculating and one for
meta-theorems.

Right after we had submitted the journal paper in 1986, I re-discovered my nearly
forgotten prompt. More concretely, I realized that the condition “. . . is the entire program”
in the above equation and “grabbing the current continuation of the program” (up to the
prompt) posed the same problem. If I turned the “top” of the program into a separate,
algebraically free construction, the calculus would become an ordinary calculus of control:

# (C f ) = # ( f (λx. A x))
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A quick check suggested that the revised theory would hold up, but now I had become
curious as to whether I could simplify the calculus even more.

My search quickly showed that I could simplify the proofs of the meta-theorems even
more if I threw out abort (A ) entirely. I knew I could removeA , because it was just an
abbreviation forC anyway. Of course, just like Dan Friedman’s original equations didn’t
specifycall/cc, these revised equations didn’t specifyC anymore. The next letter in the
calligraphic alphabet that we hadn’t used yet wasF and so I arrived at these equations:

e (F g) = F (λk. g (λx. k (e x)))
(F g) e = F (λk. g (λx. k (x e)))
# (F e) = # (e (λx. x))

and furthermore,

C ∆
= λg. F (λk. g (λx. A (k x)))

A e ∆
= F (λ . e)

Once I saw this set of equations, it was crystal clear that this wasthe calculus: it had
simple equations, the equations described the calculations, they posed no problem for the
meta-theorems, and the system introduced a powerful new control construct.

Naturally, we (that is, Bruce Duba and I) began to look for other control constructs that
could be “derived” from calculi. Our most important insightwas that we had a design
choice concerning the behavior ofF when it encountered a prompt:

- it could do what it does now
- it could eliminate the prompt, and
- it could absorb it.

We called these choicesF , F+, andF− becauseF+ could simulateF andF could
simulateF−. For all three, I sketched out proofs of the major meta-theorems, and they
all worked out fine. At that point, I tried to use pragmatics todecide which of the three
was important. I mostly used my examples from Dan Friedman’s1984 course, and those
quickly showed thatF was all I needed. That settled the question. When I finally submitted
a paper to POPL 1988, I usedF and prompt to introduce control delimiters into the
programming language literature (Felleisen, 1988).

Note: Around the time I left Indiana, I invented my last control operator(s):G . The standard
reduction equation for this family of operators has this shape:

# E[Genc f ] = # f (enc{E})

whereenc is a meta-function that maps evaluation contexts to constructs inside the pro-
gramming language. I never developed a theory or a practicalframework forG , but perhaps
someone else will.
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A Decreasing diagrams

The problem with showing commutativity by means of a tiling argument is that one needs
to show that the tiling process terminates. Van Oostrom (vanOostrom, 1994) defined the
notion ofdecreasing diagramsand showed that tiling with decreasing diagrams terminates.
Decreasing diagrams are defined in the setting of labeled abstract reduction systems.

Definition A.1
An abstract rewriting system (ARS) is a structure(A,−→) consisting of a setA and a binary
relation onA. A labeled ARS is a structure〈A,(−→

l
)l∈L〉, whereL is a set of labels and for

eachl ∈ L, (A,−→
l
) is an ARS.

To define the notion of decreasing diagram we consider labeled diagrams and a well-
founded order on the labels. The key to the notion is a measure|.| defined on strings of
labels. This measure is easily computed by following these steps:

- Write down the string
- Erase every element in the string, such that a larger element occurs at an earlier

position.
- Gather the remaining elements in a multiset.

For example, using the natural numbers with their natural order, we have

|121232|= |12 232|= |12 23 |= {{1,2,2,3}} .

Definition A.2
Given a set of labelsA and a well-founded order< onA, let |.| be the measure from strings
of labels to multisets of labels defined by:

|a1 . . .an|= {{ai| there is noj < i with a j > ai}} .

Then, the diagram

a

��

b //
a1��

an��
b1

//
bm

//

is decreasingwith respect to≤ if {{a,b}}≥ |ab1 . . .bm| and{{a,b}}≥ |ba1 . . .an|.
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We can use the notion of decreasing diagrams to prove commutativity as follows. First,
we prove the existence of enough diagrams to start a tiling process, then we check if all
tiles are decreasing. By the following theorem we can then conclude commutativity.

Theorem A.3
Given a labeled ARS〈A,(−→

l
)l∈Lα∪Lβ 〉 and a well-founded order onLα ∪Lβ . Define−−→α =

∪a∈Lα −→a and−−→β =∪b∈Lβ −→b . If for everya0,a1,a2 ∈A, lα ∈ Lα , lβ ∈ Lβ , such thata0−−→lα
a1

anda0−−→lβ
a2 there exists a decreasing diagram

a0

lα
��

lβ // a2

α
����
�

�

�

a1
β

// //___

then we have that−−→α and−−→β are commutative.

A special case arises when we take the setsLα andLβ to be equal to the set of all labels
L, then confluence of→L can be concluded. A common case that decreasing diagrams
cannot handle is duplication in both the horizontal and vertical direction,e.g. there is no
possible labeling that makes the following diagrams all decreasing:

��

//

��
�

�

�

�

//____

��

//

��
�

�

�

�

//__ //__

��

//

��
�

�

��
�

�

//____

It is often possible to solve this problem by introducing a form of parallel reduction or
complete development in, for example, the horizontal direction. With respect to parallel
reduction the three diagrams should then collapse into the single diagram

��

‖
//

����
�

�

�

�

‖ //____

which can be made decreasing by ordering the parallel reduction larger than the other
reductions.


