The 3D Primitive Equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case

Abstract : In this article we consider the 3D Primitive Equations (PEs) of the ocean, without viscosity and linearized around a stratified flow. As recalled in the Introduction, the PEs without viscosity ought to be supplemented with boundary conditions of a totally new type which must be \textit{nonlocal}. In this article a set of boundary conditions is proposed for which we show that the linearized PEs are well-posed. The proposed boundary conditions are based on a suitable spectral decomposition of the unknown functions. Noteworthy is the rich structure of the Primitive Equations without viscosity. Our study is based on a modal decomposition in the vertical direction; in this decomposition, the first mode is essentially a (linearized) Euler flow, then a few modes correspond to a stationary problem partly elliptic and partly hyperbolic; finally all the other modes correspond to a stationary problem fully hyperbolic.
Type de document :
Article dans une revue
Journal de Mathématiques Pures et Appliquées, Elsevier, 2008, 89 (3), pp.297-319. 〈10.1016/j.matpur.2007.12.001〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00179961
Contributeur : Antoine Rousseau <>
Soumis le : mercredi 17 octobre 2007 - 11:24:29
Dernière modification le : mercredi 11 avril 2018 - 01:59:45
Document(s) archivé(s) le : lundi 24 septembre 2012 - 13:36:56

Fichier

RTT07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Rousseau, Roger Temam, Joe Tribbia. The 3D Primitive Equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. Journal de Mathématiques Pures et Appliquées, Elsevier, 2008, 89 (3), pp.297-319. 〈10.1016/j.matpur.2007.12.001〉. 〈inria-00179961〉

Partager

Métriques

Consultations de la notice

421

Téléchargements de fichiers

172