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∗ INRIA Rhône-Alpes, Inovallée, 655 avenue de l’Europe,
Montbonnot Saint Martin, 38334 St Ismier Cedex, France
∗∗ LVR/ENSI, 10 Boulevard de Lahitolle, 18020 Bourges,

France
∗∗∗ ECS/ENSEA, 6 Avenue du Ponceau, 95014

Cergy-Pontoise, France, Projet ALIEN-INRIA Futures

Abstract: In this paper, two quadratic observability normal forms dependent on
output respectively correspondent to drift dominant term and forced dominant
term are firstly discussed. Moreover characteristic numbers are studied in order to
simplify the calculation of these two normal forms.

1. INTRODUCTION

Normal form is a powerful tool to analyze the
properties of dynamical systems, such as stability
(Poincaré et al., 1899), controllability (Kang et
al., 1992). In 2001, this concept was firstly in-
troduced in (Boutat-Baddas et al., 2001) in order
to analyze the observability of dynamical system,
in which the quadratic observability normal form
was studied and the interests of this technique
was highlighted. In 2005, a new observability nor-
mal form dependent on its output was studied
in (Zheng et al., 2005), and the necessary and
sufficient conditions were proposed. Moreover, an
extension to multi-outputs case has also been an-
alyzed in (Boutat et al., 2006). Since the observ-
ability normal form dependent on its output (or
outputs) were exactly linear, another reasonable
extension based on the work of (Boutat-Baddas et

al., 2001) and (Chabraoui et al., 2003) is the study
of quadratic observability normal form dependent
on its output (or outputs).

Therefore, in this paper, we consider the following
single input single output system:

{

ζ̇ = f(ζ) + g(ζ)u
y = h(ζ)

(1)

where ζ ∈ D ⊂ IR n, u ∈ IR , f : IR n → IR n,
g : IR n → IR n and h : IR n → IR are analytic
functions, and assume that for all ζ ∈ D, we have
rank

[

dh, dLf h, ..., dLn−1
f

h
]T

= n.

As an extension of our work in (Zheng et al., 2005), if
the theorem in (Zheng et al., 2005) is not verified, we
assume that system (1) can be transformed into
the following form 1 :







η̇ = β(y) + A(y)η + γ
[2]
y (η̄)

+B(y)u + ϑ
[1]
y (η̄)u + O

[3]
y (η̄, u)

y = Cη

(2)

where η ∈ IR n, η̄ = [η1, ...ηn−1]T ,

γ
[2]
y (η̄) = [γ

[2]
y1

(η̄), ..., γ
[2]
yn

(η̄)]T ,

ϑ
[1]
y (η̄) = [ϑ

[1]
y1

(η̄), ..., ϑ
[1]
yn

(η̄)]T ,

and for 1 ≤ i ≤ n, γ
[2]
yi

(η̄) and ϑ
[1]
yi

(η̄) are function of
η̄ with order 2 and 1 respectively parameterized
by y, β(y) = [β1(y), ..., βn(y)]T , and

A(y) =









0 ... 0 0

α1(y) ... 0 0
...

. . . ...
...

0 0 αn−1(y) 0









,

1 The necessary and sufficient condition for this transfor-
mation is still an open question.



and B(y) is defined as follows:

B(y) =
(

b(y), 0, · · · , 0
)T

(3)

As it was shown in (Boutat-Baddas et al., 2001) that
the equivalence modulo an output injection is
justified by the fact that the output injection can
be canceled in the observation error dynamics.
Therefore, by an output injection β(y), system (2)
is equivalent modulo an output injection to the
following system







ẋ = A(y)x + γ
[2]
y (x̄)

+B(y)u + ϑ
[1]
y (x̄)u + O

[3]
y (x̄, u)

y = xn = Cx

(4)

where x̄ = [x1, . . . , xn−1]T .

Our problem is how to characterize the fact that
all the quadratic terms can be canceled by a
diffeomorphism? If this kind of diffeomorphism
does not exist, then what’s its normal form and
its resonant terms?

2. QUADRATIC EQUIVALENCE MODULO
AN OUTPUT INJECTION

Definition 1. System (4) is quadratically equiva-
lent to system







ż = A(y)z + γ̃
[2]
y (z̄)

+B(y)u + ϑ̄
[1]
y (z̄)u + O

[3]
y (z̄, u)

y = Cz

(5)

if there exists a diffeomorphism of the following
form:

z = x + φ
[2]
y (x̄) (6)

which transforms the quadratic term γ
[2]
y (x̄) into

another quadratic term γ̃
[2]
y (z̄), where φ

[2]
y (x̄) =

[φ
[2]
y,1(x̄), ..., φ

[2]
y,n(x̄)]T and φ

[2]
y,i

(x̄) are the homogenous
polynomials with order 2 in z.

Remark 1. i) In order to keep the output un-
changed, we choose the output equal to xn, which
means the diffeomorphism z = x + φ

[2]
y (x̄) should

verify φ
[2]
y,n (x̄) = 0.

ii) It should be noted that this choice is not
obligatory. In fact, we can also choose φ

[2]
y,n (x̄) =

φ
[0]
y,n (y), i.e., a function of the output.

Proposition 1. System (4) is quadratically equiv-
alent to system (5) modulo an output injection, if
and only if the following homologic equations are
satisfied:







γ
[2]
y (x̄) + Γ

[2]
y (x̄) = A(y)φ

[2]
y (x̄) + γ̃

[2]
y (x̄)

ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄)

(7)

where

Γ
[2]
y (x̄) =

[

∂φ
[2]
y (x̄)

∂x2
α1(y), · · · ,

∂φ
[2]
y (x̄)

∂xn−1
αn−2(y), 0, 0

]

x.

Assume that z = x + φ
[2]
y (x̄), hence ż = ẋ +

∂φ
[2]
y (x̄)

∂x
ẋ.

According to equation (4) and (5), we have

ż =

[

1 +
∂φ

[2]
y (x̄)

∂x

][

A(y)x + γ
[2]
y (x̄) + B(y)u

+ϑ
[1]
y (x̄)u + O

[3]
y (x̄, u)

]

= A(y)

(

x + φ
[2]
y (x̄)

)

+ γ̃
[2]
y (x̄ + φ

[2]
y (x̄))

+B(y)u + ϑ̄
[1]
y (x̄)u + O

[3]
y (x̄, u)

So we obtain










γ
[2]
y (x̄) +

∂φ
[2]
y (x̄)

∂x
A(y)x = A(y)φ

[2]
y (x̄) + γ̃

[2]
y (x̄)

ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x
B(y) = ϑ̄

[1]
y (x̄)

(8)

where

∂φ
[2]
y (x̄)

∂x
A(y)x

=

[

∂φ
[2]
y (x̄)

∂x2
α1(y), · · · ,

∂φ
[2]
y (x̄)

∂y
αn−1(y), 0, 0

]

x

= Γ
[2]
y (x̄) + O

[3]
y (x̄)

and finally equation (8) becomes:






γ
[2]
y (x̄) + Γ

[2]
y (x̄) = A(y)φ

[2]
y (x̄) + γ̃

[2]
y (x̄)

ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄).

3. QUADRATIC OBSERVABILITY NORMAL
FORM DEPENDENT ON ITS OUTPUT

Since there exist two quadratic terms in system
(5): γ̃

[2]
y (z̄) and ϑ̄

[1]
y (z̄)u, we will study two normal

form which correspond respectively to the drift
term and forced term in this section.

3.1 Normal form with drift dominant term

In this subsection, we study the normal form cor-
respondent to drift dominant term by simplifying
the quadratic term γ̃

[2]
y (z̄).

Theorem 1. Normal form correspondent to drift
dominant term system (5) by quadratically equiv-
alent modulo an output injection is in the follow-
ing normal form:


































































ξ̇ =















n−1
∑

j≥i=1

hij(y)ξiξj

0
...

0















+





























n−1
∑

i=1

c̄1i (y)ξi

.

.

.
n−1
∑

i=1

c̄n−1
i

(y)ξi

n−1
∑

i=1

c̄n
i (y)ξi





























u

+A(y)ξ + B(y)u + O
[3]
y (ξ̄, u)

y = ξn

(9)



Since the objective of this normal form is to make
γ̃
[2]
y (x̄) = 0, so the first homologic equation in (7)

becomes

γ
[2]
y (x̄) + Γ

[2]
y (x̄) = A(y)φ

[2]
y (x̄)

Define











φ
[2]
y (x̄) = [φ

[2]
y,1 (x̄), ..., φ

[2]
y,n (x̄)]T ,

γ
[2]
y (x̄) = [γ

[2]
y,1 (x̄), ..., γ

[2]
y,n (x̄)]T ,

ϑ
[1]
y (x̄) =

[

ϑ
[1]
y,1 (x̄), ..., ϑ

[1]
y,n (x̄)

]T

,

where

φ
[2]
yn

(x̄) = 0.

And we obtain


















































α1(y)φ
[2]
y,1 (x̄) = γ

[2]
y,2 (x̄) +

n−2
∑

i=1

[

∂φ
[2]
y,2 (x̄)

∂xi+1
αi(y)xi

]

.

.

.

αn−2(y)φ
[2]
y,n−2

(x̄) = γ
[2]
y,n−1

(x̄)

+

n−2
∑

i=1

[

∂φ
[2]
y,n−1

(x̄)

∂xi+1
αi(y)xi

]

αn−1(y)φ
[2]
y,n−1

(x̄) = γ
[2]
y,n (x̄)

(10)

and the first line of equation (7) gives

γ
[2]
y,1 (x̄) +

n−2
∑

i=1

[

∂φ
[2]
y,1 (x̄)

∂xi+1
xiαi(y)

]

= 0 (11)

Equation (10) can be used to deduce φ
[2]
y,i (x̄) in

order to cancel the quadratic terms from γ
[2]
y,2 (x̄) to

γ
[2]
y,n(x̄) respectively. Moreover, if γ

[2]
y,i (x̄) and φ

[2]
y,i

(x̄)

verify also equation (11), then this system can be
quadratically linearizable. Otherwise, it gives the
following resonant terms:

γ
[2]
y,1 (x̄) +

n−2
∑

i=1

αi(y)
∂φ

[2]
y,1

(x̄)

∂xi+1
xi.

With ϑ
[1]
y (x̄)+

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄), we have ϑ̄

[1]
y,n (x̄) =

ϑ
[1]
y,n (x̄). Assume ϑ̄

[1]
y,n (x̄) =

n−1
∑

i=1

c̄n
i (y)xi and ϑ

[1]
y,n (x̄) =

n−1
∑

i=1

cn
i (y)xi, then c̄n

i (y) = cn
i (y). And it is not possible

to cancel other components. Hence we obtain
normal form (9).

In order to highlight the proposed method, we
consider the following example.

Example 1. Consider the following system:


















ẋ1 =
(

x2
1 − 2x2

3x1x2 + x2
3x2

2

)

+
(

x3 − 4x2
3x1 − 2x4

3x2

)

u

ẋ2 = x3x1 + x2
3x2

2 −
(

x3x2 + 2x2
3x1

)

u

ẋ3 = x3x2 + x2
3x1u

y = x3

(12)

where y 6= 0. According to equation (10), we have











φ
[2]
y,3

(x̄) = 0

α2(y)φ
[2]
y,2 (x̄) = γ

[2]
y,3

(x̄)

α1(y)φ
[2]
y,1 (x̄) = γ

[2]
y,2

(x̄) + α1(y)
∂φ

[2]
y,2 (x̄)

∂x2
x1

and we obtain

{

z1 = x1 + x3x2
2

z2 = x2

z3 = x3

}

. Hence the quadratic

resonant terms are:

γ
[2]
y,1 (x̄) + α1(y)

∂φ
[2]
y,1 (x̄)

∂x2
x1 = x2

1 + x2
3x2

2

Finally we have the following normal form:


















ż1 = z2
1 + z2

3z2
2 +

(

z3 − 4z2
3z1 − 2z4

3z2

)

u

+O
[3]
y (z1, z2, u)

ż2 = z3z1 −
(

z3z2 + 2z2
3z1

)

u + O
[3]
y (z1, z2, u)

ż3 = z3z2 + z2
3z1u + O

[3]
y (z1, z2, u)

y = z3

(13)

3.2 Normal form with forced dominant term

This subsection is devoted to study another nor-
mal form by simplifying quadratic terms: ϑ̄

[1]
y (z̄)u,

in system (5).

Theorem 2. Normal form forced dominant term
of system (5) by quadratically equivalent modulo
an output injection is in the following form:


































































ξ̇ =





























n−1
∑

j≥i=1

d1
i (y)ξiξj

ξ1

n−1
∑

i=1

d2
i (y)ξi

...

ξ1

n−1
∑

i=1

dn
i (y)ξi





























+ u















0
...

0
n−1
∑

i=1

c̄n
i (y)ξi















+A(y)ξ + B(y)u + O
[3]
y (ξ̄, u)

y = ξn

(14)

Assuming φ
[2]
y,n (x̄) = 0, we have

ϑ
[1]
y,n (x̄) = ϑ̄

[1]
y,n (x̄)

and if we set

ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = 0 (15)

then we obtain ϑ̄
[1]
y,1 (x̄) = ... = ϑ̄

[1]
y,n−1

(x̄) = 0.

According to the first homologic equation in (7),

γ
[2]
y (x̄) + Γ

[2]
y (x̄) = A(y)φ

[2]
y (x̄) + γ̃

[2]
y (x̄) (16)

we obtain














































































γ̃
[2]
y,1 (x̄) = γ

[2]
y,1 (x̄) +

n−2
∑

i=1

[

∂φ
[2]
y,1 (x̄)

∂xi+1
xiαi(y)

]

γ̃
[2]
y,2

(x̄) + α1(y)φ
[2]
y,1 (x̄) = γ

[2]
y,2 (x̄)

+

n−2
∑

i=1

[

∂φ
[2]
y,2 (x̄)

∂xi+1
αi(y)xi

]

...

γ̃
[2]
y,n−1

(x̄) + αn−2(y)φ
[2]
y,n−2

(x̄) = γ
[2]
y,n−1

(x̄)

+

n−2
∑

i=1

[

∂φ
[2]
y,n−1

(x̄)

∂xi+1
αi(y)xi

]

γ̃
[2]
y,n (x̄) + αn−1(y)φ

[2]
y,n−1

(x̄) = γ
[2]
y,n (x̄)

From equation (15), the term φ
[2]
y (x̄) can be used to

cancel all the quadratic terms form the second line



to the last one, except for the terms x1

n−1
∑

i=1

d
j
i
xi, j ∈

[1, n], hence we obtain:

γ̃
[2]
y (x̄) =

(

n−1
∑

j≥i=1

d1
i (y)xixj , x1

n−1
∑

i=1

d2
i (y)xi, · · · , x1

n−1
∑

i=1

dn
i (y)xi

)T

Finally we have the normal form (14).

The following example is to illustrate the proposed
normal form.

Example 2. (Example 1 continue) According to
the above method, by simple calculation, we have

{

z1 = x1 + 2x3x2
1 + 2x3

3x1x2 + x3x2
2

z2 = x2 + x1x2 + x3x2
1

z3 = x3

(17)

with this diffeomorphism we have the following
normal form:



































ż1 =
(

1 + 2z4
3

)

z2
1 + z2

3z2
2 + z3u

+O
[3]
y (z1, z2, u)

ż2 = z3z1 +
(

z3 − 2z2
3

)

z2
1 − 2z4

3z1z2

+O
[3]
y (z1, z2, u)

ż3 = z3z2 − z3z1z2 − z2
3z2

1 + z2
3z1u

+O
[3]
y (z1, z2, u)

y = z3

(18)

4. CHARACTERISTIC NUMBERS

In order to simplify the calculation of diffeomor-
phism proposed before, a new method will be pro-
posed in this section which permit us to determine
the diffeomorphism (6) in a easer way, with which
we need not to solve the homologic equation (7).

4.1 Characteristic numbers for normal form with
drift dominant term

In order to simplify equation (7), we assume:






φ
[2]
y,i (x̄) = xT φy,ix,

γ̄
[2]
y,i (x̄) = xT γ̄y,ix,

γ
[2]
y,i (x̄) = xT γy,ix,

and














































































φy,i :=









φi
11 (y) · · · φi

1,n−1 (y) 0

...
. . .

...
...

φi
1,n−1 (y) · · · φi

n−1,n−1 (y) 0

0 · · · 0 0









,

γ̃y,i :=









γ̃i
11 (y) · · · γ̃i

1,n−1 (y) 0

...
. . .

...
...

γ̃i
1,n−1 (y) · · · γ̃i

n−1,n−1 (y) 0

0 · · · 0 0









,

γy,i :=









γi
11 (y) · · · γi

1,n−1 (y) 0

...
. . .

...
...

γi
1,n−1 (y) · · · γi

n−1,n−1 (y) 0

0 · · · 0 0









.

We obtain Γ
[2]
y (x̄) = [Γ

[2]
y,1 (x̄), ..., Γ

[2]
y,n (x̄)]T where

Γ
[2]
y,i (x̄) = xT Γy,ix and

Γy,i = ĀT (y)φy,i + φy,i Ā(y),

where

Ā(y) :=











0 ... 0 0 0

α1(y) ... 0 0 0
...

. . .
...

...
...

0 ... αn−2(y) 0 0

0 ... 0 0 0











.

Setting A(y)φ
[2]
y (x̄) := xT φ̄yx, for all x, homologic

equation (7) can be written as follows:

xT γyx + xT Γyx = xT φ̄yx + xT γ̃yx

And we have

γy + Γy = φ̄y + γ̃y (19)

if γ̃y = 0, we can cancel all the quadratic terms in
system (4).

Because A(y)φ
[2]
y (x̄) =









0

α1(y)φ
[2]
y,1 (x̄)

...

αn−1(y)φ
[2]
y,n−1

(x̄)









if γ̃
[2]
y = 0, then








γy,1

γy,2

...

γy,n









+ ĀT (y)









φy,1

φy,2

...

φy,n









+









φy,1

φy,2

.

.

.

φy,n









Ā(y)

=
(

0, α1(y)φy,1 , · · · , αn−1(y)φy,n−1

)T

we have
{

γy,1 + ĀT (y)φy,1 + φy,1 Ā(y) = 0

αi(y)φy,i = γy,i+1 + ĀT (y)φy,i+1 + φy,i+1 Ā(y),

for 1 ≤ i ≤ n − 1.

Finally, by recurrence, we get

φy,i =

n−1−i
∑

k=0



















k
∑

j=0

[

Ck
j

(

ĀT (y)
)k−j

γy,i+k+1 Āj(y)

]

k
∏

m=0

αi+m



















(20)

for 1 ≤ i ≤ n − 1, where Ck
j denotes the combinato-

rial coefficient.

With this diffeomorphism, according to the follow-

ing equality: ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄) we have

ϑ
[1]
y,n

(x̄) = ϑ̄
[1]
y,n (x̄). Setting























ϑ
[1]
y,n (x̄) =

n−1
∑

j=1

cn
j (y)xj ,

ϑ̄
[1]
y,n (x̄) =

n−1
∑

j=1

c̄n
j (y)xj ,

then c̄n
j (y) = cn

j (y).



Because ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄), assuming























ϑ
[1]
y,i (x̄) =

n−1
∑

j=1

ci
j(y)xj ,

ϑ̄
[1]
y,i (x̄) =

n−1
∑

j=1

c̄i
j(y)xj .

then, since φ
[2]
y,i (x̄) = xT φy,ix, we obtain:

{

c̄i
j(y) = ci

j(y) + 2b(y)φi
1,j (y) ,

c̄n
j (y) = cn

j (y)
(21)

for 1 ≤ i, j ≤ n − 1.

Definition 2. We define the characteristic matrix
for system (4) as follows:

My = γy,1 + ĀT (y)φy,1 + φy,1 Ā(y) (22)

and

Cy =





c̄11(y) · · · c̄1n−1(y) 0
...

. . .
...

...

c̄n
1 (y) · · · c̄n

n−1(y) 0



 (23)

where My and Cy are only function of y.

We are now able to set the following theorem.

Theorem 3. Normal form correspondent to drift
dominant term of system (5) is as follows:



























ξ̇ = ξT









My

0
...

0









ξ + A(y)ξ + B(y)u

+Cyξu + O
[3]
y (ξ̄, u)

y = ξn

(24)

where My is defined in (22).

Remark 2. i) My(i, j) in equation (24) depends on
coefficients hij(y) of equation (9) as follows:

{

My(i, j) = My(j, i) =
1

2
hij(y), i < j

My(i, i) = hii(y)

ii) there are 3n(n − 1)/2 characteristic numbers
in the normal form.

Example 3. (Example 1 continue) With the guide
of the computation process proposed above, we
have

My = γy,1 + ĀT (y)φy,1 + φy,1 Ā(y) =

(

1 0 0

0 x2
3 0

0 0 0

)

and Cy =

(

−4x2
3 −2x4

3 0

−2x2
3 −x3 0

x2
3 0 0

)

. Finally we get the

same normal form correspondent to drift domi-
nant term in (13).

4.2 Characteristic numbers for normal form with
forced dominant term

With the same argument, in order to simplify
equation (7), setting























ϑ
[1]
y,n (x̄) =

n−1
∑

j=1

cn
j (y)xj ,

ϑ̄
[1]
y,n (x̄) =

n−1
∑

j=1

c̄n
j (y)xj ,

and
c̄n
j (y) = cn

j (y). (25)

Since ϑ
[1]
y (x̄) +

∂φ
[2]
y (x̄)

∂x1
b(y) = ϑ̄

[1]
y (x̄), and

φ
[2]
y,i (x̄) = xT









φi
11 (y) · · · φi

1,n−1 (y) 0

...
. . .

...
...

φi
1,n−1 (y) · · · φi

n−1,n−1 (y) 0

0 · · · 0 0









x,

if we set φi
1,j (y) = −

ci
j
(y)

2b(y)
1, we obtain ϑ̄

[1]
y,1 (x̄) = ... =

ϑ̄
[1]
y,n−1

(x̄) = 0. Then we have γy +Γy = φ̄y + γ̃y, which
gives
{

γy,1 + Ā(y)φy,1 + φy,1 Ā(y) = γ̄y,1

γ̄y,i+1 + αi(y)φy,i = γy,i+1 + ĀT (y)φy,i+1 + φy,i+1 Ā(y)

for 1 ≤ i ≤ n − 1.

Defining

Υy,i =









Υi
11 (y) · · · Υi

1,n−1 (y) 0

...
. . .

...
...

Υi
1,n−1 (y) · · · Υi

n−1,n−1 (y) 0

0 · · · 0 0









=

n−1−i
∑

k=0



















k
∑

j=0

[

Ck
j

(

ĀT (y)
)k−j

[

γy,i+k+1

−γ̃y,i+k+1

]

Āj(y)

]

k
∏

m=0

αi+m



















(26)
and

Ῡy,i =









Ῡi
11 (y) · · · Ῡi

1,n−1 (y) 0

...
. . .

...
...

Ῡi
1,n−1 (y) · · · Ῡi

n−1,n−1 (y) 0

0 · · · 0 0









(27)

=

n−1−i
∑

k=0



















k
∑

j=0

[

Ck
j

(

ĀT (y)
)k−j

γy,i+k+1 Āj(y)

]

k
∏

m=0

αi+m



















Because φi
1,j (y) = −

ci
j
(y)

2b(y)
, i, j ∈ [1, n − 1], if we set

φi
l,s (y) = Ῡi

l,s (y) , i ∈ [1, n − 1], l, s ∈ [2, n − 1]

we have γ̃i
l,s

= 0, i ∈ [2, n], l, s ∈ [2, n − 1].

Hence we get the following diffeomorphism:

φy,i :

{

φi
1,j (y) = −

ci
j(y)

2b(y)
, i, j ∈ [1, n − 1]

φi
l,s (y) = Ῡi

l,s (y) , i ∈ [1, n − 1], l, s ∈ [2, n − 1]



Because we have γ̃i
l,s

= 0, i ∈ [2, n], l, s ∈ [2, n − 1],

then γ̃i
1,j , i ∈ [2, n], j ∈ [1, n − 1] can be determined

by the following equation:

φi
1,j (y) = −

ci
j(y)

2b(y)
= Υi

1,j (y)

and we note

Myk
(i, j) = Myk

(j, i) =

{

γ̃k
1,j , i = 1

0, i 6= 1, n
, (28)

for 1 ≤ j ≤ n − 1 and 2 ≤ k ≤ n.

Finally because γy,1 + Ā(y)φy,1 + φy,1 Ā(y) = γ̃y,1 , we
obtain:

My,1 (i, j) = My,1 (j, i) = γ̃1
i,j , i < j (29)

Then we can give the following theorem.

Theorem 4. Normal form correspondent to forced
dominant term of system (5) is as follows:











































ξ̇ = ξT









My,1

My,2

.

.

.

My,n









ξ +















0
...

0
n−1
∑

i=1

c̄n
i (y)ξi















u

+A(y)ξ + B(y)u + O
[3]
y (ξ̄, u)

y = ξn

where c̄n
i and My,i are defined by equations (25),

(28) and (29).

Remark 3. The number of the free coefficients is
3n(n − 1)/2.

Example 4. (Example 1 continue) Following the
proposed calculation procedure, we can obtain

φ1 (y) =

[

2x3 x3
3 0

x3
3 x3 0
0 0 0

]

, φ2 (y) =







x3
1

2
0

1

2
0 0

0 0 0







, φ3 (y) = 0

and the following matrix My:






























My,1 =

(

1 + 2x4
3 0 0

0 x2
3 0

0 0 0

)

, My,2 =

(

x3 − 2x2
3 −x4

3 0

−x4
3 0 0

0 0 0

)

,

My,3 =







−x2
3 −

1

2
x3 0

−
1

2
x3 0 0

0 0 0







which yields the same normal form (18).

5. CONCLUSION

This paper is devoted to study the quadratic
observability normal form parameterized by its
output. Above all, two homologic equations were
given in order to guarantee the equivalence of
quadratic transformation. After that, we have

studied two normal forms respectively correspon-
dent to the drift dominant term and forced domi-
nant term. Both representations are equivalent. In
order to simplify the calculation, we proposed to
apply quadratic terms’ characteristic matrix for
these two normal forms.
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