Random sampling of a cylinder yields a not so nasty Delaunay triangulation

Olivier Devillers 1 Xavier Goaoc 2
1 GEOMETRICA - Geometric computing
INRIA Futurs, CRISAM - Inria Sophia Antipolis - Méditerranée
2 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We prove that the expected size of the 3D Delaunay triangulation of n points evenly distributed on a cylinder is Theta(n log n). This shows that the n sqrt(n) behavior of the cylinder-example of Erickson is pathological.
Document type :
Reports
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/inria-00179313
Contributor : Olivier Devillers <>
Submitted on : Monday, October 22, 2007 - 11:16:02 AM
Last modification on : Saturday, January 27, 2018 - 1:31:33 AM
Long-term archiving on : Friday, November 25, 2016 - 6:53:47 PM

File

RR.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00179313, version 2

Collections

Citation

Olivier Devillers, Xavier Goaoc. Random sampling of a cylinder yields a not so nasty Delaunay triangulation. [Research Report] RR-6323, INRIA. 2007, pp.10. ⟨inria-00179313v2⟩

Share

Metrics

Record views

400

Files downloads

367