Parameter Setting for Evolutionary Latent Class Clustering

Damien Tessier 1 Marc Schoenauer 1 Christophe Biernacki 2 Gilles Celeux 3 Gérard Govaert 4
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7161
3 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.
Type de document :
Communication dans un congrès
Lishan Kang and Yong Liu and Sanyou Y. Zeng. Second International Symposium, ISICA 2007, Sep 2007, Wuhan, China. Springer Verlag, 4683, pp.472-484, 2007, LNCS
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00179186
Contributeur : Marc Schoenauer <>
Soumis le : dimanche 14 octobre 2007 - 07:39:09
Dernière modification le : jeudi 12 avril 2018 - 01:49:45
Document(s) archivé(s) le : dimanche 11 avril 2010 - 22:59:13

Fichier

latentEA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00179186, version 1

Collections

Citation

Damien Tessier, Marc Schoenauer, Christophe Biernacki, Gilles Celeux, Gérard Govaert. Parameter Setting for Evolutionary Latent Class Clustering. Lishan Kang and Yong Liu and Sanyou Y. Zeng. Second International Symposium, ISICA 2007, Sep 2007, Wuhan, China. Springer Verlag, 4683, pp.472-484, 2007, LNCS. 〈inria-00179186〉

Partager

Métriques

Consultations de la notice

554

Téléchargements de fichiers

758