Parameter Setting for Evolutionary Latent Class Clustering - Archive ouverte HAL Access content directly
Conference Papers Year : 2007

Parameter Setting for Evolutionary Latent Class Clustering

(1) , (1) , (2) , (3) , (4)
1
2
3
4

Abstract

The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.
Fichier principal
Vignette du fichier
latentEA.pdf (189.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00179186 , version 1 (14-10-2007)

Identifiers

  • HAL Id : inria-00179186 , version 1

Cite

Damien Tessier, Marc Schoenauer, Christophe Biernacki, Gilles Celeux, Gérard Govaert. Parameter Setting for Evolutionary Latent Class Clustering. Second International Symposium, ISICA 2007, Sep 2007, Wuhan, China. pp.472-484. ⟨inria-00179186⟩
319 View
191 Download

Share

Gmail Facebook Twitter LinkedIn More