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ABSTRACT

The parameter estimation of a sum of exponentials or the
exponential fitting of data is a well known problem with a
rich history. It is a nonlinear problem which presents sev-
eral difficulties as the ill-conditioning when roots have close
values and the order of the estimated parameters, among oth-
ers. One of the best existing methods is the modified Prony
algorithm [1] which suffers in the presence of noise. In this
paper we propose an algebraic method for the parameter es-
timation. The method, differently from the modified Prony
method, is considerably robust to noise. The comparison of
both through simulations confirm the good performance of
the algebraic method.

1. INTRODUCTION

The parameter estimation of exponentially damped sinusoids
is a problem that arises in many data applications. For ex-
ample, models that describe heat and chemical components
diffusion, or time series related to biomedical signals are rep-
resented by a sum of exponentials. The problem is specially
interesting since frequency estimation is fundamental in sig-
nal processing. In addition, this kind of signal is transient due
to the damping factor, what makes the problem challenging.

Usually, these signals are represented by:

x(t) =
p

∑
j=1

a je
α jt (1)

where a j are amplitudes and α j are constants that may be
complex and usually have a negative real part.

Estimation of a j and α j is well known to be numerically
difficult [1]. Since, in practice, x(t) can never be exactly ob-
served due to noise and measurement errors, a first solution
would be to use a minimum square criteria where the error is
e(t) = x(t)− y(t) with y(t) = x(t)+η(t) being the observed
signal and η(t) a random Gaussian noise. The estimation of
a j and α j through this method, however, results in a nonlin-
ear problem.

The study of this kind of parameter estimation has a long
and rich history. The classical technique of Prony, for ex-
ample, extracts sinusoid or exponential signals from time se-
ries data by solving a set of linear equations for the coeffi-
cients of the recurrence equation satisfied by these signals
[1]. It is a technique closely related to Pisarenko’s method
which finds the smallest eigenvalue of an estimated covari-
ance matrix [2]. Prony’s method, however, is well known to
perform poorly in the presence of noise. On the other hand,

Pisarenko’s method is consistent but inefficient for estimat-
ing sinusoid signals and inconsistent for estimating damped
sinusoids or exponential signals. In addition, choosing initial
values, ill-conditioning when two or more α j are close and
the order of the estimated values are just some of the encoun-
tered difficulties in solving the problem.

Searching for a better performance, Osborne [3] pro-
posed a modified Prony algorithm equivalent to maximum
likelihood estimation. The method was generalized to esti-
mate any function which satisfies a difference equation with
constant coefficients. In [1], the authors apply the method to
fitting sums of exponential functions. The method is shown
to be relatively insensitive to starting values and also solves
the ill-conditioning problem as far as the convergence of the
algorithm is concerned, but may return a pair of damped si-
nusoids in place of two exponentials which are coalescing.
Moreover, it suffers in the presence of noise even though it
performs better then other existing methods.

In this paper, we propose an algebraic estimation method
for the exponential fitting of the observed signal that results
from an identification/estimation theory based on differential
algebra and operational calculus [4, 5]. Application of this
approach in other contexts as the deconvolution of BPSK (Bi-
nary Phase Shift Keying) and QPSK (Quadrature Phase Shift
Keying) signals [6] and the demodulation of CPM (Continu-
ous Phase Modulation) signals [7], among others [8], all as-
sociated with the estimation of different parameters, showed
that the resulting methods are specially robust to noise, en-
abling a good estimation of the desired parameters even at
very low signal to noise ratios [9]. Since noise always largely
degrades the performance of existing methods for the param-
eter estimation of exponentially damped sinusoids, we expect
the algebraic approach to enhance the results obtained under
these conditions.

The paper is organized as follows. Section 2 briefly re-
views the modified Prony method. Section 3 proposes an
algebraic method for the estimation of the desired parame-
ters. Considering the same framework used in [1], we study
the case of a signal given by the sum of two exponentials and
briefly show how to generalize the resulting method. Simula-
tions and discussions are presented in section 4, where both
methods are compared. The paper concludes with section 5.

2. THE MODIFIED PRONY METHOD

The modified Prony algorithm is equivalent to maximum
likelihood estimation for Gaussian noise. It was general-
ized in [10] to estimate any function that satisfies a difference
equation with coefficients that are linear and homogeneous in



the parameters. In [1], the algorithm was applied to exponen-
tial fitting. The authors start considering a signal as shown
in (1), which satisfies a constant coefficient differential equa-
tion. In the discrete time case, it is known that this signal can
be written as an AR (Auto-Regressive) signal which satisfies
the difference equation:

p+1

∑
k=1

ϑky(n−1− k) = 0 (2)

for some suitable choice of ϑk with y(n) being equally spaced
samples of y(t). From (2), setting y = [y(n) y(n−1) ... y(n−
N)]T , we can write

XT (ϑ)y = 0 (3)

where X(ϑ) is the convolution matrix

X(ϑ) =


















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

The algorithm results from the minimization of the
square error φ(a,α) = (y−x)T (y−x) subject to the con-

straint ϑ T ϑ = 1. A necessary condition for it to be attained
is:

(B(ϑ)−λ I)ϑ = 0 (4)

where λ is the Lagrange multiplier and

B(ϑ)i j = yT Xi

(

XT X
)−1

XT
j y +

−yT X
(

XT X
)−1

XT
i X j

(

XT X
)−1

XT y

with X j = ∂X(ϑ)/∂ϑ j. The problem is then a nonlinear
eigenvalue problem. The modified Prony algorithm solves
(4) using a succession of linear problems converging to λ =
0. Given an estimate ϑ k of the solution ϑ̂ , solve:

(

B(ϑ k)−λ k+1I
)

ϑ k+1 = 0

ϑ k+1T

ϑ k+1 = 1 (5)

with λ k+1 the nearest to zero of such solutions. Convergence

is accepted when λ k+1 is small compared to ‖B(ϑ)‖.
In order to recover α j having estimated ϑ , we need

to obtain the roots of the characteristic polynomial pϑ =

∑
p+1
k=1 ϑkzk−1 which will result in ζ j = n(1 − e−α j/n). The

final step is then

α j = −nlog(1−ζ j/n) = n
∞

∑
j=1

j−1 (ζ j/n) j

The modified Prony method is relatively insensitive to
starting values. It may return a pair of damped sinusoids in
place of two exponentials which are coalescing. More details
about this method can be found in [10, 1].

3. ALGEBRAIC ESTIMATION METHOD

Let us consider a signal given by the sum of two complex
exponentials in noise:

y(t) = a1eα1t +a2eα2t + γ +η(t) (6)

where α1 and α2 may be complex, γ is a constant bias per-
turbation and η(t) is an additive noise.

We suppose that the amplitudes a1 and a2 are irrelevant
for our purpose and consider them equal to one. Our objec-
tive is, thus, to estimate α1 and α2.

Considering that we will observe the signal y(t) during
a finite time interval T ≤ t ≤ T + λ , the noise η(t) can be
decomposed as:

η(t) = γλ
T +ηλ

T (t) (7)

where the constant γλ
T represents its mean (average) value

and ηλ
T (t) is a zero-mean term. Returning to (6), we can thus

consider, without any loss of generality, that in the perturba-
tion γ +η(t), η(t) is zero-mean.

The algebraic method proposed is based on differential
algebra and operational calculus. Therefore, the first step is
to obtain a differential equation satisfied by (6). Ignoring the
zero-mean noise term η(t) for the moment, the signal

y(t) = a1eα1t +a2eα2t + γ (8)

satisfies the following differential equation

y(3) = θ1y(2) +θ2y(1) (9)

where the super-script (i) denotes de order of differentiation
of y(t) with respect to time, θ1 = α1 +α2 and θ2 =−(α1α2).

Observing (9), it is important to note that the differential
equation has, as parameters, functions of the desired α1 and
α2. In addition, (9) does not depend on the structured per-
turbation γ . Since it is a constant, it can easily be eliminated
through differentiation.

The next step is to obtain the Laplace transform of (9):

s3ŷ−
(

s2y0 + sẏ0 + ÿ0

)

= θ1(s
2ŷ− (sy0 + ẏ0))+θ2(sŷ− y0)

(10)
where y0, ẏ0 and ÿ0 are the initial conditions of y(t) in the
time interval being considered. These unknown constants
can also be viewed as structured perturbations that can be
eliminated by taking the derivative of (10) recursively with
respect to the variable s three times:

(s3ŷ)(3) = θ1(s
2ŷ)(3) +θ2(sŷ)(3) (11)

Now, we can use (11) to generate a system of equations
that will allow us to estimate the desired parameters. Since
we have only two unknown parameters, it suffices to differ-
entiate (11) once more to obtain:

[

(s3ŷ)(3)

(s3ŷ)(4)

]

=

[

(s2ŷ)(3) (sŷ)(3)

(s2ŷ)(4) (sŷ)(4)

][

θ1

θ2

]

(12)

Solving the system of equations (12) will give us an es-
timation of α1 and α2. It is clear, however, that the signal
y(t) is only known in the time-domain. Applying the inverse
Laplace transform to (12), we observe that the multiplication
by s in the operational domain will result in a differentiation



with respect to time, in the time domain. Since differentia-
tions are not robust operations to be calculated numerically,
we can avoid them by dividing both sides of equation (12)

by sν . Developing the (.)k for k = 3,4 and dividing by sν we
obtain:







y(3)

sν−3
+9

y(2)

sν−2
+18

y(1)

sν−1
+6

y

sν

y(4)

sν−3
+12

y(3)

sν−2
+36

y(2)

sν−1
+24

y(1)

sν






=







y(3)

sν−2
+6

y(2)

sν−1
+6

y(1)

sν

y(3)

sν−1
+3

y(2)

sν

y(4)

sν−2
+8

y(3)

sν−1
+12

y(2)

sν

y(4)

sν−1
+4

y(3)

sν







[

θ1

θ2

]

(13)

where ν is larger than the largest power of s appearing in the
system. In the considered case, ν has to be larger than 3.

Returning to the time domain, we will have integral op-
erations instead of differentiations. In general, (13) is com-

posed by terms of the form
y(i)

sν− j , which inverse Laplace trans-

form is given by the ν − j order iterated integral

L
−1

{

y(i)

sν− j

}

=

∫ λ

0
dλν− j−1

∫ λν− j−1

0
· · ·

∫ λ1

0
τ iy(τ)dτ

=
(−1)i

(ν − j−1)!

∫ λ

0
(λ − τ)ν− j−1τ iy(τ)dτ

(14)

where λ is the integration interval.
Finally, the parameters can be estimated by solving

Pθ = Q (15)

where θ = [θ1 θ2]
T ,

Q =

∫ λ

0

[

1 0
0 τ

][

q1

q2

]

κν−4y(τ)dτ

and

P =

∫ λ

0

[

1 0
0 τ

][

p1,1 p1,2

p2,1 p2,2

][

κν−3 0

0 τκν−2

]

y(τ)τdτ

with κ = λ − τ and

p1,1 = −τ2b1,2 +6τκb1,1 −6κ2

p2,1 = τ2b1,2 −8τκb1,1 +12κ2

p1,2 = −τb1,1 +3κ
p2,2 = τb1,1 −4κ
q1 = −τ3b1,3 +9τ2κb1,2 −18τκ2b1,1 +6κ3

q2 = τ3b1,3 −12τ2κb1,2 +36τκ2b1,1 −24κ3

b1, j = ∏
j
i=1(ν − i)

Note that the estimation time λ , which depends on the
observation signal y(t), has to be sufficient to the integrals to
converge. In general this interval can be small, which trans-
lates into fast estimation.

In addition, when the zero-mean noise term η(t) is added
to the signal, the iterated integration procedure is going to
largely reduce its effect at the output. For this reason the
method is significantly robust to noise.

Having estimated θ, we still have to recover α1 and α2.
From (9), α1 and α2 are the roots of the characteristic equa-
tion:

px = z2 −θ1z−θ2 = (z−α1)(z−α2) (16)

The generalization of the procedure shown is quite direct.
Consider a signal given by the sum of p exponentials:

y(t) =
p

∑
i=1

aie
αit + γ (17)

It will satisfy the following differential equation:

dp+1y

dt p+1
= θ1

dpy

dt p
+θ2

dp−1y

dt p−1
+ ...+θp

dy

dt
(18)

where the coefficients θk are algebraic functions of the de-
sired unknown parameters:

θk = (−1)k−1
p

∑
i1, ..., ik = 1
i1 < ... < ik

αi1αi2 ...αik

Having found the respective differential equation, we
can resume the necessary steps for the development of the
method as follows:

1. Obtain the Laplace transform of (18), i.e., a differential
equation satisfied by the observed signal, with constant
coefficients that depend on the desired parameters.

2. Differentiate the resulting equation with respect to the
variable s recursively p + 1 times in order to eliminate
the dependence on initial conditions of y(t).

3. Continue to differentiate the resulting expression recur-
sively in order to generate a system of equations with a
number of equations equal to the number of unknown co-
efficients. We will then have a system with p equations.

4. Divide all equations by a term sν , with ν > p+1, to ob-
tain proper operators.

5. Return to the time-domain, calculating the necessary in-
tegrals as defined in (14).

6. Solve the resulting linear system. Once we have found
the estimates of θi, i = 1,2, the coefficients αi can be
found as the roots of the characteristic polynomial of
(18).

4. SIMULATION RESULTS AND DISCUSSION

Comparing the proposed algebraic method with the modified
Prony’s method, it is interesting to observe that both start
considering the differential equation that is satisfied by y(t).
The modified Prony’s method, however, treats the problem in
discrete time, using the corresponding difference equation,
while the algebraic method treats it directly in continuous
time. In addition, both methods are insensitive to initial con-
ditions.

Let us start with the case where y(t) is given by only one
exponential:

y(t) = eαt

where α is complex. The development of the algebraic
method for this case follows exactly the same steps presented
in section 3. Here, y(t) satisfies the following differential
equation:

ÿ(t) = α ẏ(t)



where the structured perturbation γ was already eliminated
through differentiation.

Figures 1 and 2 show the convergence of both methods
with respect to time, for the estimation of the real and imag-
inary components of α respectively. The value of α was set
to −0.2 + 0.9i, ν was considered equal to 4 and white gaus-
sian noise was added to y(t). The presented curves are the
resulting mean of 100 Monte Carlo simulations. The sig-
nal y(t) was observed during 10 seconds and we considered
1000 samples for the algebraic method and 15 for the modi-
fied Prony method. This difference comes from the fact that
the algebraic method treats the signals in continuous time and
needs a sufficient number of samples for the integrals to con-
verge, while the modified Prony method uses equally spaced
samples of the signal. For the later, increasing the number of
points degrades the performance.

As we can see, the performances of the algebraic method
are similar for SNR (Signal to Noise Ratio) of 15 dB and
0 dB. However, this is not the case for the modified Prony
method. In the estimation of α at 0 dB presented here, the
obtained value is out of the graphic scale.
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In the sequel, we will consider y(t) given by (6), i.e., the
sum of two exponentials. Figure 3 shows the result obtained
using real valued α: α1 = −0.25 and α2 = −0.8. The fig-
ure shows the mean square error (MSE) obtained compar-
ing the estimated values of α with the correct ones for 1000
Monte Carlo simulations. The signal was observed during
an interval of 20 seconds. The Algebraic Method (AM) used
5000 samples while the Modified Prony method (MP) used
25. The parameter ν was set equal to 5.

It is clear that the modified Prony method suffers consid-
erably with the addition of noise, differently from the alge-
braic method. As mentioned in [1], the former may give a
complex value as a result of the estimation of real parame-
ters. The error shown in figure 3 was calculated considering
only the real part of the estimated parameter. The number of
inaccurate estimations increases as the SNR decreases. The
algebraic method does not present such a behavior, i.e., if the
desired parameters are real it always returns a real valued es-
timation. For comparison, the figure also shows the Cramer
Rao Bound (CRB).
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Figure 3: Comparison of the performances of the algebraic
method and the modified Prony method in identifying α1 =
−0.25 and α2 = −0.8

Figures 4 and 5 show the error obtained in the estimation
of complex valued α: α1 = −0.25−0.9i and α2 = −1.2+ i.
Once again we can see the good performance of the algebraic
method when compared to the modified Prony method. The
simulations in this case used the same scenario above: ν =
5, 5000 samples for MA and 25 for MP, 1000 Monte Carlo
simulations.

It should be noted that, in the case without noise, both
methods coincide estimating the desired parameters with an
error that tends to zero.

5. CONCLUSION

We have proposed an algebraic method for the parameter es-
timation of a sum of exponentials. This method was com-
pared to the modified Prony method, one of the best existing
methods in the literature. The starting point of both meth-
ods is the same: a linear homogeneous differential/difference
equation with constant coefficients that are algebraic func-
tions of the desired parameters. In both cases, the estima-



5 10 15 20 25 30 35 40

−4

−2

0 

SNR

M
S

E

CRB, Re{α
1
}

CRB, Re{α
2
}

AM, Re{α
1
}

AM, Re{α
2
}

MP, Re{α
1
}

MP, Re{α
2
}
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Figure 5: Comparison of the performances of the algebraic
method and the modified Prony method in identifying Im{α}

tions are obtained by finding the roots of a polynomial. One
of the main differences is that the modified Prony is based on
a nonlinear optimization while the algebraic method solves a
linear system of equations.

Simulations have shown that the algebraic method is
more robust to noise than the modified Prony method. The
problem of yielding complex results when estimating real pa-
rameters was not observed in the simulations with the alge-
braic method, while for the modified Prony method it oc-
curred in simulations where SNR ≤ 20. The number of in-
accurate estimations increased with the decrease of the SNR
value.
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