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Abstract

This paper has two main aims. The first
is to show how planning capabilities have
been integrated into FrOz, a text adventure
game presented in (Koller et al., 2004).
Second, we demonstrate that the resulting
system offers a natural laboratory for ex-
ploring the theory of enlightened update
presented in (Thomason et al., 2006). In
particular, we shall discuss how this theory
applies in a setup with incomplete back-
ground knowledge.

1 Introduction

In this paper we investigate, in a simplified and
formalised setup, how the information that allows
two interlocutors to understand each other cor-
rectly is constructed and exploited during a con-
versation.

Let us start, right away, with an everyday exam-
ple of the phenomenon we want to investigate.A
few days ago, my mother told my sister: “Please,
buy some food for Tiffy.” Then my sister took some
money from a kitchen drawer, went to the grocery
store that is near my primary school, bought a
pack of low fat cat food with salmon flavour, and
carried the food back home.And this is exactly
how my mother expected her to act. Why? Be-
cause both of them know that my sister is always
low in cash, that at home there is always money in
a particular kitchen drawer, that the grocery store
near my primary school is the cheapest one, and
that Tiffy is our pet cat, who is getting a bit fat
and likes salmon. Is that all? Not quite. They
also know that in order to buy something you need
money, that in order to open a drawer you need
to pull it, and many other things that are usually
taken for granted.

Here, my mother and my sister exploited the
large amount of information they share in order
to leave several actionstacit. In conversation, this
strategy is not merely valid, it is frequent and per-
vasive. We are going to investigate it in a ‘dia-
logue game,’ a conversational setup simplified in
several ways. To start with, i) the interaction is
restricted to a set of requests1 between two inter-
locutors, with well defined preconditions and ef-
fects. Also, ii) the requests can be issued only
by one of the interlocutors (who we will call ‘the
player’), the other (called ‘the game’) is limited to
accepting and executing, or refusing the request.
To complete the picture, iii) ‘the game’ has com-
plete and accurate information about the conversa-
tional context (called ‘the game scenario’), while
‘the player’ may have incomplete and even incor-
rect information.

Our setup is formalised in the implementation
of a text adventure engine called FrOz Advanced
(FrOzA). Text adventures are computer games that
simulate a physical environment which can be ma-
nipulated by means of natural language requests
(i.e., commands issued to the game). The system
provides feedback in the form of natural language
descriptions of the game world and of the results
of the players’ actions. FrOzA extends the text ad-
venture FrOz (Koller et al., 2004) with planning
capabilities. This added inference ability allows
FrOzA to discover actions left tacit by the player.

This paper has two main aims. The first is to
show (in Section 2) how planning capabilities can
be integrated into the Description Logic (Baader et
al., 2003) based inference architecture provided by
FrOz. Second, we wish to demonstrate (in Section

1By ‘request’ we refer to the first part of an adjacency pair
(request, acceptance/refusal) as defined in (Clark and Schae-
fer, 1989)
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3) that the resulting system, namely FrOzA, of-
fers a natural laboratory for the theory ofenlight-
ened updatepresented in (Thomason et al., 2006).
The theory of enlightened update suggests how
shared information (usually referred to ascommon
ground(Clark, 1996)) is exploited and constructed
in the light of a computational framework for rea-
soning in conversation. We use FrOzA not only
to obtain a concrete account of enlightened update
theory, but to extend it for handling incomplete
background knowledge as well.

2 FrOzA

The architecture of FrOzA is shown in Figure 1; its
three main processing modules are depicted as el-
lipses. The language understanding module parses
the command issued by the player and constructs
its semantic representation. The language genera-
tion module works in the opposite direction, ver-
balising the results of the execution of the com-
mand. The action handling module is in charge of
performing the actions intended by the player.

All three modules make heavy use of inference
services (represented as dashed lines in the fig-
ure) in order to query and update the components
of a game scenario (depicted as rectangles). The
processing modules are independent of particular
game scenarios; by plugging in a different game
scenario the player can play a different game.

Player Assertions
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Figure 1: Architecture of FrOzA

In fact, it is in its reasoning abilities that FrOzA
extends the original version of the system (FrOz).
Thanks to its planning capabilities, FrOzA is able
to discover actions intended by the player but left
tacit by her. In order to infer these actions, FrOzA
uses the planner Blackbox (Kautz and Selman,
1999). Like FrOz, FrOzA uses the theorem prover

RACER (Haarslev and M̈oller, 2001) to query and
modify the Description Logic knowledge bases ac-
cording to the instructions encoded in the action
database.

In the rest of the section we will describe the
components of FrOzA that are relevant for the pur-
poses of this paper. In Section 2.1 we will describe
how FrOzA models a game scenario in its knowl-
edge bases. In Section 2.2 and 2.3 we will explain
in detail how actions are handled; in particular, we
show how the execution of an action depends on
the current game scenario, and how the success-
ful execution changes the scenario. This will pave
the way for our discussion of enlightened update
in Section 3.

2.1 Modelling a game scenario

FrOzA uses Description Logic (DL) knowledge
bases (KB) to codify assertions and definitions of
the concepts relevant for a given game scenario. A
DL knowledge base is a pair (TBox, ABox) where
the TBox is a set of definitions and the ABox a
set of assertions about the objects being described
in the KB (such objects are usually called indi-
viduals). Actually, FrOzA uses two knowledge
bases, which share the TBox and differ only in
their ABoxes. The common TBox defines the key
concepts in the game world and how they are in-
terrelated. Some of these concepts are basic no-
tions (such asobject) or properties (such asalive),
directly describing the game world, while others
define more abstract notions like the set of all the
individuals a player can interact with (the individ-
uals that areaccessibleto the player).

The ABoxes specify properties of particular in-
dividuals (for example, an individual can be anap-
ple or aplayer). Relationships between individu-
als are also represented here (such as the relation-
ship between an object and its location).

One of the knowledge bases (the game KB) rep-
resents thetrue stateof the game world, while the
other (the player KB) keeps track of the player’s
beliefs about the game world. In general, the
player KB will not contain all the information in
the game KB because the player will not have ex-
plored the world completely, and therefore will not
know about all the individuals and their properties.
In fact, it might also be the case that the player
KB contains information that is inconsistent with
the game KB. The game can deliberately hide ef-
fects of an action from the player; pushing a button
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might have an effect that the player cannot see.
Crucially, a game scenario also includes the def-

initions of the actions that can be executed by the
player (such as the actionstake or eat). Each
action is specified (in the action database) as a
STRIPS-like operator (Fikes et al., 1972) detailing
its arguments, preconditions and effects. The pre-
conditions indicate the conditions that the game
scenario must satisfy so that the action can be
executed; the effects determine how the action
changes the game scenario when it is executed.

2.2 Handling a single action

In this section we are going to explain in detail
how an action issued by the player can change the
game scenario.

To illustrate our explanation, let us consider
a concrete input and analyse how it is handled
by the system. Suppose that the player has just
said “Take the key.” The semantic representa-
tion of this command (obtained by the language
understanding module) will be the ground term
take(key1) (wherekey1 represents the only key
that the player can see in the current state of the
game). This ground term will be passed to the next
processing module in the architecture.

When a ground term is received by the action
handling module, it is matched against the list
of action schemas. The action schema that will
match the ground term of our example is:

action:
take(X)

preconditions:
accessible(X),
takeable(X),
not(in-inventory(X))

effects:
add: in-inventory(X)
del: has-loc(X indiv-filler(X has-loc))

player effects:
add: in-inventory(X)
del: has-loc(X indiv-filler(X has-loc))

The termX in the above schema is a variable that
gets bound to the actual argument of the action.
In our example,X would be bound to the constant
key1, and thus the preconditions and effects will
become ground terms. Once the action schema
is instantiated, it is time to check that the action
can be executed. An action can be executed if all
its preconditions are satisfied in the current game
KB. The preconditions can require that individu-
als belong to certain concepts or that they are re-
lated by certain roles. For example, the execution
of the actiontake(key1) requires that the key is

accessible to the player (accessible(key1)), that
it is small enough to be taken (takeable(key1))
and that it is not carried by the player al-
ready (not(in-inventory(key1))). The theorem
prover RACER is used to query the currentgame
KB, thereby checking that the preconditions are
satisfied.

If the action can be executed, thegame KBis
updated according to the effects of the action. In
our example, the key will no longer be in its origi-
nal location but it will be carried by the player. The
original location of the key is obtained by send-
ing the queryindiv-filler(key1 has-loc) to
RACER. A RACER query is embedded in an ac-
tion schema when the action depends on proper-
ties of individuals not explicitly mentioned in the
player command (such as the location of the key).

Once the game executed the action, the player
needs to know that the action succeeded. To
this end, the player effects in the action schema
are communicated to the player by the generation
component and asserted in theplayer KB.

If the command cannot be executed in the cur-
rent game scenario, the first precondition that
failed is communicated to the player and both KBs
remain unchanged.

2.3 Interpreting the player intention

Now that we know how the actions module han-
dles a simple action, let us explain howambiguous
commandsandtacit actionsare handled in FrOzA.

The input of the action module is not a single
ground term but a list of possible readings of the
input sentence. The list will contain exactly one
reading only if the sentence is not ambiguous (as
in the example in the previous section). Other-
wise, the list will contain one entry for each dif-
ferent reading. For example, the sentence “Unlock
the door with the key” is syntactically ambiguous
and has two possible readings, one in which the
propositional phrase “with the key” modifies the
verb “unlock” and another in which it modifies the
noun phrase “the door.” Sentences can also be ref-
erentially ambiguous. For instance, the sentence
“Take it” has as many readings as there are salient
referents in the game scenario. Each reading is it-
self a list which represents a sequence of actions
to be performed one after the other. For example,
every reading of the sentence “Take the key and
unlock the door with it” will contain two ground
terms, one for each action in the sequence.
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If the input sentence has more than one read-
ing, FrOzA decides among them by trying each
action sequence in parallel. When an action fails,
the entire reading it belongs to is discarded. For
example, the reading of the command “Take it and
eat it” which resolves both occurrences of “it” to a
key, will be discarded because a key is not edible,
although it can be taken.

If only one reading succeeds, the game assumes
that this is the command the player had in mind,
and commits to the end result of the sequence. If
more than one sequence is possible, the game re-
ports an unresolved ambiguity. For instance, the
game will report an ambiguity if both readings of
the command “Unlock the door with the key” are
executable in the current game scenario.

The inference capabilities discussed so far are
common to FrOz and FrOzA; we now turn to
what sets FrOzA apart and will lead us to dis-
cuss the theory of enlightened update:planning
capabilities. Planning is used when no reading is
executable, for analysing whether the command
includes tacit actions. For each failed reading
FrOzA tries to find asequence of actions(i.e., a
plan) which transforms the current game scenario
into a scenario where the reading can succeed. If
no such plan exists, the reading is discarded, oth-
erwise the plan is concatenated before the reading,
enlarging the original sequence of actions. The
new list of readings built in this way is reinserted
into the action handling module and its execution
proceeds as usual.

In order to illustrate the previous behaviour of
FrOzA, let us consider again the command “Un-
lock the door with the key” but now suppose that
none of its two readings is executable in the cur-
rent game scenario. One of the readings fails be-
cause there is no “door with the key” in the cur-
rent game scenario. The other reading cannot be
directly executed because the key is not in the
player’s hands but on a table in front of her. How-
ever, for this second reading a plan can be found,
namely “to take the key” before unlocking the
door; although “take the key” was left tacit by the
player, it can be inferred from the game scenario.
This plan is concatenated before the original read-
ing and the extended reading is processed again
by the action handling module. This time, the in-
put of the action module will be the sequence of
actions “Take the key and unlock the chest with
it”, making explicit the tacit action.

In order to infer tacit actions, FrOzA uses the
planning services provided by the planner Black-
box (Kautz and Selman, 1999). Blackbox works
by fixing the length of the plan in advance and
iteratively deepening it. This behaviour makes it
particularly well suited for our needs because it
finds optimal plans (minimal in the number of ac-
tions) and does it fast. Fast responses are essential
for a natural interaction with the player. For a de-
tailed description of the performance of Blackbox
in FrOzA see (Benotti, 2006a; Benotti, 2006b).
Moreover, optimal plans are crucial, otherwise ac-
tions which are executable in the game scenario
but completely irrelevant to the player command
might be included as tacit actions. For example, a
non-optimal planner might not only “take the key”
as in our example, but also take and drop other ar-
bitrary objects as well.

The input required by Blackbox are STRIPS-
style problems specified in the Planning Domain
Definition Language (Gerevini and Long, 2005)
which includes the standard elements of a plan-
ning specification: the initial state, the available
actions, and the goal.

In next section we will present a theoretical
account of the intuitions hinted at here by mak-
ing use of the insights provided by the theory of
enlightened update. In particular, we will anal-
yse what information the elements of the planning
specifications should contain.

3 Enlightened update in FrOzA

We will now use FrOzA as a laboratory for explor-
ing the theory of enlightened update (Thomason et
al., 2006). Using FrOzA we shall construct, step
by step, an accurate account of the main principles
behind this theory.

The intuition behind enlightened update theory
is that when the speaker utters a sentence, as my
mother did in our first example, she is not only try-
ing to achieve the obvious effects of the utterance,
but is also communicating the ways in which she
assumes the world to be, and on which the success
of the utterance depends.

Let us make this approach concrete through an
example in our game setup. Suppose that the
player is inside a room with a locked door while
she is holding a golden key in her hands. Then
she inputs the command “Unlock the door with the
golden key,” which is mapped to the semantic rep-
resentationunlock(door1 key1). The intention
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behind this utterance is twofold. It is clear that the
player wants the game state to be updated accord-
ing to the effects of the action, that is, she wants
to have the door unlocked. But the player also ex-
pects the game to recognise the assumptions she
is making and on which the success of the utter-
ance depends. In particular, she assumes that the
golden key fits into the door lock.

This strategy for updating the shared knowledge
is stated formally as the following principle:

ENLIGHTENED UPDATE (EU): “An agent’s
public performance of an action [A] that is mu-
tually known to require a commitment C for its
successful performance will add to the mutual in-
formation the proposition that the agent believes
C.” (Thomason et al., 2006, p.15).

It is important to notice that in order to be able
to perform an EU it must be mutually known that
the action, which is being performed publicly, re-
quires its preconditions. In our setup this means
that we assume that the exact preconditions re-
quired for the successful performance of the action
unlock are mutually known (by the player and the
game). Such an assumption is represented in the
action schema below, which specifies the player
preconditions to be equal to the original precondi-
tions of the action.
action:

unlock(door1 key1)
preconditions:

locked(door1), key(key1),
in-inventory(key1), fits-in(key1 door1)

player preconditions:
locked(door1), key(key1),
in-inventory(key1), fits-in(key1 door1)

effects:
del: locked(door1)
add: unlocked(door1)

player effects:
del: locked(door1)
add: unlocked(door1)

After this action (unlock(door1 key1)) is exe-
cuted successfully, the player will believe that “the
golden key” is a key, and that it is in her hands,
facts that she already knew. However, she will
also believe that the door is now unlocked, the
obvious effect of the action; and that the golden
key fits in the door lock, the assumption she made
and was confirmed by the success of the action.
This means that, when an action is executed, the
player KB will be updated not only with the ef-
fects of the action but also with its preconditions.
When performing this update, the order in which
the changes are made is important in order to leave

the KB in the intended state. Concretely, the KB
should be first updated with the player precondi-
tions and then with the player effects. Otherwise,
the preconditions might undo the effects of the ac-
tion. Moreover, the updates that retract informa-
tion from the KB have to be performed before the
ones that assert information, in order to avoid in-
troducing an inconsistency in the KB.

This is the easy case, but what if the action can-
not be directly executed (that is, some of its pre-
conditions are false) in the current game scenario?
The EU principle extends naturally to cover these
cases. And, in fact, these are the cases where the
theory of enlightened update is able to bridge the
gaps that arise in everyday interactions.

3.1 Enlightened Update with Tacit Actions

To analyse how the EU principle is extended, let
us modify our running example a bit in order to re-
turn to the game scenario we analysed intuitively
in Section 2.3. Suppose that the player does not
have a key and she is looking around searching
for a way to unlock the door when the game says
that there is a golden key lying on a table in front
of her. Then she inputs the command “Unlock the
door with the golden key.” Hence, according to the
EU principle, the player knowledge base should
be updated with the preconditions of the action.
However, one of the preconditions of this action,
namelyin-inventory(key1), is false in the cur-
rent game scenario (that is, in both KBs). Clearly,
the precondition cannot just be added to the player
KB because this will cause a contradiction, but this
precondition can bemadetrue in the game sce-
nario byperforming the appropriate actions.

The theory of enlightened update defines the
following refinement of the EU pattern to handle
exactly this situation:

EU WITH TACIT ACTIONS (EU/TA): “[Assume
that] C is a condition that can be manipulated by
an audience H. An agent S is observed by H to be
doing A while C is mutually known to be false. H
then acts [tacitly] to make C true, and S expects H
to so act.” (Thomason et al., 2006, p.36)

In our example, the player is not holding the
key and she knows it, and she is trying to un-
lock the door anyway, knowing that in order
to unlock a door you need to have the key in
your hands. Hence, FrOzA should act to make
in-inventory(key1) true. And it does so by ex-
ecuting tacitly the actiontake(key1).
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We should notice here that an action can be left
tacit by the speaker, and recognised correctly by
the hearer, only if theeffectsof the action aremu-
tually knownby the conversation partners.

3.2 Enlightened Update and Incomplete
Background Knowledge

In (DeVault and Stone, 2006) the theory of En-
lightened Update is implemented and tested in
COREF, a conversational agent which uses en-
lightened update to interactively identify visual
objects with a human user. In FrOzA we also
implement and test the theory of enlightened up-
date but with an added kind of uncertainty: incom-
plete background knowledge. In COREF, both in-
terlocutors are assumed to have the same back-
ground information. In FrOzA, on the other hand,
the game has complete and accurate information
about the game world, while the player starts the
game without information and acquires it as the
game evolves. In this setup, modelling enlight-
ened update highlights the issues involved when
one of the interlocutors has incomplete back-
ground knowledge. Moreover, it illustrates the
point that, as conversation evolves, background
knowledge accumulates and that a conversational
system can use this information to engage in more
flexible and robust conversation.

The key question in FrOzA is how it is able to
infer the ‘appropriate’ tacit actions in a setup with
incomplete background knowledge. In principle,
it just needs to provide Blackbox with the ‘appro-
priate’ inputs mentioned in Section 2.3: the initial
state, the goal, and the available actions. How-
ever, the question of ‘what these three elements
should contain’ raises a number of subtle issues.
Their discussion will highlight the kinds of prob-
lems that need to be considered when background
knowledge is incomplete.

3.2.1 The initial state

The first question is to decide the information
that is needed for the initial state. In FrOzA, two
types of information are registered: the objective
information in the game KB and a subjective view
in the player KB. Which of these should be used
in order to discover tacit actions? In fact, we need
both. Let us analyse this decision by extending our
example once again. Suppose that the golden key,
which was lying on the table, was taken by a thief
without the player knowing. As a consequence,
the key is on the table in the player KB, but in the

game KB the thief has it. In this new scenario, the
player issues the command “Unlock the door with
the golden key.” If we included in the initial state
the objective information of the game KB, FrOzA
would automatically take the key from the thief
(for example, by using the steal action) and unlock
the door for the player, while the player is not even
aware where the key actually was. This is clearly
inappropriate. Now, if our initial state includes the
information in the player KB, FrOzA would de-
cide to take the key from the table and unlock the
door with it. But this sequence of actions is not
executable in the game world because the key is
no longer accessible (the thief has it). More gen-
erally, a sequence of tacit actions found by reason-
ing over the player KB might not be executable in
the game world because the player’s KB may con-
tain information that is inconsistent with respect
to the game KB. Hence, we need both KBs: we
infer the actions intended by the player using the
information in her KB but we have to verify this
sequence of actions on the game KB to check if
it can actually be executed. Theaction inference
step is done using the planning services provided
by Blackbox on the subjective information, and
theaction executabilitystep is done using the rea-
soning services provided by RACER on the objec-
tive information. In COREF, by way of contrast,
once the tacit actions are inferred they do not need
to be checked for executability on the objective in-
formation. This is because the COREF setup does
not allow any of the interlocutors to have a sub-
jective view of the information; both interlocutors
are assumed to share the objective information and
hence, tacit actions are inferred solely on the basis
of objective information.

An interesting consequence of the fact that
the FrOzA setup handles incomplete background
knowledge is that we can investigate how this
background knowledge accumulates and how it af-
fects the interaction. And it turns out that the more
the player knows about the game world, the more
actions can be left tacit. For example, suppose that
after opening the door, the player locked it behind
her and continued to the following rooms investi-
gating the game world. After a while she is back
and wants to open the door again. This time it is
enough for her to say “Open the door”, instead of
“Unlock the door with the golden key”, because
she already knows, and the game knows that she
knows, which key fits into this lock.
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As a consequence, we can drop a simplify-
ing assumption made in (Thomason et al., 2006),
namely that whether an action is public or tacit is
a staticmatter, corresponding to an arbitrary split
in the action database. In FrOzA this distinction
is dynamicand correlates with the growth of back-
ground information.

3.2.2 The goal

The two remaining questions are what the goal
and the actions of the planning problem should be.
We believe that answering these two questions is
also non-trivial, as it was not trivial to define the
initial state. However, we have not yet analysed
the subtleties involved in these two issues; here we
simply present our initial approach.

Let us start defining what the goal should be.
According to EU principles, the game should act
to make the preconditions of the action true with
two restrictions. First, it must be possible for the
game to manipulate the preconditions. And sec-
ond, the action must be mutually known to require
its preconditions. Hence, we define the goal as the
player preconditions of the action commanded by
the player, excluding those that cannot be manip-
ulated by the actions in the action database.

For example, when the player says “Unlock the
door with the key” the goal of the planning prob-
lem will only include the atoms:

locked(door1),
in-inventory(key1),

The preconditions that cannot be manipu-
lated by the actions available in the action
database, such askey(key1) (something that its
not a key cannot be transformed into one) and
fits-in(key1 door1) (if the key does not fit into
the lock it is not possible to make it fit) are not
included in the goal.

3.2.3 The actions

To complete the picture, the actions available
to the planner are all the actions in the game ac-
tion database. Its preconditions will correspond
to the player preconditions and its effects to the
player effects. For the moment, we are assuming
that the preconditions and the effects of the actions
are shared by the game and the player. Hence, the
player preconditions and the preconditions of an
action coincide; as well as the player effects and
the effects. Relaxing this simplifying assumption,
would introduce more dynamism in the distinction

between tacit and public actions, and hence would
better reflect the case of real conversation.

4 Conclusions

In this paper we have described FrOzA and used it
to explore the enlightened update theory.

The FrOzA setup shows that enlightened update
can be implemented using an off-the-shelf reason-
ing tool such as Blackbox. At present, the solution
provided by this setup is not logically complete be-
cause our two inference tools (RACER and Black-
box) work independently and are not capable of
sharing information (see (Benotti, 2006b) for the
technical details). However, we believe that the
present implementation is the kind of laboratory
that theories such as enlightened update needs. We
leave the study of complete reasoning mechanisms
and a comparison between our setup and the one
implemented in (Thomason et al., 2006) for fur-
ther research. We mention in passing that inte-
grating planning capabilities in the framework of a
Description Logic reasoner is a topic of current re-
search (see (Baader et al., 2005; Liu et al., 2006)).

We have tested the theory of enlightened up-
date with an added kind of uncertainty common in
conversation: incomplete background knowledge.
This test yielded two interesting consequences.
First, the theory applies but raises a number of
subtle issues on the kind of required information,
and second, the division between tacit and pub-
lic actions becomes dynamic. In (Thomason et al.,
2006) whether an action is public or tacit is a static
matter, corresponding to an arbitrary split in the
action database. In FrOzA, this distinction corre-
lates with the growth of background information;
we believe this to be in line with ‘the granularity
of conversation’ as defined in (van Lambalgen and
Hamm, 2004) another point which requires further
work.

But more remains to be done. There is a
deeper kind of incomplete background knowledge,
namely when the action preconditions and effects
are not mutually known, i.e. when the task model
is not shared by the interlocutors. We believe that
accounting with such uncertainty in a conversation
is one of the most challenging problems that theo-
ries such as enlightened update face nowadays.
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